污水生物脱氮技术研究进展
- 格式:pdf
- 大小:89.09 KB
- 文档页数:1
MBBR厌氧氨氧化工艺污水脱氮的探究进展MBBR厌氧氨氧化工艺的脱氮机制主要包括硝化反硝化过程和硝化扩散过程两个方面。
在硝化反硝化过程中,厌氧菌将氨氮通过厌氧氨氧化转化为亚硝氮和硝氮,然后通过硝化反硝化过程将硝氮还原为氮气释放到大气中。
在硝化扩散过程中,污水中的氨氮通过扩散到菌群中实现脱氮。
通过这两个过程的协同作用,MBBR系统能够高效地降低污水中的氨氮含量。
近年来,探究人员对MBBR厌氧氨氧化工艺进行了广泛的试验探究和工程应用。
探究结果表明,MBBR厌氧氨氧化工艺在脱氮效果、能耗以及排放标准等方面均表现出良好的性能。
一些探究通过调整关键操作参数,如温度、溶解氧浓度、填料类型和填料负荷等,提高了系统的处理效率。
此外还有探究探究了菌群的生态特性以及微生物在厌氧氨氧化过程中的代谢途径,进一步提高了脱氮效果。
然而,虽然MBBR厌氧氨氧化工艺在脱氮方面取得了显著的探究进展,但仍存在一些挑战和亟待解决的问题。
起首,填料的选择和填料负荷对系统的影响仍需深度探究,以优化系统结构和提高脱氮效率。
其次,菌群组成和微生物代谢途径的探究仍需要进一步深度,以揭示脱氮反应的详尽机理。
此外,对系统污泥浓度和曝气方式等操作参数的优化也需要进一步探究。
综上所述,取得了显著效果,但仍需要进一步深度探究和实践应用。
随着对MBBR系统工艺的不息改进和优化,信任在将来的污水处理领域,MBBR厌氧氨氧化工艺将呈现出更为宽广的应用前景综上所述,MBBR系统通过调整关键操作参数、探究菌群生态特性和微生物代谢途径等途径,能够高效降低污水中的氨氮含量。
然而,填料选择和填料负荷、菌群组成和微生物代谢途径的探究仍需要进一步深度,以优化系统结构和提高脱氮效率。
此外,对操作参数的优化也需要进一步探究。
信任随着对MBBR系统工艺的不息改进和优化,MBBR厌氧氨氧化工艺将在将来的污水处理领域呈现出更宽广的应用前景。
厌氧氨氧化生物脱氮工艺研究进展【摘要】厌氧氨氧化生物脱氮工艺是一种新兴的热点研究领域,具有重要的应用价值。
本文首先介绍了该工艺的背景和意义,然后详细探讨了其工艺原理和优势,分析了影响工艺效果的因素,并提出了工艺优化策略。
通过对厌氧氨氧化生物脱氮工艺的研究,可以有效降低废水处理成本,减少对环境的影响,具有广阔的应用前景。
未来的研究方向可以进一步深入厌氧氨氧化反应机制的探讨,优化工艺条件,提高脱氮效率。
厌氧氨氧化生物脱氮工艺在水处理行业有着巨大的发展潜力,值得进一步的深入研究和探讨。
【关键词】厌氧氨氧化生物脱氮工艺、研究进展、厌氧氨氧化反应、工艺优势、影响因素、优化策略、研究展望。
1. 引言1.1 研究背景厌氧氨氧化生物脱氮工艺是一种新兴的生物处理技术,可有效去除废水中的氨氮,具有较高的去除效率和较低的能耗。
目前,传统的硝化-反硝化工艺在处理高浓度氨氮废水时存在着比较明显的弊端,如需求较高的碳源、较长的处理时间等。
而厌氧氨氧化生物脱氮工艺正是针对这些问题而发展起来的。
研究背景部分需要重点关注目前废水处理领域存在的问题,即传统工艺在处理高浓度氨氮废水时的不足之处,以及对环境和资源造成的影响。
随着人们对环境保护和资源可持续利用的意识不断增强,开发出高效、低能耗的废水处理技术变得尤为迫切。
厌氧氨氧化生物脱氮工艺的提出,填补了传统工艺的空白,对于解决废水处理领域的难题具有重要意义。
通过对厌氧氨氧化生物脱氮工艺的研究探讨,可以为其在实际应用中的优化提供理论支撑,进一步推动其在废水处理领域的应用和推广。
