生物脱氮除磷的综述
- 格式:doc
- 大小:214.04 KB
- 文档页数:11
废水的生物脱氮除磷生物脱氮的理论污水中氮的存在形态:有机氮、氨氮、硝态氮和亚硝态氮。
生活污水中:有机氮约占60%,氨氮约占40%。
二级处理进水中:TN为20-50mg/L。
N为植物营养物质水体富营养化污水脱氮的目的和方法:防治水体富营养化及对水生生物的毒害。
化学法、生物法。
污水传统生物脱氮的原理:在微生物作用下,将有机氮和氨态氮转化为N2的过程。
96%的硝态氮经异化过程还原成N2,有4%经同化合成微生物体。
硝化过程中亚硝化是限制性步骤。
亚硝化是指将氨氮氧化为亚硝酸盐的反应,通常由亚硝化细菌完成。
亚硝化反应速率较慢,主要取决于亚硝化细菌的活性和数量。
亚硝化细菌对环境条件比较敏感,例如温度、pH值、氧含量等都会对其活性产生影响。
当这些条件不稳定或不适宜时,亚硝化细菌的活性受到限制,导致亚硝化反应缓慢进行,成为硝化过程的瓶颈。
相比之下,硝化是将亚硝酸盐进一步氧化为硝酸盐的反应,通常由硝化细菌完成。
相对于亚硝化反应,硝化反应的速率较快,且硝化细菌相对较耐受环境变化。
因此,在硝化过程中,亚硝化反应往往是限制性步骤,决定整个硝化过程的效率和速度。
总凯氏氮(total kjeldahl nitrogen)是有机氮和氨氮之和。
常被用来判断污水好氧生物处理时氮素的量是否适宜,根据C:N:P=100:5:1的比例,若氮的比例偏低则要补氮,反之则要脱氮。
污水生物脱氮工艺的控制条件:硝化和反硝化的控制条件BOD5/TKN =1-3时,生物相中硝化菌的比例为8.3-21%,而大部分污泥中的此比例远小于8.3%;BOD5/TKN >5时,可看作碳化和硝化相结合的过程。
理论上C/N比为2.86时,反硝化1mg的硝酸盐氮理论消耗2.87mg的COD。
一般AO脱氮工艺的C/N比控制在4-6之间。
当BOD5/TKN <3时,应补充碳源:外加碳源(甲醇);原水中含有的碳;内源呼吸碳源。
An/O工艺:优势:流程简单;基建投资大大减少;不需要外加碳源;运行费用降低,可实现碱度内部补充。
《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加快,城市污水处理成为环境保护领域亟待解决的问题。
传统的污水处理方法虽然能够满足基本需求,但面对日益增长的城市人口和日益复杂的污水成分,传统的处理技术已经难以满足当前的环保要求。
因此,新型生物脱氮除磷技术的研究与进步对于改善水质、保护生态环境具有十分重要的意义。
本文旨在梳理近年来城市污水处理中新型生物脱氮除磷技术的研究进展。
二、生物脱氮技术研究(一)发展概况生物脱氮技术主要通过微生物的作用,将污水中的氮素转化为无害的氮气排放到大气中。
近年来,研究者们通过优化反应器设计、改进微生物菌群以及调控环境因素等手段,推动了生物脱氮技术的进步。
(二)技术分类目前,生物脱氮技术主要包括厌氧-好氧(A/O)工艺、同步硝化反硝化(SND)技术、短程硝化反硝化等。
这些技术通过不同的反应过程和微生物活动,实现了高效脱氮的效果。
(三)研究进展随着研究的深入,新型生物脱氮技术如微氧脱氮技术、基于膜生物反应器的脱氮技术等逐渐崭露头角。
这些技术不仅提高了脱氮效率,还降低了能耗和运行成本。
三、生物除磷技术研究(一)发展概况生物除磷技术主要通过微生物的代谢活动,将污水中的磷素去除或转化为易于回收的形态。
近年来,随着对微生物除磷机制的了解加深,除磷技术的效率也得到了显著提高。
(二)技术分类常见的生物除磷技术包括聚磷菌(PAOs)除磷工艺、厌氧-好氧(A/O)结合除磷等。
这些技术通过调控微生物的生长环境和代谢过程,实现了对污水中磷的高效去除。
(三)研究进展新型的生物除磷技术如基于微藻的除磷技术、电化学辅助生物除磷技术等逐渐成为研究热点。
这些技术不仅提高了除磷效率,还为后续的磷资源回收提供了可能。
四、新型生物脱氮除磷技术的优势与挑战(一)优势新型生物脱氮除磷技术相比传统技术,具有更高的处理效率、更低的能耗和运行成本。
