甲烷二氧化碳重整制氢
- 格式:pdf
- 大小:2.50 MB
- 文档页数:9
《甲烷二氧化碳重整催化剂的设计、构建与性能研究》篇一一、引言随着全球能源需求的持续增长,寻找和开发清洁、高效的能源转换技术显得尤为重要。
甲烷二氧化碳重整(Methane CO2 Reforming, MCR)作为一种具有潜力的能源利用方式,得到了广泛的关注。
在此过程中,催化剂作为影响MCR效率和质量的关键因素,其设计、构建和性能研究成为科研的重点领域。
本文旨在深入研究甲烷二氧化碳重整催化剂的设计、构建以及性能评估。
二、甲烷二氧化碳重整催化剂的设计首先,对于催化剂的设计,应着重于以下几个方面:化学成分的选择、载体材料的选配和纳米结构的构造。
设计高效的重整催化剂应确保催化剂的活性高、选择性高且具有足够的稳定性。
针对甲烷二氧化碳重整的特点,需要选用在反应中能够形成具有合适性质的中间体的材料,例如某些氧化物、碳化物等。
同时,载体的选择也会影响催化剂的活性及稳定性,一般选用比表面积大、孔结构发达的载体如氧化铝、氧化硅等。
三、催化剂的构建催化剂的构建过程包括选择合适的合成方法以及催化剂的优化制备。
根据设计理念,采用溶胶凝胶法、共沉淀法、浸渍法等合成方法制备出具有特定结构的催化剂。
在制备过程中,还需对催化剂进行优化处理,如热处理、还原处理等,以提高其活性及稳定性。
此外,纳米技术的引入也为催化剂的构建提供了新的可能,通过控制催化剂的纳米尺寸和形态结构,可进一步优化其性能。
四、催化剂性能研究催化剂性能的评估是评价催化剂优劣的重要手段。
主要包括以下几个方面:催化活性、选择性、稳定性以及抗积碳能力。
在甲烷二氧化碳重整过程中,通过实验测定不同条件下的反应速率,以评估催化剂的活性。
同时,通过分析反应产物的组成,评估催化剂的选择性。
此外,还需考察催化剂在长时间运行过程中的稳定性以及抗积碳能力,以评价其实际应用价值。
五、实验结果与讨论经过实验,我们成功制备了不同种类的甲烷二氧化碳重整催化剂,并对其性能进行了深入研究。
结果表明,通过合理设计并优化制备过程,可以显著提高催化剂的活性、选择性和稳定性。
甲烷二氧化碳干重整
甲烷二氧化碳干重整是C1化学研究的重要组成部分,能解决对化石燃料的依赖,以及由此带来的种种问题,不仅可以大幅度降低能耗和生产成本,更能将二氧化碳这种温室气体加以利用,具有环境和经济的双重意义。
在石油资源日益匮乏以及环境问题日益严重的今天,二氧化碳的资源化利用已受到了广泛的关注,二氧化碳与甲烷重整制合成气的方法也越来越多。
从传统的催化重整反应到现今受到更多研究的等离子体重整CH4-CO2技术,还有等离子体协同催化剂重整技术,都有大量的研究基础。
甲烷二氧化碳干重整技术对于降低甲烷使用量、消除温室气体等具有重大意义,是一项具有广阔前景的技术。
五种制氢方法制氢是指将一些化合物、水或者其他可氧化的物质转化成氢气的过程。
随着现代工业的快速发展,制氢技术也在不断创新,现在已经有了多种制氢方法。
以下将介绍其中的五种方法。
1. 蒸汽重整法蒸汽重整法是最广泛使用的制氢方法之一,其原理是将天然气或石油中的烃类物质,如甲烷、丙烷等,通过加热蒸汽反应生成氢气和二氧化碳。
这种方法操作简便,成本低廉,但也存在一些问题,如需要原料气的纯度较高,且二氧化碳的排放会对环境造成负面影响。
2. 电解水法电解水法是将水分解成氢气和氧气的方法。
在电解水过程中,将电流通过水,使水分子分解,生成氢气和氧气。
这种方法无需使用昂贵的催化剂,对环境影响小,但制氢效率较低。
3. 氨分解法氨分解法是制氢的一种高效方法。
在氨分解过程中,氨被加热到高温(700℃ - 1000℃),分解成氢气和氮气,这种方法制氢纯度较高,但需要高温条件,操作较为复杂。
4. 煤炭气化法煤炭气化法是将煤炭加热到高温,使其分解为一系列气体的方法。
在煤炭气化过程中,产生一部分氢气,这种气体经过分离、过滤等多种处理后,可以得到较为纯净的氢气。
这种方法制氢效率高,但是需要大量煤炭资源,会对环境造成较大的负面影响。
5. 光电水裂解法光电水裂解法是制氢的一种新技术,该方法利用太阳能将水分解为氢和氧气。
光电水裂解法克服了电解水过程中电极化和能量损失的问题,制氢效率较高,同时还能减少碳排放。
但是该技术还处于研究阶段,需要更多的实践进行验证。
综上所述,以上五种制氢方法均有各自的优缺点。
未来的制氢技术应该是集多种方法之利于一体,以提高制氢效率和纯度,减少对环境的损害。
制氢的技术路线随着全球能源需求的不断增长和可再生能源的推广应用,制氢作为一种清洁能源具有越来越重要的地位。
制氢的技术路线主要包括化石能源制氢、电解水制氢、光电催化制氢和生物制氢等几种途径。
1. 化石能源制氢化石能源制氢是目前应用最广泛的制氢技术路线之一。
该路线主要通过对天然气、煤炭等化石能源进行加热分解或者气体转化反应,产生氢气。
其中,最常用的方法是甲烷蒸汽重整法,即通过将甲烷与蒸汽反应,生成氢气和二氧化碳。
此外,还可以通过煤炭气化、煤炭燃烧等方式制备氢气。
化石能源制氢技术成熟,但存在着对环境的污染问题。
2. 电解水制氢电解水制氢是一种使用电能将水分解为氢气和氧气的技术路线。
该方法将水置于电解池中,通过加电解离水分子,生成氢气和氧气。
电解水制氢技术具有高纯度氢气产出、无污染排放等优点。
目前,常用的电解水制氢方法有碱性电解法、酸性电解法和固体氧化物电解法。
其中,碱性电解法是应用最广泛的方法,但电解水制氢过程能耗较高,需要大量电能。
3. 光电催化制氢光电催化制氢是一种利用半导体材料的光电化学性质将水分解为氢气和氧气的技术路线。
该方法通过将半导体材料暴露在阳光下,利用光能激发电子,从而促使水分子发生光催化反应,生成氢气。
光电催化制氢技术具有能源效率高、无污染排放等优点,但目前仍面临着催化剂活性低、光电转换效率有限等挑战。
4. 生物制氢生物制氢是一种利用微生物代谢产生氢气的技术路线。
该方法通过利用某些微生物的代谢特性,使其在特定环境下产生氢气。
生物制氢技术具有原料来源广泛、低能耗、无污染等优点。
目前,常用的生物制氢方法有暗发酵法、光合发酵法和光合非硫细菌法等。
生物制氢技术仍处于研究和开发阶段,需要进一步提高产氢效率和催化剂稳定性。
制氢的技术路线主要包括化石能源制氢、电解水制氢、光电催化制氢和生物制氢等几种途径。
每种技术路线都有其优缺点,需要根据实际应用需求和环境因素选择合适的制氢方法。
随着科技的进步和创新,制氢技术将逐渐向更高效、更环保的方向发展,为推动清洁能源产业发展发挥重要作用。
天然气制氢工艺技术天然气制氢是一种环保、高效的氢能源生产技术,具有很大的潜力。
天然气是一种丰富的能源资源,主要由甲烷组成,而甲烷是制氢的主要原料。
天然气制氢工艺技术主要分为蒸汽重整法、燃烧法和膜分离法三种。
蒸汽重整法是一种常用的制氢方法,它是通过将天然气与蒸汽混合在催化剂的作用下反应生成氢气和二氧化碳。
这种方法具有制氢反应速度快、工艺简单等优点。
同时,蒸汽重整法还可以通过控制操作条件进行灵活调节,以满足不同场景下的制氢需求。
然而,蒸汽重整法在操作过程中产生的二氧化碳需要进行处理,以减少对环境的影响。
燃烧法是一种直接利用天然气燃烧产生水蒸气和二氧化碳的方法,进而通过水蒸气和二氧化碳反应生成氢气。
这种方法具有制氢效率高、操作简单等特点,但也需要对产生的二氧化碳进行处理,以减少温室气体排放。
膜分离法是一种基于气体分子在薄膜上扩散速率不同的原理进行氢气富集的方法。
天然气中的甲烷在高压条件下通过膜的选择性渗透,分离出氢气。
这种方法具有能耗低、操作简单等优点,同时可以减少二氧化碳排放。
然而,膜分离法中膜材料的选择和稳定性是制约其应用的主要问题。
天然气制氢工艺技术的发展还面临一些挑战。
首先,天然气是一种有限资源,因此需要在开采和利用过程中合理规划和节约资源。
其次,工艺技术的稳定性和经济性也是制约其发展的关键因素,需要继续进行研究和优化。
此外,二氧化碳的处理和排放问题也需要解决,以减少对环境的影响。
然而,天然气制氢工艺技术的优势仍然明显。
天然气资源丰富,可以为氢能源提供可靠的原料,使得制氢过程更加可持续。
同时,天然气制氢可以减少对传统能源的依赖,有利于改善能源结构和减少环境污染。
另外,天然气制氢技术的应用也能为氢能源的推广提供更多的途径和可能性。
综上所述,天然气制氢工艺技术是一种具有潜力和发展前景的氢能源生产技术。
蒸汽重整法、燃烧法和膜分离法是目前主要的制氢方法。
但是,工艺技术的稳定性、资源利用和环境管理仍然是需要解决的关键问题。
甲烷制氢石墨和氢气一、甲烷制氢:从气体到能源的“变身”1.大家都知道,氢气是一个很有潜力的能源,简直是未来的“黑马”。
怎么从那些看似不起眼的物质中提取出氢气呢?答案就是——甲烷。
你没听错,就是我们平时用来做饭的天然气,甲烷(CH₄)。
甲烷中有着丰富的氢原子,经过一些神奇的化学反应,它就能变成咱们需要的氢气。
说白了,甲烷就像是个藏着宝藏的箱子,里面的氢气正等着我们把它拿出来。
2.咱们要怎么把甲烷转变成氢气呢?其实它的“转身术”就叫做“甲烷重整”。
这个过程就像是把甲烷拉进了“厨房”,通过高温和一些催化剂的帮助,甲烷会分解成氢气和一氧化碳。
你可以想象,它好像在大火炉里和催化剂跳起了热舞,甲烷原本紧紧抱在一起的分子,被迫松开了,最后分解成了我们想要的东西。
简单来说,这就是一种“化腐朽为神奇”的魔法过程。
3.甲烷制氢的过程中,也有一些需要注意的小细节。
比如说,产生的一氧化碳需要好好处理,否则它会影响环境。
为了避免这种情况,很多科研人员还设计了一些办法,比如用水蒸气来和这些一氧化碳反应,生成二氧化碳和氢气。
反正,科学家们也不是光嘴巴说说的,他们总是有办法把一切都搞定。
总体来说,甲烷制氢是目前比较常见的一种方法,虽然有些小挑战,但它仍然是氢气生产的“大杀器”。
二、石墨:看似普通,实则“惊艳”1.说起石墨,可能很多人第一反应就是“哦,铅笔芯的材料啊!”对,你没错,石墨就是我们写字用的铅笔的核心部分,简直是陪伴了我们一生的“老伙伴”。
石墨的能力可不仅仅是帮助你写字这么简单,它其实还有很多“不为人知”的精彩之处。