深入研究厌氧氨氧化生物脱氮工艺的机理和影响因素,探讨其优势和存在的问题,对实现废水处理技术的创新和发展具有重要意义。
1.2 研究意义厌氧氨氧化生物脱氮工艺是一种新兴的生物技术,可以有效地将废水中的氨氮转化为无害的氮气,并减少对环境的污染。
这种工艺具有高效、节能、环保等优点,对于解决城市和农村污水处理中氨氮排放过高的问题具有重要的意义。
低C-N比污水脱氮除磷技术应用探究进展随着城市的快速进步和人口的增加,污水处理成为一项重要的环境保卫工作。
污水中的氮、磷等营养物质的过量排放对水环境造成了严峻的污染,导致水体富营养化的加剧。
因此,实现污水的高效脱氮除磷成为了当前污水处理领域的探究热点。
低C/N比污水是指污水中的有机物质含量较低,而氮磷含量相对较高的一种污水。
这种污水的处理难度较大,传统的生物脱氮除磷方法往往效果不佳。
因此,近年来,人们开始探究和应用一些新的技术手段,以提高矮C/N比污水的处理效果。
一种常见的低C/N比污水处理技术是改良的生物脱氮除磷工艺。
这种工艺主要利用生物污泥中的异养微生物来完成污水中的脱氮除磷。
通过在污水处理系统中添加适当的碳源,可以增加异养微生物的生长和活性,提高污水中氮磷的转化效率。
探究表明,与传统的生物脱氮除磷工艺相比,改良的生物脱氮除磷工艺具有更好的处理效果和更低的运行成本。
除了改良的生物脱氮除磷工艺,还有一些新型的低C/N比污水处理技术正在被探究和应用。
其中之一是厌氧/好氧-厌氧反硝化除磷工艺。
该工艺利用厌氧反硝化微生物在无氧环境下消耗有机物质并同步去除氮磷,然后在好氧环境下通过好氧反硝化实现氮磷的完全去除。
这种工艺不仅能够高效地处理低C/N比污水,而且还能够实现碳、氮、磷的资源化利用。
此外,一些物理化学方法也被应用于低C/N比污水的处理中。
例如,利用吸附剂可以通过吸附作用将污水中的氮、磷等营养物质去除。
而利用化学沉淀法可以将污水中的氮磷以无机盐的形式沉淀下来,达到脱氮除磷的效果。
这些物理化学方法的优点是处理效果稳定,但运行成本较高,还需要探究如何实现对废水中的有害物质的去除和资源化利用。
综上所述,低C/N比污水脱氮除磷技术的探究进展正朝着高效处理、低成本运营和资源化利用的方向进步。
改良的生物脱氮除磷工艺、厌氧/好氧-厌氧反硝化除磷工艺以及物理化学方法等技术在低C/N比污水处理中发挥着重要作用。
将来的探究还需要进一步完善这些技术,同时探究新的处理方式,以实现污水的高效脱氮除磷,保卫水环境的健康综合来看,低C/N比污水脱氮除磷技术的探究进展乐观向着高效处理、低成本运营和资源化利用的方向进步。
城市污水处理新型生物脱氮除磷技术研究进展随着城市人口的不断增加和工业化进程的加速推进,城市污水处理成为一项重要而紧迫的任务。
污水中的氮和磷元素是造成水体富营养化的主要原因之一,对水环境造成严重的影响。
因此,开展高效的生物脱氮除磷技术研究对于改善城市水环境具有重要意义。
生物脱氮除磷技术是指利用微生物代谢能力来降解废水中的氮和磷元素,达到净化水体的目的。
传统的生物脱氮除磷技术主要是通过厌氧—好氧(A/O)法和接触氧化法(AO)等方法来实现。
然而,传统的方法存在着处理效率低、投资高、运营成本高、工艺复杂等问题。
因此,人们开始探索新型生物脱氮除磷技术。
在新型生物脱氮除磷技术中,脱氮的主要措施包括硝化反硝化、自养生物脱氮和氮气硝化等方法,而除磷的主要方式有生物吸附、化学沉淀和生物沉淀等方法。
这些新技术不仅能够提高处理效率,还能够降低投资和运营成本,同时减少对环境的污染。