同时,这些技术还能够实现对氮、磷等营养元素的回收利用,具有良好的经济和环境效益。
生物脱氮除磷原理
生物脱氮除磷原理是一种利用微生物代谢能力去除废水中氮和磷的方法。
脱氮是指将废水中的氨氮、亚硝酸盐和硝酸盐等氮化合物转化成氮气放出。
脱磷是指将废水中的磷酸盐转化成难溶的磷酸钙而去除。
这种方法主要依靠微生物的代谢过程,通过生物反应器将废水中的氮、磷物质通过微生物的多环节代谢过程降解,最终形成无害的氮气和难溶的磷酸钙。
这种方法具有高效、节能、环保等特点,被广泛应用于工业和城市废水处理等领域。
- 1 -。
工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。
2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。
通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。
3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。
近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。
与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。
分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。
分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。
二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。
传统生物脱氮除磷工艺概述6.2.1 传统生物脱氮除磷工艺由生物除磷原理可以看出:生物除磷几乎全为活性污泥法,生物膜法很少。
作为生物膜法的一种工艺—Linpor-CN工艺,以缺氧-好氧两段式延续流运行的方式,既能有效去除有机物和总氮,又能有效去除磷,其除磷机理主要是其生物膜载体填料,1cm3的泡沫塑料小方块,在其表面形成生物膜后,从表面对内部存在溶解氧的梯度,相应处于好氧、缺氧和厌氧状态,致使每个泡沫塑料小方块都是一个微型生物反应器,污染物进入其中能举行好氧、缺氧和厌氧反应,从而能举行硝化、反硝化和生物除磷等过程,并达到相当高的脱氮除磷效率。
王宝贞等讨论开发的序批间歇式沉没生物膜工艺,在厌氧(3h)—好氧(6h)—沉淀(1h)周期的运行条件下,除磷效率达到90%,排出的剩余污泥含磷高达14%。
对于延续流固定式沉没生物膜工艺,在无活性污泥回流或回流量很少的状况下,难以实现有效的生物除磷。
但是,在大多数状况下,生物除磷与生物脱氮同时发生在一个处理流程中。
应用最广泛的生物脱氮、除磷工艺有A/O、A2/O、Bardenpho、UCT、Phoredox工艺(改良型巴顿普工艺)、氧化沟工艺和VIP工艺等,近年来用SBR及其各种改进型的工艺,如CASS(CAST)、MSBR、UNITANK 等,因为其序批间歇式工序和间歇曝气的运行特点,在进水、曝气、沉淀和出水的运行周期中,形成溶解氧的浓度梯度变幻,先后形成厌氧、缺氧和好氧环境,使聚磷菌、硝化菌和反硝化菌共存,都能有效地举行生物脱氮和除磷。
(1)A2/O除磷脱氮工艺A2/O(Anaerobic/Aerobic/Oxic)工艺的特点如下:厌氧、缺氧、好氧在不同环境条件和不同种类微生物菌群的有机结合,能同时去除有机物和除磷脱氮。
A2/O工艺流程容易,总水力停歇时光少于其他同类工艺,并且不需外加碳源,厌氧、缺氧段只举行缓速搅拌,所以基建和运行费用都较低。
(2)UCT工艺与A2/O工艺不同之处在于沉淀池污泥是回流到缺氧池而不是厌氧池,同时增强了缺氧池到厌氧池的缺氧混合液回流。
生物脱氮除磷原理生物脱氮除磷原理生物脱氮和除磷是现代污水处理过程中的两个主要步骤。