比如,石墨中的碳元素可以在极高的温度下和甲烷发生反应,直接生成氢气。
你可以理解为,石墨就像是一个超级“催化剂”,帮助甲烷顺利完成“变身”,从而释放出大量的氢气。
2.石墨怎么帮助甲烷制氢呢?石墨在这个过程中发挥的作用类似于“催化剂”的角色。
石墨本身是一种非常稳定的物质,耐高温,又不会轻易发生反应。
所以,当甲烷和石墨一起加热时,石墨会促使甲烷分解,从而生成氢气和一些其他副产物。
CH4-CO2重整反应镍钴双金属催化剂性能研究开题报告一、研究背景CH4-CO2重整反应是将甲烷和二氧化碳通过催化剂转化为一氧化碳和氢气的反应,是一种高效、低成本、清洁的合成气生产方法,具有广阔的应用前景。
其中,催化剂的研究与开发是关键技术之一,催化剂的性能直接影响反应的效率和选择性。
目前,Ni-Co双金属催化剂因其优异的催化性能和较低的成本受到广泛关注。
然而,催化剂的结构特征和催化反应机理的研究尚未深入探究,需要进一步的研究。
二、研究内容和方法1. 研究内容本研究旨在通过合成和表征Ni-Co双金属催化剂,探究其在CH4-CO2重整反应中的性能和机理,并优化催化剂的性能和稳定性,具体研究内容包括:(1)合成Ni-Co双金属催化剂并表征其结构和物理化学性质。
(2)研究催化剂在CH4-CO2重整反应中的催化性能,比较不同Ni/Co比例和催化剂负载量对反应性能的影响。
(3)探究催化剂的催化机理和反应路径,通过反应过程的原位表征技术和理论计算方法进行深入研究。
(4)优化催化剂的结构和组成,提高其催化性能和稳定性。
2. 研究方法本研究将采用以下研究方法:(1)催化剂的制备:采用共沉淀法、溶胶-凝胶法等方法制备Ni-Co 双金属催化剂,并通过XRD、SEM、TEM、XPS等手段表征其结构和物理化学性质。
(2)催化剂的性能测试:采用固定床反应器进行CH4-CO2重整反应,分析CO和H2的产物比例、反应温度和压力的影响,比较不同Ni/Co比例和催化剂负载量的催化性能。
(3)机理与理论研究:通过催化剂的原位表征技术,如原位红外光谱、原位X射线吸收光谱等手段,研究催化过程中的反应机理和反应路径;同时采用密度泛函理论方法对催化反应进行理论计算,得到反应路径和催化机理。
(4)催化剂的优化:通过调控催化剂的结构和组成等方法,优化催化剂的性能和稳定性,提高其催化性能。
三、预期结果和意义本研究预期可以得到以下结果:(1)成功合成Ni-Co双金属催化剂并表征其结构和物理化学性质。
二氧化碳甲烷重整制备合成气工艺设计在当今的环境保护和可持续发展的大背景下,人类社会需要发展出更加环保和能够有效利用化石资源的技术来满足各种能源需求。
其中,二氧化碳甲烷重整制备合成气工艺正是在这种背景下逐渐被全世界各个国家和地区广泛采用的一种技术。
本文将从工艺步骤、工艺原理和工艺优点三方面来阐述这种技术。
一、工艺步骤二氧化碳甲烷重整制备合成气工艺步骤如下:1. 气体造气与净化:二氧化碳和甲烷通过一系列化学反应生成一种合成气体,然后将其通过净化处理,去除其中的杂质,为后续工艺步骤提供优质的燃料。
2. 加热反应:将净化后的合成气体经过加热反应,让化学反应得以充分发挥,生成更多的氢气和一氧化碳。
3. 调节气体比例:对于生成的氢气和一氧化碳进行调节,以满足不同的工业应用需求。
4. 后续工艺:根据实际需求,对合成气体进行后续处理,包括将其储存、运输或将其进一步加工为二甲醚等其他化学品。
二、工艺原理二氧化碳甲烷重整制备合成气工艺的原理基于废弃的二氧化碳和甲烷的再利用。
在化学反应中,这两种废弃原料会经过一系列化学反应,生成一种更加有价值的化学品。
具体来讲,二氧化碳和甲烷会先发生水煤气反应,生成一氧化碳和氢气。
之后,这些反应产物又会进行甲烷重整反应,生成更多的氢气和一氧化碳。
最终,我们得到了一种成分比例可以得到调控的合成气体,可以用于各种工业生产过程中。
值得一提的是,这种工艺中不会产生任何尾气或者废水,对于环境的影响非常小,切实起到了节约化石资源和环保的作用。
三、工艺优点二氧化碳甲烷重整制备合成气工艺具有以下几个优点:1. 节约资源:这种工艺利用废弃的二氧化碳和甲烷,减少了原料成本,也避免了废弃物的浪费。
2. 环保:这种工艺中不会产生任何有害尾气或者废水,对环境无负面影响。
3. 应用广泛:这种合成气可以被广泛应用于各种工业生产过程中,可以替代传统燃料,提升工业生产效率。
综上所述,二氧化碳甲烷重整制备合成气工艺是一种既节约资源又环保的技术,由于其应用广泛,已经受到了全球各国的广泛关注和采用。
工业制氢方法概述世界上大多数氢气通过天然气、丙烷、或者石脑油重整制得。
经过高温重整或部分氧化重整,天然气中的主要成分甲烷被分解成 H2、 CO2、CO 。
这种路线占目前工业方法的 80 %, 其制氢产率为 70 %—90 %。
烃类重整制氢技术已经相当成熟,从提高重整效率,增强对负载变换的适应能力,降低生产成本等方面考虑,催化重整技术不断得到发展,产生了不少改进的重整工艺 , 其中包括可再生重整、平板式重整、螺旋式重整、强化燃烧重整等。
煤直接液化工艺中一个重要单元就是的单元就是加氢液化,下面着重介绍几种工业上制氢工艺:一、烃类蒸汽转化法蒸汽转化法可以采用从天然气到石油脑的所有轻烃为原料。
主要利用高温下水蒸气和烃类发生反应。
转化生成物主要为氢、一氧化碳和二氧化碳。
该过程需要消耗大量的能量,只不过要脱除或分离二氧化碳是件很麻烦的事,虽然目前分离二氧化碳的方法在不断推出,如变压吸附法( PSA)、吸收法( 包括物理吸收和化学吸收法),低温蒸馏法,膜分离法等等,然而,二氧化碳的处理仍是很费脑筋,若是直接排入大气,势必造成环境污染。
二、烃类分解生成氢气和炭黑的制氢方法该方法是将烃类分子进行热分解,产物为氢气和炭黑,炭黑可用于橡胶工业及其它行业中,同时避免了二氧化碳的排放。
目前,主要有如下两种方法用于烃类分解制取氢气和炭黑。
( 1 ) 热裂解法:将烃类原料在无氧( 隔绝空气),无火焰的条件下,热分解为氢气和炭黑。
生产装置中可设置两台裂解炉,炉内衬耐火材料并用耐火砖砌成花格成方型通道,生产时,先通入空气和燃料气在炉内燃烧并加热格子砖,然后停止通空气和燃料气,用格子砖蓄存的热量裂解通入的原料气,生成氢气和炭黑,两台炉子轮流进行蓄热和裂解,循环操作,将炭黑与气相分离后气体经提纯后可得纯氢,其中氢含量依原料不同而异,例如原料为天然气,其氢含量可达 85 % 以上。
天然气高温热裂解制氢技术,其主要优点在于制取高纯度氢气的同时,不向大气排放二氧化碳,而是制得更有经济价值、易于储存且可用于未来碳资源的固体碳,减轻了环境的温室效应。
甲烷催化二氧化碳重整制合成气反应研究进展天由甲烷制合成气有三条途径: 即水蒸汽重整、甲烷部分氧化和二氧化碳重整。
三条途径可分别提供H2/C0理论比为3 :1、2 : 1和1 : 1的合成气,这些产品可分别用于富H2和富CO 的化学转化过程。
因此,三条途径各具特色,各有值得开发的价值,其中已工业化的水蒸汽重整工艺,设备投资巨大,操作费用昂贵,亦需改进和完善。
# g& @( P: G) V5 z& B* z/ @4 B甲烷作为最小的烃类分子,具有特殊稳定的结构和惰性,C-H键的平均键能为4.1 >105J/mol,CH3-H键离解能高达4.35氷05J/mol。
因此,如何使甲烷分子活化并进行定向转化一直是困扰化学家们的一大难题。
二氧化碳作为含碳化合物的燃烧终产物,也是相当稳定的惰性小分子。
其排放量正以每年4%的速度递增,大气中高浓度的C02 破坏了大气平衡,是造成全球气温升高,气候恶化的主要原因。
随着科技进步和人类环保意识的增强,如何利用和固定C02已经成为世界各国政府和有识之士特别关注的问题。
甲烷催化二氧化碳重整制合成气,不失为一条有潜在应用前景的C02 利用途径,是废气利用,变废为宝之举。
要使惰性小分子气体的CH4和C02活化并进行定向转化,其关键是选择适宜催化剂。
近年来,人们已在催化剂的选择,催化剂和积炭行为以及催化反应机理等方面进行了大量卓有成效的工作,使这一问题的研究日益深化,也预示了这一工艺广阔的应用前景和深远意义。
本文就近年来甲烷催化二氧化碳重整制合成气已取得的成果作一概要介绍。
\( ?$ E/ _/ A( l1 B1 J一、热力学可行性研究吴越[3]译著的《气化和气体合成反应的热力学》一书,介绍了对天然气转化制合成气反应所作的完整的热力学计算,并给出了CH4+C02=2C0+2H2 反应不同温度下的平衡常数及产物分布。
从热力学计算可知,甲烷二氧化碳重整反应是强吸热反应,在温度达到600 C以上时,才有合成气生成,且随反应温度升高,反应物转化率增大,合成气产率升高。