硝化反硝化是一种利用硝化细菌将氨氮转化成硝酸盐,再利用反硝化细菌将硝酸盐还原成氮气释放到空气中的技术。
该技术利用了微生物自身的特性,可以比较彻底地去除废水中的氮元素。
同时,硝化反硝化技术可以通过调节污水处理系统的运行条件来控制脱氮过程,具有较高的灵活性。
自养生物脱氮技术是一种利用具有特殊代谢功能的厌氧细菌和好氧细菌来实现脱氮的过程。
该技术通过建立良好的菌群互作关系,利用好氧细菌将氨氮转换为亚硝酸盐,再通过厌氧细菌将亚硝酸盐转换为氮气释放。
该技术操作简单,对环境适应性强,并且能够较好地适应大规模、高浓度废水的脱氮需求。
氮气硝化技术是一种利用高效菌种来实现废水中氨氮转化为硝酸盐的技术。
该技术采用了循环式的生物反应器,通过在反应器中引入特殊的气氛,创造适合菌种生长的环境,提高氨氮转化为硝酸盐的效率。
该技术具有较高的处理效率和较低的运行成本,对水体中的氮污染有较好的去除效果。
生物吸附技术是指通过特定的微生物菌膜来吸附并去除废水中的磷元素。
该技术利用微生物菌膜的特性,实现对磷元素的高效吸附,从而达到去除废水中磷的目的。
污水处理中的深度脱氮技术研究一、引言在现代城市化的进程中,污水处理是一个不可忽视的环境问题。
其中,氮污染是造成水体富营养化的主要原因之一。
因此,深度脱氮技术的研究和应用愈发重要。
本文旨在探讨污水处理中的深度脱氮技术及其研究进展。
二、深度脱氮技术概述深度脱氮技术是指将污水中的氮元素有效去除至环境规定的排放标准以下的处理技术。
具体而言,常见的深度脱氮技术包括物理方法、化学方法和生物方法。
1. 物理方法物理方法主要利用分离技术和吸附技术进行污水中氮元素的去除。
例如,膜分离技术能够有效去除溶解性氮,通过不同孔径大小的膜将氮分子滞留在膜上,实现脱氮。
此外,吸附技术利用吸附剂对氮分子进行吸附,从而实现去除。
2. 化学方法化学方法主要利用化学反应将氮元素转化为其他形式从而去除。
常见的化学方法包括硝化反应和反硝化反应。
硝化反应将污水中的氨氮氧化为亚硝酸盐或硝酸盐,而反硝化反应将亚硝酸盐或硝酸盐还原为氮气释放到大气中。
3. 生物方法生物方法主要利用生物活性物质对污水中的氮元素进行处理。
传统的生物方法包括厌氧氨氧化和硝化反硝化工艺。
而近年来兴起的深度脱氮技术中,反硝化产物的再利用成为了研究热点。
通过微生物对反硝化产物的利用,可以将氮元素进一步去除达到更高的脱氮效果。
三、深度脱氮技术的研究进展随着环境问题的加剧和技术的不断进步,深度脱氮技术在污水处理领域得到了广泛应用和研究。
1. 新型吸附剂的应用新型吸附剂的研发成为了深度脱氮技术的重要方向。
例如,一些基于石墨烯、金属氧化物等材料制备的吸附剂具有较大的比表面积和优异的吸附性能,能够高效地去除污水中的氮元素。
2. 微生物技术的创新微生物技术在深度脱氮技术中发挥着重要作用。
新型生物载体的开发以及基因工程技术的应用为深度脱氮提供了新的途径。
例如,一些研究人员通过改良微生物株的代谢途径,使其对反硝化产物有更高的利用能力,从而实现更高效的脱氮效果。
3. 联合技术的应用深度脱氮技术的研究也逐渐向联合技术发展。
污水生物脱氮过程N2O排放数学模型研究进展污水生物脱氮过程N2O排放数学模型研究进展1. 引言污水处理厂是为了减少排放到环境中的氮、磷等污染物负荷而建造的重要设施。
然而,在污水处理的过程中,尽管通过生物脱氮技术可以有效地去除污水中的氮,但会产生大量的氧化亚氮(N2O),它是一种强大的温室气体和臭氧破坏剂。