这样做可以有效地降低污染物的排放,并促进水环境的恢复和保护。
这篇文章将介绍生物脱氮和除磷的原理,并分别进行详细的说明。
一、生物脱氮氮是生命所必需的元素之一,然而,过量的氮会导致水体富营养化,甚至造成水体死亡。
因此,在污水处理过程中,生物脱氮是一个重要的步骤,目的是减少氮的含量,保护水资源。
生物脱氮的原理是通过微生物代谢来降低污水中的氮含量。
具体来说,将含有氮化合物的污水引入生物反应器中,细菌依靠缺氧状态下的代谢产生能量来去除氮,将氨氮转化为氮气和硝酸盐。
这样可以有效地减少氮的含量,并且为其他生物链提供营养素。
二、除磷磷是植物生长所必需的元素之一,但是污水中过多的磷会导致水体富营养化,破坏水生态环境。
因此,除磷也是现代污水处理过程的一个重要步骤。
除磷的方法主要有化学沉淀方法和生物除磷方法。
其中,化学沉淀法是通过添加化学药剂,使磷离子与药剂中的金属离子反应,产生一种不溶性沉淀,在沉淀的过程中去除磷。
相对而言,生物除磷方法更为可持续。
生物除磷的原理是利用一些专门的微生物,按照一定的顺序和比例,对污水中的有机质和磷进行吸收和固定。
这些微生物可以根据磷的生物循环特点,利用有机质和磷的沉积结合,通过代谢来吸收和固定磷,使磷含量得到降低。
三、总结生物脱氮和除磷在现代污水处理中是必不可少的步骤。
通过生物反应器和微生物代谢的过程,这些步骤可以有效地降低含氮和含磷物质的含量。
这些污染物不仅会污染水体,还会间接影响人类健康和生态环境。
为了保护我们的水资源和生态环境,我们需要科学的污水处理方法,以消除污染物和保护我们的水体资源。
污水生物脱氮除磷的基本原理
污水生物脱氮除磷是一种利用生物的代谢能力来降低污水中氮和磷的浓度的技术。
其基本原理是利用污水中的生物分解形成的氨氮,通过氨氧化、反硝化及硫酸还原这三个生物代谢过程,将氨氮转变成无害物质,并利用磷细菌将磷结合在污泥中,最终将氮和磷从污水中去除。
1、氨氧化过程
氨氧化过程是污水生物处理中脱氮的主要过程,也是把氨氮转变成无害物质的主要过程。
氨氧化的具体过程是把氨氮转变成氮气的过程,真正的氨氧化过程是由被称作氨氧化菌的细菌来承担的。
这些特殊的细菌需要降低水温、提高pH值和添加活性碳等外源物质的供给,才能进行氨氧化反应。
2、反硝化过程
反硝化过程是把亚硝酸氮转变成氮气的过程,它是生物处理中氮的最后一步转变过程,反硝化的最后产物是氮气,也就是说它是将氮从污水中最终去除出去的转变过程。
反硝化过程受反硝化菌的影响较大,反硝化菌属于好氧细菌,反硝化条件包括高氧化性、低温度、较高的pH值等。
3、硫酸还原过程
硫酸还原过程是通过硫酸还原菌将污水中的亚硝酸氮还原成氨氮的过程,它是把水中的氮含量降低的重要手段。
硫酸还原过程还可以与氨氧化过程相结合,从而提高去除氮的效率。
脱氮除磷原理
脱氮除磷是一种常用的废水处理方法,它通过一系列化学过程将废水中的氮和磷去除掉。
脱氮除磷的原理主要包括生物处理和化学处理两个方面。
生物处理是脱氮除磷的主要手段之一。
在生物处理中,利用好氧和厌氧两种微生物的作用来降低废水中的氮和磷含量。
在好氧条件下,氨氮可以被氨氧化细菌氧化为亚硝酸盐,然后亚硝酸盐可被亚硝酸盐氧化细菌进一步氧化为硝酸盐。
通过这个过程,废水中的氮被转化为氨氮、亚硝酸盐和硝酸盐。
在厌氧条件下,通过一系列反应,废水中的磷可被还原成无机磷。
化学处理也是脱氮除磷的重要手段之一。
在化学处理中,常用的方法包括加入化学药剂和利用吸附剂去除废水中的氮和磷。
常用的化学药剂有聚合氯化铝、硫酸铁等。
这些药剂可与废水中的氮和磷反应,形成沉淀物或沉淀物颗粒,从而使废水中的氮和磷得以去除。
吸附剂则通过其表面特性和吸附能力去除废水中的氮和磷。
综上所述,脱氮除磷是通过利用生物处理和化学处理的方式,将废水中的氮和磷去除,从而达到净化废水的目的。
这些原理的应用可以在废水处理中起到重要作用,降低废水对环境的污染。