Research ArticleNi/SiO2Catalyst Prepared with Nickel NitratePrecursor for Combination of CO2Reforming andPartial Oxidation of Methane:Characterization and Deactivation Mechanism InvestigationSufang He,1Lei Zhang,2Suyun He,2Liuye Mo,3Xiaoming Zheng,3Hua Wang,1and Yongming Luo21Research Center for Analysis and Measurement,Kunming University of Science and Technology,Kunming650093,China2Faculty of Environmental Science and Engineering,Kunming University of Science and Technology,Kunming650500,China3Institute of Catalysis,Zhejiang University,Key Lab of Applied Chemistry of Zhejiang Province,Hangzhou310028,ChinaCorrespondence should be addressed to Y ongming Luo;environcatalysis222@Received5August2014;Revised6January2015;Accepted6January2015Academic Editor:Mohamed BououdinaCopyright©2015Sufang He et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,distribution,and reproduction in any medium,provided the original work is properly cited.The performance of Ni/SiO2catalyst in the process of combination of CO2reforming and partial oxidation of methane to produce syngas was studied.The Ni/SiO2catalysts were prepared by using incipient wetness impregnation method with nickel nitrate as a precursor and characterized by FT-IR,TG-DTA,UV-Raman,XRD,TEM,and H2-TPR.The metal nickel particles with the average size of37.5nm were highly dispersed over the catalyst,while the interaction between nickel particles and SiO2support is relatively weak.The weak NiO-SiO2interaction disappeared after repeating oxidation-reduction-oxidation in the fluidized bed reactor at 700∘C,which resulted in the sintering of metal nickel particles.As a result,a rapid deactivation of the Ni/SiO2catalysts was observed in2.5h reaction on stream.1.IntroductionThe Ni-based catalyst has recently attracted considerable attention due to the plentiful resources of nickel,as well as its low cost and good catalytic performance comparable to those of noble metals for many catalytic reactions,such as hydrogenation of olefins and aromatics[1],methane reforming[2],and water-gas shift reaction[3].Therefore,Ni-based catalyst is believed to be the most appropriate catalyst applied in the industrial process[4–6].It is generally accepted that the catalytic performance of Ni-based catalyst is closely related to several parameters,including the properties of support,preparation method,and active phase precursor employed.Support plays an important role in determining the performance of Ni-based catalyst.Generally,a support with high surface areas is very necessary since it is effective in increasing Ni dispersion and improving thermal stability, hence not only providing more catalytically active sites,but also decreasing the deactivation over time of the catalysts due to sintering and migration effects[7,8].For its good thermostability,availability,and relative high specific surface area,SiO2support was widely used for preparing Ni-based catalyst[9].In particular,spherical silica is successfully used as a catalyst support in fluidized bed reactor due to its high mechanical strength.The method of catalyst preparation is another key param-eter which needs to be optimized because it will result in different structural and textural properties of Ni-based catalyst.Therefore,numerous methods,including precipi-tation,homogeneous deposition-precipitation,and sol-gel techniques,have been developed to enhance the performance of Ni-based catalyst[10–18].However,allthe above method-ologies mentioned are too complex or expensive to scaleHindawi Publishing Corporation Journal of NanomaterialsVolume 2015, Article ID 659402, 8 pages /10.1155/2015/659402up in industry.The incipient wetness impregnation(IWI) is one of the most extensively used method[19–23]due to its simplicity in practical execution on both laboratory and industrial scales,in addition to its facility in controlling the loading amount of the active ingredient.In addition,the choice of the precursor salt is also crucial since it determines whether the Ni-based catalyst will be prepared successfully or not.As an efficient precursor,two terms must be met:firstly,high solubility is desirable because the precursor concentration in the impregnation solution must be high[24];secondly,the ability to be decomposed during calcinations is prerequisite since the precursor must be fully transformed into oxide particles without leaving side species that may modify the properties of the support [24].As a result,owing to its commercial availability and low cost,as well as its high solubility in water and effortless decomposition at moderate temperatures,nickel nitrate is the precursor most often used in the preparation of Ni-based catalyst[23,24].In this paper,Ni/SiO2catalyst was prepared by incipient wetness impregnation(IWI)with nickel nitrate as precursor and tested in the process of combination of CO2reforming and partial oxidation of methane(CRPOM)to