因此,探索污水生物脱氮过程中N2O排放的规律及其数学模型的研究成为解决这一问题的重要途径。
2. N2O的生成机理N2O是由氨氧化细菌(AOB)和反硝化细菌通过氧化亚氮还原酶(N2OR)催化作用产生的。
其中,AOB在氨氧化的过程中生成亚硝酸(NO2-),而反硝化细菌则通过还原亚硝酸至氮气(N2),在此过程中产生N2O。
3. N2O排放的影响因素(1)C/N比:C/N比是污水中有机碳与氮的比值。
适宜的C/N比能够保持污水处理系统中厌氧和好氧条件的平衡,从而减少N2O的产生。
(2)温度:温度对反硝化细菌活性的影响很大。
较高的温度能够促进反硝化细菌的生长和代谢活动,增加N2O产生的可能性。
(3)氧气浓度:过高或过低的氧气浓度都会抑制反硝化细菌的活性,从而减少N2O的生成。
(4)pH值:适宜的pH值有助于细菌生长和代谢,从而影响N2O的排放。
4. N2O排放数学模型的建立为了准确预测和控制污水生物脱氮过程中N2O的排放,研究人员建立了各种数学模型。
其中比较常用的是基于物质平衡和能量平衡的动态模型。
(1)物质平衡模型:该模型基于活性污泥系统中N2O的产生与消耗之间的平衡关系建立,通过考虑各种微生物的生长、代谢和迁移等因素,对N2O的生成、转化和排放进行定量预测。
(2)能量平衡模型:该模型考虑底物的降解和产生能量的同时,进一步考虑氨氧化和反硝化过程中产生的N2O,通过能量的平衡关系对N2O的排放进行建模。
5. 模型验证与应用研究者通过实际污水处理厂的监测数据对建立的数学模型进行验证,在与实际数据进行对比的过程中发现模型具有较好的准确性和预测能力。
污水脱氮功能微生物的组学研究进展污水脱氮功能微生物的组学研究进展摘要:污水脱氮是当今环境领域的重要课题之一。
微生物在污水处理中起着关键的作用,其中脱氮功能微生物是其中的重要成员。
本文通过组学方法对污水脱氮功能微生物进行了研究,总结了近年来的研究进展,并探讨了未来研究的方向。
1. 引言随着人口的增加和工业的发展,污水排放量不断增加,特别是含有高浓度氮污染物的污水。
氮污染对水生态系统和人类健康造成了严重威胁,因此污水脱氮技术研究显得尤为重要。
微生物在污水处理过程中能够将有机氮转化为无机氮,并最终转化为氮气释放到大气中。
因此,研究污水脱氮功能微生物的组学特征对于提高污水处理效果具有重要意义。
2. 组学方法在污水脱氮功能微生物研究中的应用组学是一种综合性的研究方法,涵盖了生态学、基因组学、转录组学和代谢组学等技术。
在污水脱氮功能微生物研究中,组学方法提供了全面、系统的分子信息,有助于深入了解微生物的功能和代谢途径。
2.1 基因组学基因组学是研究生物体生命活动的基因组结构和功能的科学。
通过基因组测序技术,可以获取到微生物的全基因组信息,包括基因序列、功能注释和基因组结构等。
通过对污水脱氮功能微生物基因组进行分析,可以揭示微生物在脱氮过程中的代谢途径和关键基因。
2.2 转录组学转录组学是研究生物体在特定时间和空间内转录产物的整体谱系,可以通过RNA测序技术获取微生物转录组的信息。
转录组学研究可以揭示微生物在不同条件下的基因表达模式,以及在脱氮过程中的基因调控机制。
2.3 代谢组学代谢组学是研究生物体在特定条件下代谢物质的整体谱系,可以通过质谱和核磁共振等技术获取微生物代谢产物的信息。
代谢组学研究可以揭示微生物在脱氮过程中的代谢途径和关键代谢产物。
3. 污水脱氮功能微生物组学研究进展近年来,国内外的研究者通过组学方法对污水脱氮功能微生物进行了广泛的研究。