污水生物脱氮除磷工艺的现状与发展一、本文概述随着全球经济的快速发展和人口规模的不断扩大,污水处理问题日益突出,其中氮、磷等营养物质的去除成为污水处理领域的研究热点。
氮、磷等营养物质是导致水体富营养化的主要因素,其对生态环境和人类健康构成严重威胁。
因此,研究和发展高效、稳定的污水生物脱氮除磷工艺具有重要的现实意义和应用价值。
本文旨在对污水生物脱氮除磷工艺的现状进行梳理和评价,分析各种工艺的优势与不足,并展望未来的发展趋势。
通过深入了解和研究这些工艺,有助于我们更好地应对日益严峻的污水处理挑战,推动污水处理技术的创新与发展,为实现水资源的可持续利用和保护生态环境作出积极贡献。
二、污水生物脱氮除磷工艺现状污水生物脱氮除磷工艺是近年来环保领域研究的热点之一,其核心技术在于利用微生物的生理活动去除污水中的氮、磷等污染物。
当前,污水生物脱氮除磷工艺主要分为活性污泥法、生物膜法以及自然生物处理法等几大类。
活性污泥法是目前应用最广泛的生物脱氮除磷工艺之一。
通过构建含有特定微生物种群的活性污泥,利用微生物的硝化、反硝化以及磷的吸收释放等过程,实现对污水中氮、磷的有效去除。
然而,活性污泥法存在污泥产量大、处理过程能耗高、对水质波动敏感等问题。
生物膜法则是利用生长在固体介质表面的微生物膜来去除污水中的污染物。
这种方法具有生物量大、处理效率高、耐冲击负荷等优点,特别适用于处理高浓度有机废水。
但生物膜法也存在易堵塞、需要定期清理生物膜等缺点。
自然生物处理法则是指利用自然界的微生物群落来处理污水。
这种方法具有投资少、运行费用低、环境友好等优点,但处理效率相对较低,且受环境因素影响较大。
目前,污水生物脱氮除磷工艺的研究重点主要集中在提高处理效率、降低能耗和减少污泥产量等方面。
通过优化微生物种群结构、改进反应器设计、提高运行管理水平等手段,不断提升工艺性能,以满足日益严格的环保要求。
随着分子生物学、基因组学等现代生物技术的发展,污水生物脱氮除磷工艺的研究也逐渐深入到微生物的分子层面。
生物脱氮除磷工艺简介1、生物脱氮除磷工艺的进展从20世纪60年代开始,美国曾系统地进行了脱氮除磷物化方法研究,结果认为该法的主要缺点是药耗量大,产生的污泥多,特别对处理大量城市污水时,处理成本高。
因此,转入研究生物脱氮除磷工艺。
从20世纪70年代开始,在活性污泥法脱氮工艺(A/0工艺)逐步实现工业化,并在此基础上研究开发出了生物脱氮除磷工艺(如A2/0工艺等)。
以后,随着微生物学和细胞学在污水生化处理上的新应用,又不断出现了多种变形的生物脱氮除磷工艺,如MSBR等。
我国从20世纪80年代初开始生物脱氮除磷研究,80年代后期实现了工业化流程。
污水脱氮除磷可供选择的工艺通常有生物处理和物理化学处理两大类。
后者由于需要投加相当数量的化学药剂,存在运行费用高,残渣量大和运行管理难度大等缺陷,因此,城市污水处理中一般不推荐采用。
而一般生物处理又分为活性污泥和生物膜法两种。
目前对城市污水的生物脱氮除磷工艺,指的是活性污泥生物脱氮除磷工艺。
目前已实用的几种生物脱氮除磷工艺有:A2/O、氧化沟、SBR工艺以及以上三种工艺的系列改良工艺。
2、生物脱氮除磷的工艺原理简述(1)生物脱氮首先,污水中的蛋白质和尿素等在水解酶和尿素酶的作用下转化为氨氮,而后在有氧条件下和在硝化菌的作用下,氨氮被氧化为硝酸盐,这阶段称为硝化(即氨氮转化为硝酸盐)。
再以后,在缺氮条件和反硝化菌的参与作用,并有外加碳源提供能量,硝酸盐还原成气态氮(N2)逸出,这阶段称为反硝化(即硝酸盐的氮转化为氮气)。
整个脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。
在脱氮过程中,硝化菌增长速度较缓慢,所以要有足够的污泥泥龄。
反硝化菌的生长主要在缺氧条件下进行,还要有充裕的碳源提供能量,才可能使反硝化作用顺利进行。
除上述条件以外,影响脱氮效率的因素还有溶解氧,温度和PH 值等。
硝化阶段,应有足够的溶解氧,其值一般应大于2g/L。
反硝化阶段为缺氧条件,溶解氧值宜为0.4mg/L左右。