produce syngas.TG-DTA,HR-TEM,IR,UV-Raman,XRD,and H2-TPR were employed to characterize the Ni/SiO2catalysts in detail to reveal the relationship between synthesis,properties, and catalytic performances as well as to investigate the causes of deactivation.2.Experimental Section2.1.Catalyst Preparation.The Ni/SiO2catalysts were pre-pared with IWI using nickel nitrate as precursor according to our previous works[21,22].The SiO2was commer-cially obtained(S BET=498.8m2/g,Nanjing Tianyi Inorganic Chemical Factory).Prior to use,the SiO2was pretreated with5%HNO3aqueous solution for48h and then washed with deionized water until the filtrate was neutrality.The size of SiO2was selected between60and80mesh.It was then impregnated with an aqueous solution of nickel nitrate. The obtained sample was dried overnight at100∘C and subsequently calcined in air at700∘C for4h.Unless otherwise stated,the loading of Ni was3wt%,and the calcination temperature was700∘C.The Ni/SiO2catalyst was designated as3NiSN.2.2.Catalytic Reaction.The catalytic reaction was performed in a fluidized-bed reactor that was comprised of a quartz tube (I.D.=20mm,H=750mm)under atmospheric pressure at700∘C.Prior to reaction,2mL of catalyst was reduced at700∘C for60min under a flow of pure hydrogen at atmospheric pressure with a flow rate of50mL/min.A reactant gas stream that consisted of CH4,CO2,and O2,with a molar ratio of1/0.4/0.3,was used with a gas hourly space velocity(GHSV)of9000h−1.The feed gas was controlled by mass flow controllers.The effluent gas cooled in an ice trap was analyzed with an online gas chromatograph that was equipped with a packed column(TDX-01)and a thermal conductivity detector.Under our reaction conditions,the oxygen in the feed gas was completely consumed in all cases.2.3.Catalyst Characterization.FTIR spectra were measured using a Nicolet560spectrometer equipped with a MCT detector.The samples were tabletted to thin discs with KBr.Thermogravimetric analysis(TGA)and differential ther-mal analysis(DTA)were performed on a PERKIN ELMER-TAC7/DX with a heating rate of10∘C/min under oxygen (99.99%,20mL/min).The samples were pretreated with oxygen flow at383K for1h.UV-Raman spectra were carried out with a Jobin Yvon LabRam-HR800instrument,using325.0nm Ar+laser radi-ation.The excitation laser was focused down into a round spot approximately2μm in diameter.The resolution was 4cm−1and1000scans were recorded for every spectrum.The catalysts were ground to particle diameters<150μm before analysis.X-ray powder diffraction(XRD)patterns of samples were obtained with an automated power X-ray diffractometer (Rigku-D/max-2550/PC,Japan)equipped with a computer for data acquisition and analysis,using Cu Kαradiation, at40kV and300mA.The reduced samples were priorly reduced at700∘C for1h and cooled to room temperature in hydrogen atmosphere,but the fresh samples were used directly after calcined in air at700∘C for4h.All the samples were ground to fine powder in an agate mortar before XRD measurements.Transmission electron microscopy(TEM)images were recorded on a Philips-FEI transmission electron microscope (Tecnai G2F30S-Twin,Netherlands),operating at300kV. Samples were mounted on a copper grid-supported carbon film by placing a few droplets of ultrasonically dispersed suspension of samples in ethanol on the grid,followed by drying at ambient conditions.H2-temperature-programmed reduction(H2-TPR) experiments were performed in a fixed-bed reactor(I.D.= 4mm).50mg samples were used and reduced under a stream of5%H2/N2(20mL/min)from50∘C to800∘C with a ramp of7∘C/min.Hydrogen consumption of the TPR was detected by a TCD and its signal was transmitted to a personal computer.The experiments for reduction-oxidation cycle(redox) performance were performed as follows.The catalysts were pretreated with H2flow at700∘C for1h and then were cooled down to room temperature and reoxidized in O2at different temperature for1h.The reoxidized samples were then performed by H2-TPR experiments as above.3.Results and Discussion3.1.Catalytic Activity Measurements.The catalytic perfor-mance of Ni/SiO2was shown in Figure1.A rapid deactivation was detected for the3NiSN,and the corresponding conver-sion of CH4(X CH4)decreased from∼58%to∼25%within 1.5h reaction on stream.In order