在基因组学方面,已经鉴定出了大量与污水脱氮相关的微生物基因,并研究了这些基因的功能和调控机制。
新型污水生物脱氮除磷工艺研究进展摘要:近些年来,伴随城镇规模的扩大,城镇生活污染源占比急剧上升,而污水收集系统的建设推进相对缓慢,污水处理技术滞后于当前的社会发展需求,导致水体富营养化日益严峻,其中以氮、磷为主要的水资源富营养化因素。
传统脱氮除磷污水处理工艺难以满足日趋严重的污水处理需求开发适宜的脱氮除磷新型污水处理工艺技术拥有很大的市场前景。
基于此,本文探讨了研究生物脱氮除磷处理污水新工艺的意义,介绍了关于生物脱氮除磷新型污水工艺的整体研究进展,仅供参考。
关键词:新型工艺;污水处理;生物脱氮除磷近年来,我国富营养化水体占比超过80%[1],排入水中的氮、磷等物质给藻类植物提供了充足的生长条件,导致水体溶解氧下降,限制水生生物的生存环境,严重危害了自然水生态系统,带给野生动植物、家畜、人类巨大的影响和危害。
很多国家均严格限制了氮磷排放标准,并循环利用水资源,以防水体继续恶化,我国排水质量评价体系也从单一考核氨氮、磷酸盐向总氮总磷转变。
当前,国内应用型污水处理技术依旧较为落后,以至于出水中的氮磷难以较好地被去除,无法达到A级标准。
下一步,需要积极研究、改进脱氮除磷工艺,尤其应关注污水生物脱氮除磷新型工艺的国内外研究进展,推动新技术的应用落地。
一、生物脱氮除磷处理污水新工艺的研究意义人类为了存活下来并不断向前发展,则必须依赖水这种很重要的资源。
随着工农业不断向前发展、民众生活品质的稳步提高工业废水以及城镇生活污水的总体排放量都在急剧增大。
然而,生活及工业污水处理设施的巨大缺口使得国内水环境污染愈加严重,大量没有处理达标的高氮磷污水直接排入水体引起了严峻的水体富营养化现状问题部分水系难以发挥正常功能并且带来了严重的经济损失。
近年来逐步增加的污水处理能力从一定程度上改善了水体污染现象但是却远远跟不上水污染防治的需求以至于水环境质量每况愈下[2]。
而相较于传统化学、物理脱氮除磷工艺而言,生物脱氮除磷新型工艺能够明显提高出水水质与脱氮除磷效率,有效减少运行费用、降低能源消耗。
生物脱氮除磷机理及技术研究进展摘要随着我国工业化水平的不断提高,工业污水中的氮、磷含量也在不断地增长,使水体营养化问题日益显现。
近年来,生物脱氮除磷技术已经得到世界各国的重视,并加强对其的研究,使其在污水处理领域得到广泛的发展。
本文重点介绍了生物脱氮机理和生物除磷机理,并详细介绍了几种生物脱氮除磷工艺以及研究进展。
关键词脱氮除磷;机理;工艺;污水处理近年来,随着我国经济的不断地发展,污水排放量也在迅猛增长。
污水中氮、磷含量的超标是造成水体营养化的重要原因。
由于目前传统的污水处理工艺能较有效地处理污水中的有机物,对氮、磷等营养物的处理效果不是太明显。
由于大量的氮、磷被排出,从而造成水体富营养化。
因此,为了解决这一严峻的问题,世界各国都展开了对脱氮除磷机理以及技术的研究。
随着研究成果的不断更新,使生物脱氮除磷机理以及技术得到不断地提高,并且在污水处理中得到广泛的运用。
1 生物脱氮除磷机理1.1 生物脱氮机理生物脱氮是由生物硝化与生物反硝化两个过程来共同完成的。
其作用是在污水的处理过程中,通过将污水中的氮同化为微生物细胞的组成部分,使污水中的微生物得到增长。
生物硝化作用:由自养型好氧微生物产生硝化反应,氨态氮在硝化细菌的作用下被逐渐的氧化和分解,从而转化为亚硝酸盐。
亚硝酸盐在硝酸菌的作用下逐渐转化为硝酸盐,但在转变的过程必须具备大量的氧。
