有机光致变色材料
- 格式:doc
- 大小:405.00 KB
- 文档页数:12
光致变色材料在信息存储中的应用近年来,光致变色材料在信息存储领域中得到了广泛的应用。
这种材料可以通过光的作用而发生颜色的变化,具备高灵敏度、高稳定性等优点,因此受到了科研工作者和工业界的关注。
本文将从原理、应用实例、前景等方面进行探讨。
一、原理光致变色材料的原理是基于光致效应。
光致效应是指光的作用下,物质原子的能量状态发生变化,从而导致物理性质的改变。
光致变色材料的基本结构由底板、载色层、涂层和光敏介质层等组成。
底板通常为玻璃、塑料等,而载色层则是控制颜色信息的关键层。
涂层可以增加材料的稳定性、增强载色层的透光性、光敏介质层能够使材料实现光致变色。
当光照射在材料上时,光子能量激发光敏介质层的电子,使其跨越禁带运动到载色层。
载色层的颜色就会由此产生改变。
颜色的变化就是信息的存储和传递,由于光照结束后颜色可以保持一定时间,因此光致变色材料被广泛应用于信息存储。
二、应用实例1. 光致变色存储材料尤其是色酰胺类、三苯基甲烷类等大分子型光致变色材料,它们可以感受到较弱的光信号,优良的光储存性能能够与一些高端光储存材料相媲美,有良好的应用前景。
例如,可以将这种材料应用于二维码、条码等信息记录和安全保密领域。
2. 光致变色显示器件光致变色材料还可以应用在新型显示器件上。
利用其颜色的变化,可以制造有机电致变色器件、电致变色液晶器件、自组装膜变色器件等多种新型显示器件。
这类智能材料的应用前景非常广泛,但目前还需要进一步的研究和发展。
3. 光致变色光纤传感器光致变色材料还可以应用于光纤传感器的制造。
利用其颜色的变化来检测温度、压力、电磁场等物理量。
与传统的光纤传感器相比,这种新型光纤传感器具有灵敏度高、稳定性好等特点。
三、前景随着信息储存和传输的日益普及,对光致变色材料的需求将会越来越高。
尤其是信息存储和传输的领域,光致变色材料的应用前景非常广阔。
但需要注意的是,光致变色材料在生产和制造过程中需要严格控制材料的质量和纯净度,保证材料具有一致的性能和稳定性。
光致变色材料制备用途以及进展(宵岛科技大学化学与分子工程学院应用化学084班李)摘要:本文针对光致变色材料这一新型材料,综述了光致变色材料的变色原理及分类,并着重对含氧、氮、硫杂螺环结构的光致变色化合物研究进展,有机光致变色高分子材料的加工方法、性能优劣及研究进展进行了论述,最后对光致变色材料的应用前景进行了总结和展望。
关键词:光致变色有机光致变色材料含氧、氮、硫杂螺环结构的光致变色化合物1光致变色原理光致变色现象e (对光反应变色)指一个化合物(A)受一定波长(1)光的照射,进行特定化学反应生成产物(B),其吸收光谱发生明显的变化;在另一波长(2)的光照射下或热的作用下,乂恢复到原来的形式:严格意义上的光致变色化合物的主要结构形式有两种:1)光致变色材料分子作为侧链基团直接或通过间隔基与主链大分子相联;2)光致变色材料分子作为主链结构单元或共聚单元而形成聚合物但随着研究的不断深入,变色材料种类和结构形式也不断扩大,也有人认为将光致变色化合物添加到聚合物中形成聚合物的类型添加进来,但此种形式仍存在广泛争议光致变色材料发展至今,按照不同判别标准其分类方式多种多样如果按照材料光反应前后颜色不同分类,可分为正光色性类和逆光色性类两种;而按照变色机理进行分类时,则可分为T类型和P类型;P类型材料的消色过程是光化学过程,有较好的稳定性和变色选择性⑵。
但应用最广泛的分类方法则是按照材料物质的化学成分进行分类,即分为无机化合物和有机化合物两大类它主要有三个特点卓:①有色和无色业稳态问的可控可逆变化;②分子规模的变化过程;③业稳态问的变化过程与作用光强度呈线性关系。