生物脱氮除磷工艺简述摘要:本文对生物脱氮除磷工艺的原理进行了介绍,并对目前常用的脱氮除磷处理工艺进行了简要阐述。
关键词:生物脱氮除磷,氧化沟A/A/O生物处理工艺,SBR法Abstract: in this paper, the biological denitrification and the principle of dephosphorization technology are introduced, and the common denitrification and phosphorus processing technology are briefly described.Keywords: biological denitrification and phosphorus, the oxidation ditch A/A/O biological treatment technology, SBR method生物脱氮除磷工艺是目前常见的污水处理工艺,其处理机理及形式如下:1.生物脱氮除磷原理1.1生物脱氮生物脱氮是通过硝化和反硝化两个生化过程来完成的。
污水中含氮化合物经异养性氨化细菌作用分解为NH3-N,然后在好氧条件下,通过亚硝酸菌和硝酸菌的作用,将氨氮氧化成亚硝酸氮(NO2—-N)和硝酸氮(NO3—-N)的过程称为硝化过程。
在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,在氢供给体充分的条件下,将亚硝酸氮(NO2—-N)和硝酸氮(NO3—-N)还原成N2排入空气中,同时有机物分解的过程称为反硝化过程。
1.2生物除磷生物除磷是利用活性污泥中的聚磷菌在厌氧条件下释磷,在好氧条件下过量吸磷的原理来进行的。
1.3同时生物脱氮除磷系统的设计要素从生物脱氮除磷原理看出,两者要求的有些方面是相互制约的。
要正常发挥脱氮除磷系统效率,详细分析进水水质是十分必要的:进水BOD5浓度:不宜低于150mg/L。
生物脱氮除磷原理及工艺生物脱氮的原理主要是利用微生物中的硝化和反硝化过程。
首先,硝化细菌通过氧化氨将氨氮转化为亚硝酸盐,然后亚硝酸盐进一步被亚硝酸盐脱氢酶转化为硝酸盐。
这个过程被称为硝化作用。
反硝化过程是指在缺氧或低氧条件下,反硝化细菌通过还原硝酸盐来释放出氮气。
生物脱磷的原理主要是利用微生物中的磷酸盐积累和释放过程。
一些细菌和藻类能够以有机物的形式从水中吸收和积累磷酸盐,并在一定条件下释放出来。
这个过程被称为磷酸盐吸收和释放作用。
通过调节水体中的氧气、有机负荷和pH值等条件,可以促进微生物的磷酸盐吸收和释放过程,从而实现生物脱磷。
非曝气法主要是在低氧或缺氧条件下进行处理。
这种方法的优点是能够节省能源和减少氧气需求,适用于中小型处理单位。
常见的非曝气法包括:厌氧氨氧化-硝化还原法(Anammox-Detritus-Anoxia法)、系统内侧流间歇式处理法(SCT法)和单球状厌氧硝化反硝化法等。
曝气法主要是通过加氧来提供充足的氧气供给,促进硝化和反硝化过程。
这种方法的优点是处理效果稳定可靠,适用于大型处理装置。
常见的曝气法包括:AO法(活性污泥法)、A2/O法(改良后的活性污泥法)和SBR法(顺序批处理法)等。
在实际的生物脱氮除磷工程中,通常会采用多级处理工艺。
例如,可以将生物脱氮和生物除磷结合起来,构建生物反硝化除磷工艺(SND)。
这种工艺可以同时去除水体中的氮和磷,效果较好。
总的来说,生物脱氮除磷通过利用微生物的生长和代谢活动,可以有效地降低水体中的氮和磷浓度,改善水质,保护生态系统。
不同的工艺可以根据具体情况选择和组合,以达到最佳的去除效果。
简述生物脱氮除磷的基本原理嗨,朋友!今天咱们来唠唠生物脱氮除磷这个超有趣的事儿。
咱先说说生物脱氮吧。
你知道吗,氮在污水里就像个调皮的小捣蛋鬼,到处捣乱。
生物脱氮呢,主要就是靠微生物这个小能手来把氮给搞定。
污水里的氮有好几种形式,像氨氮呀,硝态氮之类的。