生物反硝化作用:由异养兼性微生物产生反硝化反应,反硝化菌在分子氧存在的基础上进行有机物的分解,并将分子氧当作最终电子受体。
如果在没有分子氧存在的情况下,只能将亚硝酸根以及硝酸根当作电子受体。
OH-碱和H20是由受氢体生成,有机物由电子供体和碳源组成,其作用是可以有效地提供能量,从而实现氧化稳定。
亚硝酸根和硝酸根在反硝化过程中的转化是在反硝化菌的同化作用和异化作用的情况下完成的。
亚硝酸根和硝酸根被还原成NH3并于新细胞组合的过程被称为同化作用。
亚硝酸根和硝酸根被还原成NO、H2O以及N2等气态物的过程被称为异化作用。
厌氧氨氧化生物脱氮工艺研究进展【摘要】厌氧氨氧化是一种新兴的生物脱氮技术,在污水处理领域具有重要应用前景。
本文从厌氧氨氧化生物脱氮工艺的概述出发,探讨了影响该工艺的因素,并对最新研究进展进行了总结。
还分析了工艺的优势和应用前景,指出了面临的挑战以及未来研究方向。
结论部分总结了目前的研究成果,并展望了未来的发展方向。
通过本文的研究,可以更深入地了解厌氧氨氧化生物脱氮工艺及其在环境保护中的重要性,为相关领域的研究提供参考和借鉴。
【关键词】厌氧氨氧化、生物脱氮、工艺、研究、进展、因素、优势、应用、挑战、未来、发展、展望、结语。
1. 引言1.1 研究背景厌氧氨氧化生物脱氮是一种新型的生物脱氮技术,可以有效地将废水中的氨氮转化为氮气排放,具有节能环保的优势。
在当前环境污染日益严重的背景下,研究和发展这种生物脱氮技术具有十分重要的意义。
传统的氨氮去除技术往往存在能耗高、操作复杂等问题,而厌氧氨氧化生物脱氮技术则可以在较低的能耗下实现高效处理废水中的氨氮,因此备受研究者和环保领域的关注。
在过去的研究中发现,厌氧氨氧化生物脱氮技术在实际应用中存在着一些问题和挑战,如微生物群体的构建、氮氧化过程的影响因素等。
有必要对厌氧氨氧化生物脱氮工艺进行深入研究,以解决当前存在的问题并提高其应用效率。
本文旨在系统梳理厌氧氨氧化生物脱氮技术的研究现状和进展,为其在废水处理领域的应用提供参考和借鉴。
1.2 研究意义厌氧氨氧化生物脱氮工艺是一种重要的废水处理技术,具有重要的研究意义。
厌氧氨氧化生物脱氮工艺可以有效去除废水中的氮负荷,减缓废水对水体的污染,保护水环境。
通过研究该工艺,可以提高氮的回收利用率,实现污水资源化利用,达到节能减排的目的。
厌氧氨氧化生物脱氮工艺还可以促进废水处理领域的技术创新,推动废水处理工艺的进步和完善。
深入研究厌氧氨氧化生物脱氮工艺具有重要的理论价值和实际应用意义,有助于提高废水处理效率,改善水环境质量,促进可持续发展。
污水处理脱氮除磷工艺的研究进展污水处理脱氮除磷工艺的研究进展导论随着工业化和城市化的快速发展,城市污水处理被视为环保的关键环节之一。
污水中的氮和磷是造成水体富营养化和水质污染的主要因素,对环境和人类健康造成了极大的危害。
因此,研究和开发高效的污水处理脱氮除磷工艺,具有重要的理论和实际意义。
本文将综述污水处理脱氮除磷工艺的研究进展,包括生物方法、化学方法和物理方法等。
一、生物方法生物方法是目前最常用的污水处理脱氮除磷工艺之一。
其中,厌氧-好氧(A/O)工艺和序批式生物反应器(SBR)工艺是较为常见的两种方式。
1.1 厌氧-好氧(A/O)工艺A/O工艺是通过厌氧区和好氧区交替处理,利用好氧区的硝化和反硝化作用,使污水中的氮化合物发生变化。
该工艺具有操作简便、处理效果稳定的优点。
但对于高浓度氮、磷水平的处理效率较低。
1.2 序批式生物反应器(SBR)工艺SBR工艺是将厌氧、好氧和静置等过程合并到一个单元中进行操作。