光致变色反应中的成色和消色过程的速度和循环次数(即抗疲劳性)是其实际应用的决定性因素。
光致变色材料要想真正达到实用化,还必须满足以下条件:①A和B有足够高的稳定性;②A和B有足够长的循环寿命;③吸收带在可见光区;响应速度快,灵敏度高。
2含氧、氮、硫杂螺环结构的光致变色化合物2.1 螺毗喃化合物1952年Fisdher和Hirshberg[4]首次发现了螺毗喃的光致变色性质,1956年Hirshberg[5 ]第一次提出光成色与光漂白循环可构成化学记忆模型,并可在化学信息存贮方面获得应用.螺毗喃衍生物有好的着色能力和抗光致疲劳能力,在数据记录和储存,光控开关,显示器和非线性光学等方面有潜在的应用前景. 2.1.1光致变色原理大多数螺毗喃及其类似化合物表现出正向光致变色特性.然而,当这些化合物的结构带有羟基、埃基或氨基时,则显示出“逆”向光致变色特性.人们对其光致变色机理及结构进行了大量研究.普遍认为,此类化合物在光照下, 发生键的异裂形成偶极离子.由丁共轴程度了发生改变,因此显示不同的颜色[6]如下图(1)所示.但对开环体2的花菁结构,Kim和Schulze等[乙8]提出了比花菁更稳定的花菁盐结构.2.1.2螺毗喃化合物的制备呼噪琳螺毗喃5可由取代水杨醛与2-业甲基呵噪琳衍生物(Fischer碱)在有机溶剂中回流缩合而成,如将1,3,3-三甲基-2-业甲基呵噪3与羟基芳醛4在乙醇溶液中回流反应,5的收率为70%〜98%[9]如图(2)所示.由(2)图中3的业甲基部分容易二聚,为提高苯并嗯哇螺毗喃的收率,使用铳盐或氧令翁盐6作为业甲基单元的前体,可以很好地完成这一反应(Scheme 1).Scheme 1利用类似的方法,合成了许多螺毗喃类化合物及其衍生物[10,11]. 2004〜2007年孟继本等合成一系列的光致变色螺环化合物 ,其典型代表物8, 9如Scheme 2 所示.0H 8 Scheme 2总之,螺毗喃化合物合成方法已基本成熟,今后应加强螺毗喃的修饰和化 合物的设计研究,通过改变合成方法减少对环境的影响,以进一步提高产品纯 度、收率和热稳定性.2.2俘精酸酊类2.2.1简介俘精酸酎是芳取代的二业甲基丁二酸配类化合物的统称,是最早被合成的有 机光致变色化合物之一。
有机化学中的新材料与应用有机化学是研究碳氢化合物及其衍生物的化学科学,广泛应用于许多领域,为我们的生活带来了许多新材料和应用。
本文将探讨有机化学中的一些新材料以及它们的应用。
一、生物降解塑料生物降解塑料是一种环境友好型的塑料,它可以在正常的环境条件下被微生物代谢和降解,降解产物对环境没有污染。
这种塑料主要由可再生资源制成,如玉米淀粉和纤维素。
它在塑料包装、食品容器和农业薄膜等领域得到广泛应用,有效减少了对环境的影响。
二、光致变色材料光致变色材料是一种能够在光照射下改变颜色的材料。
它们的分子结构可以通过紫外光、可见光或红外光的照射而发生可逆的结构变化,从而改变材料的颜色。
这种材料在信息显示、可见光通信和光子学等领域具有潜在的应用前景。
三、有机光电材料有机光电材料是一种能够将光能转化为电能或者将电能转化为光能的材料。
这些材料通常由有机分子构成,其分子结构可以通过吸收光子而发生电荷分离或电荷重组,从而实现光电转换。
有机太阳能电池、有机发光二极管和有机光电传感器等就是利用有机光电材料的典型应用。
四、荧光探针荧光探针是一种可用于检测、定量和监测特定物质的有机化合物。
通过引入特定的分子结构,荧光探针可以与目标物质发生特定的相互作用并发生荧光变化。
这种材料在生物医学和环境监测等领域的应用非常广泛,可以用于检测重金属离子、有毒气体和生物分子等。
五、有机电子材料有机电子材料是一种能够在电子设备中实现电荷输运和电子传导的有机化合物。