to investigate the causes of deactivation,the3NiSN catalyst was characterized by TG-DTA,HR-TEM,IR,UV-Raman,XRD,and H2-TPR in detail.Time on stream (h)60555045403530252015C o n v e r s i o n o f C H 4(%)Figure 1:CH 4conversion versus time on 3NiSN catalyst for combination of CO 2reforming and partial oxidation of methane to produce syngas (reaction temperature:700∘C,CH 4/CO 2/O 2=1/0.4/0.3,and GHSV =9000h −1).Wavenumber (nm)Figure 2:FT-IR spectra of 3NiSN (dried at 100∘C)and nickel nitrate (Ni(NO 3)2).3.2.Catalyst Characterization Results3.2.1.FT-IR Analysis.The FT-IR spectra of 3NiSN before cal-cination and Ni(NO 3)2precursor were illustrated in Figure 2.Two intense bands of Ni(NO 3)2centered at 1620cm −1and 1376cm −1were ascribed to asymmetric and symmetric vibra-tions of nitrate,respectively [25].After Ni(NO 3)2being impregnated on SiO 2,the position of the two bands of Ni(NO 3)2shifted to higher wavenumber about 1643cm −1and1385cm −1,respectively.Similar to our previous study [23],this shift to higher wavenumber might be contributed to the interaction between nickel nitrate and support SiO 2.3.2.2.Thermal Analysis.In order to study the formation of NiO from precursor,thermal analysis of 3NiSN before calcination was carried out (shown in Figure 3).The extra water should be removed by holding the precursor under O 2at 110∘C for 1h.The thermal oxidation degradation of the dried 3NiSN consisted of two main steps.The first weight loss (9.1wt%)at 110–240∘C region in TG together with a differential peak at around 224∘C in DTG curve was probably due to the dehydration of 3NiSN.The second large weight loss at region of 240–380∘C (11.1wt%)in TG,accompanied with a small endothermic peak around 293∘C in DTA,had been attributed to thermoxidative degradation of nickel nitrate.This decomposition step exhibited a differential peak around 277∘C in DTG profile.Above 380∘C,practically weight loss could not be observed any more.The TG-DTA curves confirmed the absolute volatility of water and nitrate and also the formation of NiO over catalysts around 380∘C.The calcination of 3NiSN beyond 380∘C would enhance the interaction between the NiO and SiO 2support,according to our earlier study [23].3.2.3.UV-Raman Analysis.Further evidence for the for-mation of NiO might be drawn from UV-Raman spectra exhibited in Figure 3.Herein,the spectrum for NiO was included as a reference.As seen from Figure 4,the intense and sharp peak at 1139cm −1,together with three weak peaks at 900,732,and 578cm −1,was assigned to the Raman responses of NiO.Similar to NiO reference,the peaks of 3NiSN center at about 1135,900,726,and 580cm −1were also attributed to NiO.Furthermore,compared with the reference of NiO,the four Raman peaks of NiO over 3NiSC appeared more intensive,thus suggesting that the NiO particles over 3NiSN catalyst were larger [23,26,27].3.2.4.XRD Analysis.XRD measurements were carried out to understand the crystalline structure of 3NiSN catalysts,and the results were presented in Figure5.The XRD patterns of all samples exhibited a broad and large peak around 22∘,which was attributed to amorphous silica of support.After calcination,the sample showed only the fcc-NiO phase,with typical reflections of the (111),(200),and (220)planes at 2θ=37∘,43∘,63∘,respectively.After being reduced with H 2for 4h,the peaks assigned to NiO disappeared,and three other peaks around 44∘,52∘,and 76∘for Ni (111),Ni (200),and Ni (220)planes were detected,thus inferring the successful transformation of NiO to metallic Ni after reduction with H 2.3.2.5.TEM Analysis.Further insight on the aggregation of Ni particles over the 3NiSN could be obtained by TEM analysis.Figures 6(a)and 6(b)exhibited the TEM images of 3NiSN after reduction and deactivation,respectively.The Ni particles over both catalysts were approximately spherical in shape.Highly dispersed Ni particles were detected for the Ni/SiO 2just after reduction.However,obvious glomeration200300400500600700Temperature (∘C)T G +D T G(a)200300400500600700Temperature (D T A∘C)(b)Figure 3:(a)TG +DTG and (b)DTA thermogram of 3NiSN dried at 100∘C.Raman shift (cm −1)I n t e n s i t y (a .u .)Figure 4:UV-Raman spectra of 3NiSN (calcined at 700∘C for 4h)and NiO (as a reference).of Ni particles was observed for the 3NiSN