它的优点是适用于不同负荷和工艺变化、容易控制操作和维护,以及对氮和磷的去除效果较好。
然而,该工艺需要较大占地面积,造价较高。
二、化学方法化学方法是利用化学试剂对污水中的氮和磷进行去除。
常用的化学方法包括化学沉淀法和化学氧化法。
2.1 化学沉淀法化学沉淀法是利用化学试剂与污水中的磷结合形成不溶性盐类,通过沉淀将磷去除。
常用的化学试剂包括铝盐和铁盐等。
该方法具有处理效果稳定、去除效率较高的优点。
然而,由于化学试剂的使用和废物处理问题,导致了一定程度上的资源浪费和环境污染。
2.2 化学氧化法化学氧化法是利用化学试剂将污水中的氮化合物氧化成无害产物。
常用的化学试剂包括高锰酸钾、过硫酸盐和臭氧等。
该方法具有较高的氮去除效果,并且可以同时进行磷的去除。
然而,该方法需要化学试剂的不断投加,操作复杂,造成了一定的经济和环境成本。
三、物理方法物理方法是利用物理过程对污水中的氮和磷进行去除。
常用的物理方法包括离子交换法和吸附法等。
城镇污水生物脱氮除磷研究进展城镇污水生物脱氮除磷研究进展引言:城镇污水处理是现代城市建设中重要的环境保护措施之一。
其中,污水中的氮和磷是主要的污染物之一。
高浓度的氮和磷会导致水体富营养化、藻类大量繁殖,严重时甚至引发水生生物死亡等一系列环境问题。
因此,研究城镇污水生物脱氮除磷技术对于提高污水处理效率、改善水环境质量具有重要意义。
一、氮和磷的污染来源城镇生活污水中氮的主要形态有氨态氮和有机氮。
氨态氮主要来源于尿液和生活废水中的蛋白质降解产生的氨。
有机氮则主要来源于生活废水中的有机物分解。
磷的主要形态为无机磷,主要来源是生活废水中的洗衣粉、洗涤剂等人工排放物质。
二、常见的生物脱氮除磷技术1. 全氧条件下的生物脱氮除磷技术(N-DN技术)全氧条件下,氨氮先通过硝化作用转化为硝态氮,再通过反硝化作用转化为氮气释放到大气中,达到生物脱氮的目的。
废水中的磷则通过化学沉淀或吸附等方式去除。
该技术操作简单,但需要消耗较多的氧气和产生大量的污泥。
2. 间歇氧化条件下的生物脱氮除磷技术(A2O技术)A2O技术是将好氧区与厌氧区结合起来,以实现脱氮除磷。
好氧区主要进行碳源去除、脱氮和硝化等作用,厌氧区则负责反硝化和去磷作用。
该技术可以高效地去除氮、磷,并且产生的污泥量较少,对能源的消耗也较低。
3. 序批式生物脱氮除磷技术(SBDN技术)SBDN技术是将生物脱氮除磷过程分为好氧阶段、厌氧阶段和缺氧阶段。
通过控制阶段性的氧化还原条件,实现污水中氮、磷的高效去除。
该技术具有工艺灵活、操作简单等特点,适用于各种规模的城镇污水处理厂。
三、脱氮除磷微生物及其作用机理1. 脱氮微生物脱氮微生物主要包括硝化菌和反硝化菌。
硝化菌能将氨氮转化为硝态氮,而反硝化菌则能将硝态氮转化为氮气。
2. 除磷微生物除磷微生物包括聚磷菌和去磷菌。
聚磷菌能将污水中的磷以多聚磷酸钙(PAOs)的形式储存,在厌氧条件下释放磷。
去磷菌则能将污水中的磷通过吸附等方式去除。
简述低温条件下污水生物脱氮处理研究进展本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!当前,生活污水、工业废水以及农业非点源污染所带来的氮素污染使我国水体富营养化情况日益严重,由此引发的水环境问题给人民正常生产生活带来极大危害。
一般来说,生物脱氮是最常用的处理方法,但是我国东北地区冬季气候十分寒冷,污水平均温度一般约为10 ℃,与硝化及反硝化功能菌群的适宜生长温度相差较大,导致冬季生物脱氮处理效果下降乃至无法达标。