那些微生物就像是小小的魔法师,有一种微生物叫硝化细菌,它们可厉害了。
硝化细菌里又分成两类小魔法师,一类把氨氮变成亚硝态氮,就好像是给氨氮做了个小变身。
然后呢,另一类硝化细菌再把亚硝态氮变成硝态氮,这个过程就像是接力赛一样。
这硝化的过程呢,是需要氧气这个小助手的,就像我们人干活需要力气一样,微生物干活也需要氧气来提供能量呢。
那把氮变成硝态氮就完事儿了吗?当然没有啦。
还有一群反硝化细菌在等着呢。
反硝化细菌是一群在没有氧气或者氧气很少的地方工作的小能手。
它们会把硝态氮变成氮气,氮气可是个很乖的家伙,它会直接跑到空气里去,这样污水里的氮就减少啦。
这个过程就像是把氮这个调皮鬼给赶跑了一样。
反硝化细菌工作的时候呢,还需要一些碳源,就像是它们的小零食,有了小零食它们才能更有力气干活呀。
再来说说生物除磷吧。
磷在污水里也是个让人头疼的家伙。
有一些微生物呢,它们有一种特殊的能力,叫聚磷菌。
聚磷菌在好氧的环境下,就像个小贪吃鬼,会大量地吸收磷,把磷都储存到自己的身体里。
它们吸收磷的能力可强了,就像是一个个小小的磷元素收集器。
然后呢,当环境变成厌氧的时候,聚磷菌又会做出很神奇的事情。
它们会把体内储存的磷释放出来,这时候就好像是把之前收集的宝贝暂时拿出来展示一下。
不过这可不是没有意义的展示哦,这是为了在接下来的好氧环境里能够吸收更多的磷。
在经过这样的厌氧 - 好氧交替的环境之后,聚磷菌体内就积累了大量的磷。
最后呢,我们就可以把含有大量磷的聚磷菌从污水里分离出来,这样污水里的磷就被去除掉啦。
你看,生物脱氮除磷就像是一场微生物的大作战。
这些小小的微生物虽然我们肉眼看不见它们,但是它们却在污水治理这个大舞台上发挥着超级重要的作用呢。
生物膜法脱氮除磷原理
生物膜法脱氮除磷是一种相对较新的处理废水的技术,将生物膜巧妙地应用在废水处理过程中,可以除去有害物质,保护环境。
生物膜法脱氮除磷是一种有效的方法,它将具有污染物质的废水经过生物技术处理后,可以彻底把有害物质(主要是氮和磷类物质)移除,达到净水的效果。
生物膜法脱氮除磷是由一层生物活性物质夹层叠加和穿孔生物膜而形成的。
穿孔生物膜可以阻滞胞外污染物,而生物活性物质夹层在形成生物膜夹层的同时,也可以吸附污染物并将其阻滞。
由于水分子和有机物分子的大小穿过穿孔生物膜的比例不同,水分子的穿过速度往往快于有机物分子,有机分子则得不到有效的清除。
同时,由于生物夹层上表面能位的存在,可以有效的吸附污染物,进一步减少污染物的浓度。
生物膜法脱氮除磷不但占用空间少,耗能量低,而且可以有效的除去氮和磷类物质,不会造成二次污染。
随着环境保护意识的增强,人们对污染物处理技术提出了更高的要求。
生物膜法脱氮除磷技术能够有效地去除水中的污染物,在废水处理领域有着崭新而有效地技术。
精品文档 。 1欢迎下载
目前我国废水生物脱氮除磷的研究进展 赵春霞 (苏州科技学院,环境工程1222,学号1230103233) 引言:随着城市发展以及工业化进程的加快,导致污水成为人们重点处理的有关于环境的热点问题。大量的生活污水、工业废水和农田地表水径流汇入湖水、河流、水库和海湾水域,使藻类等其他植物大量繁殖,从而形成了水体富营养。所以对于我国这样水资源本来就很紧缺的国家,严格控制氮、磷污水的超标排放是很有必要的。传统的脱氮除磷技术制约了工艺的高效性与稳定性,而且很多的流程中包含多重污泥和污泥回流,增加了系统的复杂性,使得基建和运行费用大大提高。因此,我们必须跟进生物脱氮除磷的研发,不断提高生物脱氮除磷的水平。 1 生物脱氮除磷技术的原理 1) 脱氮原理。污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过硝化作用转化为亚硝态氮、硝态氮。在缺氧条件下通过反硝化作用将硝氮转化为氮气,即将(经反亚硝化)和(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。然而,近些年的研究发精品文档 。 2欢迎下载