catalyst after deactivation.In order to make a profound analysis,the corresponding particle size distributions obtained from TEM were summarized in Figures 6(c)and 6(d)for 3NiSN after reduction and deactivation,respectively.The particle size values of reduced 3NiSN were distributed in a range of 16.1–84.0nm with the average size around 37.5nm.As for 3NiSN after deactivation,the mean size increased to 50.4nm2θ(deg)Ni NiOI n t e n s i t y (a .u .)Figure 5:XRD patterns of 3NiSN before and after reduction in H 2for 4h.with distributed range of 36.0–73.6nm.An evident particle aggregation was formed over 3NiSN catalyst,which was in accordance with the XRD result.3.2.6.H 2-TPR Analysis.TPR is an efficient method to char-acterize the reducibility of supported nickel-based catalysts.(a)(b)Particle diameter (nm)0.250.200.150.100.050.00R e l a t i v e p a r t i c l e n u m b e r (%)(c)0.200.150.100.050.00R e l a t i v e p a r t i c l e n u m b e r (%)Particle diameter (nm)(d)Figure 6:TEM images of (a)reduced 3NiSN and (b)deactivated 3NiSN,and histogram of the particle size distribution obtained from sampling of nanoparticles from TEM data (c)for reduced 3NiSN and (d)for deactivated 3NiSN.TPR profiles of 3NiSN catalysts were depicted in Figure 7.Two reduction peaks were observed for the fresh 3NiSN cata-lyst (just calcined)at 430∘C and 450∘C.The low-temperature peak might be contributed to the reduction of NiO which is negligible weak interaction with SiO 2.The high-temperature peak was caused by the reduction of nickel oxide which interacted weakly with SiO 2.Furthermore,ttthe reduction-oxidation cycle (redox)performance of a catalyst would strongly influence the catalytic activity for an oxidation involved reaction [28].Therefore,the redox performances of 3NiSN catalysts were investigated,and the corresponding experiment results were depicted in Figure 7.After beingreduced in H 2flow at 700∘C for 1h,the 3NiSN catalysts were reoxidized in O 2at different temperatures and then tested with H 2-TPR.No clear reduction peak of NiO was detected for 3NiSN with reoxidized temperature below 300∘C.As reoxidization temperature increased from 400to 700∘C,the rereduction temperature increased from ∼290to ∼370∘C;however,it was always less than the temperature needed to reduce the NiO of fresh 3NiSN.Distinctly,the weak NiO-SiO 2interaction over 3NiSN catalyst disappeared with repeat-ing oxidation-reduction-oxidation process.Studies from the previous work show that the strong interaction between NiO and support could suppress efficiently the sintering of200300400500600Temperature (FED C B A∘C)H 2c o n s u m p t i o n (a .u .)Figure 7:The reduction-oxidation cycle (redox)performance of 3NiSN catalysts with different reoxidization temperature (A:300∘C;B:400∘C;C:500∘C;D:600∘C;E:700∘C;F:fresh,just calcined).metallic nickel [21–23].Therefore,the disappearance of NiO-SiO 2interaction would lead to the sintering of active nickel particles at high reaction temperature.3.2.7.Effect of the Particle Size of Ni.It is generally accepted that the crystalline size of metallic nickel plays an important role in the catalytic performance for nickel-catalyzed reac-tions:smaller metallic Ni size helps to provide more active sites to reach the much better catalytic activity.Our previous works had also demonstrated this view [21,22].In order to investigate the particle size dependence of the catalytic reaction,the 3NiSN catalysts after different time (1.5h,2.0h,and 2.5h)reaction on stream were taken out to be estimated by XRD and calculated with the Scherrer equation (shown in Figure 8).For all the 3NiSN (even after deactivation),only Ni and amorphous SiO 2phase detected by XRD.No NiO phase was found,which meant no significant change in Ni phase was observed for 3NiSN even after deactivation.Noteworthily,the diffraction intensity of nickel crystalline increased with reaction time,which indicated the crystalline size of nickel on 3NiSN increased with reaction time.The crystalline size of nickel on 3NiSN as a function of reaction time was shown in Figure 9.The crystalline size of nickel was ∼30.3nm,∼32.6nm,∼33.6nm,and ∼34.6nm,for 3NiSN after 0h,1.5h,2h,and 2.5h reaction on stream,respectively.The change trend of Ni size was in conformance with the catalytic