这些材料通常具有良好的分子自组装性质和光电特性,可以用于制备柔性显示器、有机场效应晶体管和有机电子器件等。
有机电子材料的研究和应用为电子学领域带来了许多新的可能性。
结语有机化学中的新材料与应用给许多领域带来了革命性的变化。
生物降解塑料解决了塑料污染的问题;光致变色材料实现了信息显示的创新;有机光电材料实现了光电转换的突破;荧光探针帮助我们监测和检测特定物质;有机电子材料掀起了柔性电子的新浪潮。
光致变色化合物光致变色化合物,是指在受到光照射后,可以发生颜色变化的化合物。
光致变色是一种特殊的光物理现象,也是一种独特的材料性质,广泛应用于颜色显示、光学存储和传感器等领域。
光致变色化合物具有许多独特的特性。
首先,它们可以根据所受到的光的类型和强度发生颜色变化。
比如,一些化合物在紫外光照射下呈现蓝色,而在可见光照射下则呈现红色。
其次,光致变色化合物的颜色变化能够可逆发生,即在光源移除后能够恢复到原来的颜色。
这种可逆性使得光致变色化合物在信息存储和光开关等方面具有巨大的潜力。
光致变色化合物的变色机理可以分为两类,一类是通过电荷转移或电子跃迁来实现的,另一类是通过分子结构的改变来实现的。
第一类机理中,光照射激发了化合物中的电子,使其发生电荷转移或电子跃迁,从而导致了颜色的变化。
第二类机理中,光照射导致了分子结构的改变,使得颜色发生了变化。
这种机理常见于一些有机化合物,如染料分子。
光致变色化合物在颜色显示领域有广泛的应用。
例如,液晶显示屏中常使用的色素分子就是一种光致变色化合物。
这种化合物可以根据所受到的光的类型和强度,在屏幕上显示出不同的颜色。
另外,光致变色化合物还可以应用于写真设备,如打印机和复印机等。
通过控制光的强度和颜色,可以在纸张上生成不同的图像和文字。
光致变色化合物还可以用于光学存储领域。
这种材料可以根据光的照射,在存储介质中形成微小的改变和结构特征,从而实现信息的存储和读取。
光致变色化合物可以通过控制光的强度和波长,以及控制光的路径和焦距,来实现对存储介质的编码和解码。
这种存储方式具有高密度、快速读写和容量可扩展等优点,因此在光学存储领域有很大的应用潜力。
另外,光致变色化合物还可以应用于传感器领域。
通过将光致变色化合物与特定的分子或离子相结合,可以实现对不同化学物质的快速检测和分析。
当化学物质与化合物结合后,光致变色化合物的颜色会发生变化,从而可以通过观察颜色的变化来判断化学物质的存在和浓度。
光致变色材料制备用途以及进展光致变色材料还可以应用于传感器领域。
通过对光致变色材料进行材料表面改性和结构设计,可以实现对温度、湿度、压力和化学物质等环境参数的灵敏检测。
这些传感器可以应用于生活中的智能家居、医疗健康和环境监测等领域。
除了光学和传感器领域,光致变色材料还有其他一些用途。
例如,在纺织品和陶瓷领域,光致变色材料可以应用于制造颜色随温度变化的智能纤维和智能陶瓷;在建筑领域,光致变色材料可以应用于制造可调节透光率和热学性能的玻璃和可变反射涂层,用于调节建筑物的室内光照和能量消耗。
在光致变色材料的制备和研究方面,近年来取得了一些进展。
一方面,研究人员通过合成不同结构的有机分子和纳米材料,实现了对光致变色材料性能的调控。
例如,设计合成了新型的有机分子,使其在受到光照后能够发生颜色变化;还利用金属纳米颗粒和量子点等纳米材料,制备了具备特定光学性能的光致变色材料。
另一方面,研究人员也使用了一些新的制备技术来制备光致变色材料。
例如,通过溶液旋转涂覆、电沉积和溶胶-凝胶法等方法,可以制备出具有特定微纳结构和化学组成的光致变色材料。
这些新的制备技术可以提高制备效率,改善材料性能,并为进一步的应用提供了可能。
虽然在光致变色材料的制备和应用方面取得了一些进展,但仍然存在一些挑战。