现:在好氧的条件下,同时发生了硝化和反硝化作用;在厌氧条件下,NH4+-N减少,这些现象都无法用传统的脱氮的原理来解释,表明除了传统的脱氮理论以外,还存在其他的生物脱氮原理。[1]在此处键入公式。 2) 除磷原理。生物除磷主要是在厌氧和好氧的环境下交替进行,在厌氧的条件下释放磷,在有氧的条件下摄取磷,通过排除富磷污泥达到除磷的目的。再通过聚磷菌除磷的时候,其关键是PHB,当污水中BOD和TP的含量大于20的时候,生物除磷比较安全,产生的PHB也比较多。还有人认为,在释放磷的时候,关键是VFA,想要提高除磷能力,便必须提高VFA的浓度。[5]图1为生物除磷示意图
图1生物除磷示意图[1] 2 生物脱氮除磷技术 2.1生物脱氮技术 污水生物脱氮技术是通过反应器和控制手段实现时间或空间上的好氧和缺氧环境,达到硝化和反硝化脱氮的目的。精品文档 。 3欢迎下载
根据污水处理工艺的不同分为活性污泥脱氮工艺和生物膜脱氮工艺。[4] 2.2生物除磷技术 污水生物除磷技术通过基础性研究、生产性实验研究以及工程运行实践,生物除磷技术在理论和实践上都取得了重大突破。目前来看,用于工程实践的生物除磷技术有A2/O工艺、氧化沟工艺、SBR工艺、Phost rip工艺、改良的Bandenpho工艺、改良的UCT工艺等。[4] 3生物脱氮除磷传统组合工艺 经过多年的理论以及实践的研究,生物脱氮除磷工艺日趋完善。目前,以传统的生物脱氮除磷理论为基础的A2/O以及改良工艺为主流。 3.1 A2/O工艺 最初的脱氮除磷工艺是在不同的处理中慢慢实现的。生物脱氮除磷工艺的组合是前人不断在深入研究脱氮工艺中找到的。70年代,Barnard在Ludzack和Ettinger的基础上提出了改良型工艺,即A/O工艺,他在进一步的研究中发现当前置厌氧池内存在厌氧区时,系统兼有明显的除磷功能。于是,他提出了能同时实现脱氮除磷的Phoredox工艺。取消此工艺的第二级缺氧、好氧池,即为A2/O工艺。此后,脱氮除磷被统一在一个系统中,不仅简化了污水处理的操作,又增加了处理工艺的功能。A2/O工艺将厌氧段、缺氧段放精品文档 。 4欢迎下载
在工艺的第一级,充分发挥了厌氧菌群承受高浓度、高有机负荷能力的优势。A2/O工艺可用于处理工业废水比重大的城市污水,此外,由于它是在普通活性污泥法的基础上发展起来的,因而也较容易用于生物法处理的老污水厂的改造。[2] 4 脱氮除磷新工艺
首先我们先来看一下图二的表格。[1] 此表格展现给我看到了各个工艺的优缺点,所以在处理不同污水的同时,我们应该适当合理的选择正确的方法,这样对于我们处理污水更有效率,给人们的生活也带来了干净的环境。
4.1氧化沟工艺 氧化沟又名氧化渠,因其构筑物呈封闭的环形沟渠而得名。它是活性污泥法的一种变型。因为污水和活性污泥在曝气渠道中不断循环流动,因此有人称其为“循环曝气池”、“无终端曝气池”。氧化沟的水力停留时间长,有机负荷低,其本质上精品文档 。 5欢迎下载
属于延时曝气系统。氧化沟结合推流和完全混合的特点,有力于克服短流和提高缓冲能力,通常在氧化沟曝气区上游安排入流,在入流点的再上游点安排出流。入流通过曝气区在循环中很好的被混合和分散,混合液再次围绕CLR继续循环。这样,氧化沟在短期内呈推流状态,而在长期内又呈混合状态。这两者的结合,即使入流至少经历一个循环而基本杜绝短流,又可以提供很大的稀释倍数而提高了缓冲能力。同时为了防止污泥沉积,必须保证沟内足够的流速(一般平均流速大于0.3m/s),而污水在沟内的停留时间又较长,这就要求沟内由较大的循环流量(一般是污水进水流量的数倍乃至数十倍),进入沟内污水立即被大量的循环液所混合稀释,因此氧化沟系统具有很强的耐冲击负荷能力,对不易降解的有机物也有较好的处理能力。氧化沟具有明显的溶解氧浓度梯度,特别适用于硝化-反硝化生物处理工艺。氧化沟从整体上说又是完全混合的,而液体流动却保持着推流前进,其曝气装置是定位的,因此,混合液在曝气区内溶解氧浓度是上游高,然后沿沟长逐步下降,出现明显的浓度梯度,到下游区溶解氧浓度就很低,基本上处于缺氧状态。氧化沟设计可按要求安排好氧区和缺氧区实现硝化-反硝化工艺,不仅可以利用硝酸盐中的氧满足一定的需氧量,而且可以通过反硝化补充硝化过程中消耗的碱度。这些有利于节省能耗和减少甚至免去硝化过程中需要投加的化学药品数量。 精品文档 。 6欢迎下载