activity of 3NiSN in process of bined with H 2-TPR results above,with the process of CRPOM proceeding,the NiO-SiO 2interaction over 3NiSN catalyst weakened down as it disappeared.At the same time,the crystalline size of nickel increased with the weakening of NiO-SiO 2interaction,finally leading to the sintering of active nickel particles over 3NiSNcatalyst.2θ(deg)NiI n t e n s i t y (a .u .)Figure 8:The effect of reaction time on the XRD patterns of3NiSN.Reaction time (h)353433323130C r y s t a l l i n e s i z e o f n i c k e l (n m )Figure 9:Crystalline size of nickel as a function of reaction time.By comprehensively analyzing the characterization results,important information could be concluded.On one hand,graphic carbon was not detected in the spent 3NiSN catalyst by XRD and TEM,suggesting that no carbon deposition was formed during the reaction.On the other hand,except for the characteristic XRD peak of metallic nickel,no other nickel species (such as NiO)was detected,indicating that the transformation of active metallic Ni was not the reason for deactivation of 3NiSN.Importantly,the weak interaction between Ni and support disappeared asthe reaction proceeding,resulting in sintering of active nickel particles.This was the reason that3NiSN catalyst showed a rapid deactivation in the CRPOM reaction.4.ConclusionsIn this work,Ni/SiO2catalysts were prepared with nickel nitrate precursor by IWI method and characterized by FT-IR,TG-DTA,UV-Raman,XRD,TEM,and H2-TPR.By being calcined around380∘C,water and nitrate were volatilized absolutely to form NiO,which could be reduced into metallic Ni after being treated with H2at700∘C.The active nickel particles(around37.5nm)of3NiSN catalyst were dispersed highly but weakly interacted with SiO2support.However, this weak interaction disappeared after repeating oxidation-reduction-oxidation in the fluidized bed reactor at700∘C. Therefore,3NiSN catalyst suffered from obvious sintering of the active nickel particle.In light of these,a rapid deactivation of3NiSN was shown in the process of combination of CO2 reforming and partial oxidation of methane(CRPOM)to produce syngas.Conflict of InterestsThe authors declare that there is no conflict of interests regarding the publication of this paper. AcknowledgmentsThe authors thank the financial supports of National Natural Foundation of China(nos.21003066,21367015,and51068010) and Zhejiang Province Key Science and Technology Innova-tion Team(2012R10014-03).References[1]B.Pawelec,P.Casta˜n o,J.M.Arandes et al.,“Katalizatory ni-klowe i rutenowo-niklowe na no´s nikach zawierających zeolit ZSM-5i tlenek glinu.Wybrane wła´s ciwo´s ci fizykochemiczne i katalityczne,”Applied Catalysis A:General,vol.7,no.7,pp.20–33,2007.[2]T.V.Choudhary and V.R.Choudhary,“Energy-efficient syngasproduction through catalytic oxy-methane reforming reac-tions,”Angewandte Chemie,vol.47,no.10,pp.1828–1847,2008.[3]K.-R.Hwang,S.-W.Lee,S.-K.Ryi,D.-K.Kim,T.-H.Kim,and J.-S.Park,“Water-gas shift reaction in a plate-type Pd-membrane reactor over a nickel metal catalyst,”Fuel Processing Technology, vol.106,pp.133–140,2013.[4]D.P.Liu,X.-Y.Quek,H.H.A.Wah,G.M.Zeng,Y.D.Li,andY.H.Yang,“Carbon dioxide reforming of methane over nickel-grafted SBA-15and MCM-41catalysts,”Catalysis Today,vol.148, no.3-4,pp.243–250,2009.[5]V.R.Choudhary,B.S.Uphade,and A.S.Mamman,“Partialoxidation of methane to syngas with or without simultaneous CO2and steam reforming reactions over Ni/AlPO4,”Microp-orous and Mesoporous Materials,vol.23,no.1-2,pp.61–66,1998.[6]E.Ruckenstein and Y.H.Hu,“Combination of CO2reformingand partial oxidation of methane over NiO/MgO solid solution catalysts,”Industrial and Engineering Chemistry Research,vol.37,no.5,pp.1744–1747,1998.[7]J.Newnham,K.Mantri,M.H.Amin,J.Tardio,and S.K.Bhargava,“Highly stable and active Ni-mesoporous alumina catalysts for dry reforming of methane,”International Journal of Hydrogen Energy,vol.37,no.2,pp.1454–1464,2012.[8]M.Garc´ıa-Di´e guez,I.S.Pieta,M.C.Herrera,rrubia,and L.J.Alemany,“Nanostructured Pt-and Ni-based catalysts for CO2-reforming of methane,”Journal of Catalysis,vol.270, no.1,pp.136–145,2010.[9]L.Yao,J.Zhu,X.Peng,D.Tong,and C.Hu,“Comparative studyon the promotion effect of Mn and Zr on the stability of Ni/SiO2 catalyst for CO2reforming of methane,”International Journal of Hydrogen Energy,vol.38,no.18,pp.7268–7279,2013.