如何保持低温环境下生物脱氮的高效稳定运行是当前脱氮研究的热点与难点。
1 低温污水生物脱氮研究进展为保证污水处理低温条件稳定运行,工程应用中多采用改善构筑物保温效果、增大水力停留时间、降低污泥负荷、增加填料厚度或结合物理、化学法脱氮等措施。
然而,这些手段将大幅增加污水处理设施的基建费用与运行费用,造成严重的经济负担,所以上述方法并非最佳选择。
借用哲学视角思考,生物脱氮过程的微观主体是微生物,而运行工艺是其宏观体现,微生物和运行工艺的有机结合使得生物脱氮变成一个复杂而高效的过程,因此工程技术人员也应从低温微生物强化和低温工艺优化这两方面入手从而根本解决这一困扰。
1. 1 低温微生物强化微生物是生物脱氮的参与主体,如何实现低温下功能微生物活性的提升和生物量的增加是低温微生物强化研究的根本问题。
低温微生物强化是指通过人工筛选、富集和驯化得到耐冷微生物单菌或混合菌群,研究其脱氮特性,制成生物菌剂以一定形式投入目标环境,改善功能微生物的活性及生物量,最终实现污水处理系统低温正常启动及稳定运行,其中生物固定化投加因可避免微生物大量流失,已逐渐成为工程应用的重要手段。
随着研究的进行,一些新型微生物如氨氧化古细菌( AOA) 、异养硝化-好氧反硝化细菌等也逐渐被人们所关注。
1. 1. 1 低温微生物根据生长温度上限与最适生长温度的不同,可将低温微生物分为嗜冷菌和耐冷菌。
废水生物脱氮新技术及研究进展摘要:随着氨氮被纳入“十二五”期间总量控制指标体系,废水生物脱氮已经成为水污染控制的一个重要研究方向。
传统的生物脱氮采用的是硝化、反硝化工艺,但存在着许多问题。
介绍了短程硝化一反硝化,厌氧氨氧化、同步硝化反硝化、全自养脱氮工艺等生物脱氮新工艺的机理、特点和研究现状,同时指出了新技术存在的问题和今后研究的发展趋势。
关键词:生物脱氮短程硝化一反硝化生物电极脱氮工艺好氧脱氨工艺1 引言近些年来,随着科学技术的发展,生物脱氮在技术和工艺上取得了长足进步,发展出了:(1)同步硝化反硝化;(2)短程硝化反硝化;(3)厌氧氨氧化工艺;(4)全程自养脱氮工艺;(5)其它生物脱氮新工艺(好氧脱氨工艺和sharon-anammox联合工艺)等新技术和工艺。
本文主要系统介绍上述新技术和工艺的机理及发展进度,并对其可能存在的问题进行了分析。
2 生物脱氮传统工艺及存在的问题废水生物脱氮传统工艺原理是硝化和反硝化反应,硝化反应是指在好氧硝化菌的作用下把氨氮转化为硝态氮,反硝化反应是指反硝化菌在缺氧条件下将硝态氮转化为氮气,通过硝化和反硝化反应将氨氮转化为氮气从而从废水中去除。
具体工艺例如:a/o、a2/o、uct、jbh、aaa等,都是典型的传统硝化反硝化工艺。
这些工艺在废水脱氮的实际应用中发挥了一定的作用,但仍存在以下问题:(1)硝化过程需要曝气;(2)由于曝气使废水中的cod 大部分被去除,而反硝化程需要一定的碳源,因此往往需要另外加入碳源;(3)在低温条件下硝化菌群的增殖速度慢,而且难以维持较高生物浓度。
因而必须延长总水力停留时间(hrt),造成了基础建设投资的增加;(4)高浓度的氨氮和亚硝酸盐废水会抑制硝化菌的生长;(5)为了中和硝化过程产生的酸度,需要加碱中和;(6)为了获得良好的脱氮效果及维持较高生物浓度,必须同时进行污泥和硝化液的回流,增加了动力消耗。
3 新型生物脱氮工艺3.1 同步硝化反硝化同步硝化-反硝化工艺是利用了:(1)硝化过程的产物是反硝化的反应物;(2)反硝化过程产生硝化所需的碱。