例如,一些光致变色材料的响应速度较慢,不适用于高速光学器件和传感器;另外,一些材料在经历多次颜色变化后会失去响应性能。
因此,今后的研究需要进一步改进材料的性能,提高制备工艺,并探索新的应用领域。
总之,光致变色材料具有广泛的应用前景和进展。
它们可以应用于光学器件、传感器、纺织品、建筑材料等领域,并通过进一步的研究和发展,可以实现更多新的应用。
有机光电功能材料分类
有机光电功能材料是一类能够将光能转化为电能,或者在电场或电流作用下表现出光学效应的材料。
根据其功能和特性,有机光电功能材料可以分为以下几个主要分类:有机光电转换材料(Organic Photovoltaic Materials):这类材料可将光能转化为电能,常用于太阳能电池和光电探测器等光电转换设备。
它们通常由有机分子、有机半导体材料和聚合物构成。
有机发光材料(Organic Light-Emitting Materials):这类材料能够将电能转化为光能,广泛应用于有机发光二极管(OLED)等光电显示和照明设备。
常见的有机发光材料包括有机染料和聚合物。
光敏材料(Photosensitive Materials):这类材料在受到光照或电场激发后产生光学效应,用于光敏记录、激光打印、光刻制造等领域。
光敏材料常包含感光剂、波长转换剂和光致变色剂等。
有机光学材料(Organic Optical Materials):这类材料具有特殊的光学特性,包括透明性、折射率调控和非线性光学效应,并可用于光纤通信、光学薄膜和光学透镜等领域。
有机电致变色材料(Organic Electrochromic Materials):这类材料能够在电场刺激下实现颜色变化,可应用于电子纸、调光玻璃和显示器件等领域。
有机传感材料(Organic Sensing Materials):这类材料能够响应特定物理或化学刺激,如温度、湿度、气体和生物分子等,用于传感与检测应用,例如生物传感器和环境监测。
有机光致变色材料 有机光致变色现象发现至今已有100 多年的历史。1867年Fritzsche 观察到黄色的并四苯在空气和光作用下的褪色现象,所生成的物质受热时重新生成并四苯,变回原来的颜色。1876 年Meer 首先报道了二硝基甲烷的钾盐经光照发生颜色变化。Markward 于1899 年研究了1 ,42二氢22 ,3 ,4 ,42四氯萘212酮在光作用下生的可逆的颜色变化行为,并把这种现象称为光色互变。20 世纪50年代Hirshberg 陆续报道了关于螺吡蝻类化合物受光照变色,在另波长的光照射下或热的作用下又能恢复到原来颜色的现象,并把上述现象称为光致变色现象(photochromism) 。20 世纪80 年代螺噁嗪类、苯并吡喃类抗疲劳性较好的化合物的发现使得光致变色化合物研究真正兴起。目前,对光致变色化合物的研究主要集中在俘精酸酐、二芳基乙烯、螺吡喃、螺噁嗪以及相关的杂环化合物上,同时也在探索和发现新的光致变色体系。
光致变色现象 光致变色现象[6 ] 是指一个化合物(A) 在受到一定波长的光照射时,可进行特定的光化学反应,获得产物(B) ,由于结构或电子组态的改变而导致其吸收光谱发生明显的变化;而在另一波长光的照射下或热的作用下,又能恢复到原来的形式。其典型的紫外- 可见吸收光谱和光致变色反应可 以用图1 - 1 定性描述 1 有机光致变色化合物的分类 1.1 有机光致变色化合物 有机光致变色材料种类繁多,反应机理也不尽相同,主要包括:①键的异裂,如螺吡喃、螺嗯嗪等;②键的均裂,如六苯基双咪唑等;③ 电子转移互变异构,如水杨醛缩苯胺类化合物等;④顺反异构,如周萘靛兰类染料、偶氮化合物等;⑤氧化还原反应,如稠环芳香化合物、噻嗪类等;⑥周环化反应,如俘精酸酐类、二芳基乙烯类等。下面介绍几种主要的有机类光致变色化合物。 (1) 螺吡喃类 1. 1螺吡喃( spiropyran) 是最早进行研究且研究得广泛、比较深 入的一类有机光致变色化合物。螺吡喃变色过程是通过键的异裂,发生分子内的周环反应,生成具有共轭结构的开环化合物。 变色反应为:
取代基的水杨醛反应制得螺吡喃,产率可达到90 %以上。 1. 2 螺噁嗪类 螺噁嗪( spirooxazine) 是20 世纪70 年代在螺吡喃基础上发 展起来的一类具有良好光致变色性能的化合物。其变色过程与 螺吡喃相似,变色反应为: 螺噁嗪是一类具有很高抗疲劳性和光稳定性的光致变色化 合物。它具有响应快、化学性质稳定、抗疲劳性好等优点,是最 有希望进入应用领域的光致变色材料。最近Chung2Chun Lee 等用微波合成法合成了几种螺噁嗪类化合物[2 ] 。微波合成法比 普通方法大大提高了效率,用几十分钟的时间,就可以达到传统 方法几个小时所能得到的产率,但产率并不很高只有40 %左右 化和物就显得非常重要。 等优点,受到许多研究工作者的关注。 紫精类化合物是一类很特殊的有机物,它具有优良的氧化 还原性质,可通过化学、电化学和光化学等方法发生氧化还原反应[16 ] ,并伴随有显著的颜色变化,因此引起了广泛的研究, Eca2terina Avram 等合成了多种紫精类化合物并对其性能进行了研究[17 ] 。研究表明紫精类化合物是很好的光致变色化合物,同时还发现具有大分子杂环的化合物,具有很好的抗微生物活性,可用以制作生物学材料。
3.光致变色材料的应用 (1)信息存储元件 利用光致变色化合物受不同强度和波长光照射时可反复循环变色的特点,可以将其制成计算机的记忆存储元件,实现信息 的记忆与消除过程,其记录信息的密度大得难以想象,而且抗疲劳性能好,能快速写入和擦除信息。这是新型记忆存储材料的一个新的发展方向。 (2)装饰和防护包装材料 光致变色化合物可用作指甲漆、漆雕T艺品、T恤衫、墙壁 纸等装饰品。为了适应不同的需要,可将光致变色化合物加入到一般油墨或涂料用的胶粘剂、稀释剂等助剂中混合制成丝网印刷油墨或涂料;还可将光致变色化合物制成包装膜、建筑物的调光玻璃窗、汽车及飞机的屏风玻璃等,防护日光照射,保证安全。 (3)自显影全息记录照相 这是利用光致变色材料的光敏性制作的一种新型自显影干法照相技术一 。在透明胶片等支持体上涂一层很薄的光致变色物质(如螺吡喃、俘精酸酐等),其对可见光不感光,只对紫外光感光,从而形成有色影像。这种成像方法分辨率高,不会发生操作误差,而且影像可以反正录制和消除。 (4)国防上的用途 光致变色材料对强光特别敏感,因此可以用来制作强光辐剂量剂。它能测量电离辐射,探测紫外线、X射线、7射线等的剂量。如将其涂在飞船的外部,能快速精确地计量 高辐射的剂量。光致变色材料还可以制成多层滤光器,控制辐射光的强度,防止紫外线对人眼及身体的伤害。如果把高灵敏度的光致变色体系指示屏用于武器上,可记录飞机、军舰的行踪,形成可褪色的暂时痕迹。
3.新型有机光致变色材料螺噁嗪的光致变色原理和合成 3.1 光致变色原理 螺嗯嗪类光致变色材料是一种新型的、具有优异性能的材料,它的变色机制与螺吡喃的光致变色机制相同。通常情况下,螺嗯嗪的稳定形式是无色的闭环体(用SP表示),螺碳原子将螺嗯嗪分为两个近乎垂直的吲哚啉环和螺萘并嗯嗪环,两环不共轭,在可见光区无吸收;但紫外光照时,螺碳原子与氧原子之间的单键断裂,分子由闭环体变为开环的平面部花菁结构(用 PMC表示),形成一个大的共轭体系,在可见光区出现吸收。除去紫外光后,PMC又很快变为SP。示意如下:
3.2 光致变色材料螺嗯嗪的合成