[10]S.Tada,T.Shimizu,H.Kameyama,T.Haneda,and R.Kikuchi,“Ni/CeO2catalysts with high CO2methanation activity and high CH4selectivity at low temperatures,”International Journal of Hydrogen Energy,vol.37,no.7,pp.5527–5531,2012.[11]I.Rossetti,C.Biffi,C.L.Bianchi et al.,“Ni/SiO2and Ni/ZrO2catalysts for the steam reforming of ethanol,”Applied Catalysis B:Environmental,vol.117-118,pp.384–396,2012.[12]X.L.Yan,Y.Liu,B.R.Zhao,Y.Wang,and C.-J.Liu,“Enhancedsulfur resistance of Ni/SiO2catalyst for methanation via the plasma decomposition of nickel precursor,”Physical Chemistry Chemical Physics,vol.15,no.29,pp.12132–12138,2013. [13]W.S.Xia,Y.H.Hou,G.Chang,W.Z.Weng,G.-B.Han,and H.-L.Wan,“Partial oxidation of methane into syngas(H2+CO) over effective high-dispersed Ni/SiO2catalysts synthesized by a sol-gel method,”International Journal of Hydrogen Energy,vol.37,no.10,pp.8343–8353,2012.[14]L.Li,S.He,Y.Song,J.Zhao,W.Ji,and C.-T.Au,“Fine-tunable Ni@porous silica core-shell nanocatalysts:synthesis, characterization,and catalytic properties in partial oxidation of methane to syngas,”Journal of Catalysis,vol.288,pp.54–64, 2012.[15]D.P.Liu,Y.F.Wang,D.M.Shi et al.,“Methane reformingwith carbon dioxide over a Ni/ZiO2-SiO2catalyst:influence of pretreatment gas atmospheres,”International Journal of Hydrogen Energy,vol.37,no.13,pp.10135–10144,2012. [16]M.V.Bykova,D.Y.Ermakov,V.V.Kaichev et al.,“Ni-based sol-gel catalysts as promising systems for crude bio-oil upgrading:guaiacol hydrodeoxygenation study,”Applied Catalysis B:Environmental,vol.113-114,pp.296–307,2012. [17]M.Xue,S.Hu,H.Chen,Y.Fu,and J.Shen,“Preparationof highly loaded and dispersed Ni/SiO2catalysts,”Catalysis Communications,vol.12,no.5,pp.332–336,2011.[18]R.Nares,J.Ram´ırez,A.Guti´e rrez-Alejandre,and R.Cuevas,“Characterization and hydrogenation activity of Ni/Si(Al)—MCM-41catalysts prepared by deposition-precipitation,”Indus-trial and Engineering Chemistry Research,vol.48,no.3,pp.1154–1162,2009.[19]A.Corma,A.Martinez,V.Martinezsoria,and J.B.Monton,“Hydrocracking of vacuum gasoil on the novel mesoporous MCM-41aluminosilicate catalyst,”Journal of Catalysis,vol.153, no.1,pp.25–31,1995.[20]T.Halachev,R.Nava,and L.Dimitrov,“Catalytic activityof(P)NiMo/Ti-HMS and(P)NiW/Ti-HMS catalysts in the hydrogenation of naphthalene,”Applied Catalysis A:General, vol.169,no.1,pp.111–117,1998.[21]S.He,H.Wu,W.Yu,L.Mo,H.Lou,and X.Zheng,“Combi-nation of CO2reforming and partial oxidation of methane to produce syngas over Ni/SiO2and Ni–Al2O3/SiO2catalysts with different precursors,”International Journal of Hydrogen Energy, vol.34,no.2,pp.839–843,2009.[22]S.F.He,Q.S.Jing,W.J.Yu,L.Y.Mo,H.Lou,and X.M.Zheng,“Combination of CO2reforming and partial oxidation of methane to produce syngas over Ni/SiO2prepared with nickel citrate precursor,”Catalysis Today,vol.148,no.1-2,pp.130–133,2010.[23]S.He,X.Zheng,L.Mo,W.Yu,H.Wang,and Y.Luo,“Characterization and catalytic properties of Ni/SiO2catalysts prepared with nickel citrate as precursor,”Materials Research Bulletin,vol.49,pp.108–113,2014.[24]E.Marceau,M.Che,J.ˇCejka,and A.Zukal,“Nickel(II)nitrate vs.acetate:influence of the precursor on the structure and reducibility of Ni/MCM-41and Ni/Al-MCM-41catalysts,”ChemCatChem,vol.2,no.4,pp.413–422,2010.[25]J.Chen and Q.Z.Song,Organic Spectral Analysis,BIT Press,Beijing,China,1996.[26]J.F.Xu,W.Ji,Z.X.Shen et al.,“Raman spectra of CuOnanocrystals,”Journal of Raman Spectroscopy,vol.30,no.5,pp.413–415,1999.[27]H.Richter,Z.P.Wang,and L.Ley,“The one phonon Ramanspectrum in microcrystalline silicon,”Solid State Communica-tions,vol.39,no.5,pp.625–629,1981.[28]Z.Zhao,Y.Yamada,A.Ueda,H.Sakurai,and T.Kobayashi,“The roles of redox and acid-base properties of silica-supported vanadia catalysts in the selective oxidation of ethane,”Catalysis Today,vol.93–95,pp.163–171,2004.Scientifica Corrosion Polymer ScienceCeramics Composites Nanoparticles International Journal of Biomaterials Nanoscience TextilesJournal of Nanotechnology Crystallography The Scientific World Journal Coatings Advances in Materials Science and Engineering S mart MaterialsResearch Metallurgy Journal ofBioMed Research International Materials Journal of Journal ofNanomaterials。