4.2ECOSUNIDE工艺 ECOSUNIDE工艺是一种能够在特殊工艺条件下使用的工艺,其能够让硝化菌在活性污泥中的比例提高,其能够解决活性污泥消化速度比较慢的问题,能够提高脱氧的效率,从而提高脱氮的效率。这种工艺能够让生物系统在低氧的情况下和污泥浓度比较高的情况下更好的工作,能够帮助亚硝化菌、硝化菌和反硝化菌更好的生长,脱氧效率会有明显的提高, 这样能够缩小化生池的实际面积,投资可以减少百分之二十,此外这种工艺还可以实际运行上节约成本。[5] 4.3Phostrip工艺 脱氮需要低负荷、长泥磷,而除磷则正好相反,Phostrip工艺是一种典型的旁流除磷工艺,其除磷过程是在回流路径上完成,能较好的克服在同一体系中脱氮除磷对工艺要求的不同的矛盾。工艺的另一个特点是将生物法和化学法除磷结合起来,通过专门的除磷池进行磷的释放,含磷的上清液在经过石灰混凝沉淀处理,大部分磷以磷酸钙的形式去除。K S Kim等在Phostrip工艺曝气池前设反硝化段,强化了脱氮功能,同时也避免了二沉池回流污泥中高浓度硝酸盐对释磷的抑制。该工艺耐冲击负荷,缺点是工艺流程复杂,运行管理不便。[2] 4.4厌氧氨氧化工艺 厌氧氨氧化本身就是微生物自养的一个过程,在反硝化的时精品文档 。 7欢迎下载
候不需要进行有机物的调价,并且其污泥数量比较小,不但简单而且非常经济,并且这种工艺还可以改变硝化反应之后的酸产量,避免二次污染的出现。这种技术经济方面优势明显,但是厌氧氨化氧化菌本身的生长速度比较慢,所以必须研究怎样保证反应器中的生物量,保证其实际效果。[5] 4.5BICT工艺 这种工艺组要组成部分是悬浮生长的主反应器、生物选择器以及生物膜反应器三部分,在主反应器以及生物膜反应器之间还会进行沉淀池的设置,主反应器主要是进行反硝化菌以及聚磷菌的培养,对搅拌以及曝气进行控制能够将COD去除,能够很好的完成摄磷和反硝化,在静沉之后将其中的清水排放掉。生物膜反应器的长泥磷以及曝气能够给硝化菌更好的生长环境奠定基础。进水的时候,生物膜反应器首先会接触到沉淀池中的回流污泥,可以通过高负荷梯度的选择压力进行絮凝性细菌的选择,这样能够给污泥的沉淀奠定基础,与此同时,还应该做好厌氧搅拌工作,这样能够给释磷和聚磷更好的进行提供环境。[5]
5 脱氮除磷技术将来的发展 对于生物脱氮除磷技术目前的现状,我们已经可以展望到将来一定发展前景更大,首先我们从一开始就是以一种工艺发现了许多工艺,使得我们污水治理的效率越来越高,而且在精品文档 。 8欢迎下载
开发工艺的同时,人们也注意到了投资成本以及成效的问题,我觉得这是难能可贵的。随着科技的越来越发达,我相信生物脱氮除磷技术也一定会更上几层楼的。 5.1通过土地处理来进行脱氮除磷 在一些比较的城镇中,其污水流量比较的小,若是土地能够进行利用,那么可以在进行二级处理之后,将湿地系统使用进去,通过卵石床水载植物等土地系统来进行处理,这样也能很好地降低污水中氮元素和磷元素的含量。[5]在欧洲的一些国家很多都是使用这种方法来进行污水处理的,我认为这是原生态,对自然环境也不会造成危害,没有后患之忧,相当的理想。 6结语 对于高速发展的当代技术,我们不得不佩服以及虚心学习,在治理污水这方面,我觉得中国更应该学习一下瑞典、德国已经一些个国外的新技术,利用先进的化学药品以及仪器当然不是一件坏事,但是我们可以尽量少用一些化学药品,因为即使我们将污水治理干净了,还会引发一些其他的污染。我们也需要关心一下农田里打出的药水对河水水质的影响。工业生活污水是最重要,农田污水也与我们的环境以及生命息息相关。 7致谢 本综述是由袁怡老师的全心指点下完成的,选题的确定凝聚