2.3.3--甲基一3H-吲哚的合成 将经过常压蒸馏的甲基异丙基甲酮18.0 g (0.21 too1)慢慢加入到新减压蒸馏的苯肼22.2 g (0.21 mo1)中,溶液呈淡黄色,加入无水乙醇40 mL作溶剂,在0.5 h内滴入催化剂浓硫酸溶液10 mL(V浓硫酸:V水一1:1),油浴80℃ ,反应3.0~4.0 h,反应过程中溶液由黄色变为橙红色,反应完毕用NaOH 中和至碱性,溶液产生分层现象,上层橘黄色,下层无色。用无水乙醚萃取,弃去水相,有机相用无水硫酸镁干燥过夜。抽滤,常压蒸除乙醚(后期减压),再减压蒸馏溶液,收集96~ 98℃/(1.07~ 1.20 kPa)的馏分,所得产物为淡黄色的液体,此液体即为吲哚,产率为82%
N-乙基[2,3,3-三甲基-3H-吲哚]碘化物的合成。 称CH3CH3I 18.72 g(O.12 mo1)与新蒸馏的2,3,3-三甲基一3H一吲哚19.08 g(0.12 mo1)混合,加入30 mL乙醇作溶剂,在80℃油浴中回流反应3 h。获得粉红色溶液,冷却后粉红色晶体析出,收集粗产品。真空干燥后,经无水乙醇多次洗涤之后产物成无色晶体。干燥后用乙醇重结晶,产率为42%
1-亚硝基一2。7一二羟基萘的合成
N一乙基一9’一羟基螺嗯嗪的合成 称N一乙基碘化物中间体3.15 g(0.01 too1) 加入250 mL烧瓶中,量取60 mL无水乙醇,2.5 mL三乙胺,加入溶液,在80℃ 油浴中回流1 h(A)。称1一亚硝基一2,7一二羟基萘1.89 g(0.01 too1)加入250 mL烧瓶中,量取40 mL无水乙醇,加入溶液,在80℃ 油浴中回流0.5 h(B)。将B在1 h左右滴加入A 中后,继续反应3 h。减压蒸除80 溶剂,把剩余液体倒入烧杯冷却。硅胶柱层析,洗脱液( 石油醚:V 醚一2: 1)。蒸除溶剂,得土黄色晶体
4.有机光致变色材料在光信息处理中的应用 有机光致变色材料可以实现光学模拟信号的处理。有机光致变色材料在光激发下具有光致变色特性和光致各向异性,其吸收和折射率也发生改变,因而可用于光信息处理中。光信息处理包括模拟信号处理和数字信号处理。近几年光学数字信号处理方法发展很快,比如光传感器网络、光信息处理中的开关网络以及一些通信传输分站中已用到的光纤法布里- 珀罗干涉仪、联合信号调节器等。光学模拟信号处理方法包括傅立叶变换处理方法和非傅立叶变换处理方法。其中基于材料光致各向异性特性的处理方法有非傅立叶变换光信息处理方法和傅立叶变 换光信息处理方法。已有研究人员分别利用菌紫质的非线性光致各向异性特性实现了图像的边缘增强、高频滤波以及模式识别等傅立叶变换光信息处理功能,即利用波长为532 纳米的激光将图像记录在菌紫质材料上,白光光源通过单色仪选出单色光作为图像读出光,观察菌紫质膜所记录图像对比度随读出光波长变化的趋势,读出光在470~620 纳米波长范围内读出为正像,460 纳米波长附近图像消失;380~450 纳米波长范围内,图像出现反转。 有机光致变色材料可以用来防伪。防伪技术有两种方法,一是通过直接观察获得,另一种是通过对防伪标示的检查而验证产品的真实性。水印、全息照片、显微印刷属于第一种技术,而有机光致变色材料的光致各向异性用于防伪系统,属于第二种技术。德国研究人员利用菌紫质分子的激光诱导永久偏振特性已制成具有安全防伪功能的身份证卡。 有机光致变色材料可以作为光开关用于光通信。为解决目前互联网的“交通堵塞”问题,就要在同一根光纤中,同时让两个或者两个以上的光信号通过,不同信号各自传输自己的信息,也就是波分复用技术。波分复用光纤通信技术是建立在光器件的基础上,其中包括光传输器件和光交换器件两大类。对于光交换器件,又包括光交叉连接器和光分插复用器及光开关。光开关在光通信中的作用有三类: 其一是将某一光纤通道的光信号切断或开通;其二是将某波长