医用回旋加速器培训考试题及答案
- 格式:docx
- 大小:37.59 KB
- 文档页数:3
高中物理速度选择器和回旋加速器习题知识点及练习题含答案一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,A 、B 两水平放置的金属板板间电压为U(U 的大小、板间的场强方向均可调节),在靠近A 板的S 点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A 、B 板间的电场加速后从B 板上的小孔竖直向上飞出,进入竖直放置的C 、D 板间,C 、D 板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E ,匀强磁场的方向水平向里,大小为B 1。
其中一些粒子能沿图中虚线做直线运动到达上方竖直圆上的a 点,圆内存在磁感应强度大小为B 2、方向水平向里的匀强磁场。
其中S 、a 、圆心O 点在同一竖直线上。
不计粒子的重力和粒子之间的作用力。
求: (1)能到达a 点的粒子速度v 的大小;(2)若e 、f 两粒子带不同种电荷,它们的比荷之比为1︰3,都能到达a 点,则对应A 、B 两金属板间的加速电压U 1︰U 2的绝对值大小为多大;(3)在满足(2)中的条件下,若e 粒子的比荷为k ,e 、f 两粒子在磁场圆中射出的两位置恰好在圆形磁场的同一条直径上,则两粒子在磁场圆中运动的时间差△t 为多少?【答案】(1)1E v B =;(2)12:3:1U U =;(3)1229t t t kB π∆=-= 【解析】 【详解】解:(1)能达到a 点的粒子速度设为v ,说明在C 、D 板间做匀速直线运动,有:1qvB qE = 解得:1Ev B =(2)由题意得e 、f 两粒子经A 、B 板间的电压加速后,速度都应该为v ,根据动能定理得:21qU mv 2=它们的比荷之比:e fe fq q :1:3m m = 得出:12U :U 3:1=(3)设磁场圆的半径为R ,e 、f 粒子进入磁场圆做圆周运动对e 粒子:21211v q vB m r =对f 粒子:22222v q vB m r =解得:12r 3r 1=e、f 两粒子在磁场圆中射出的两位置恰好在同一条直径上,说明两粒子的偏转角之和为180, e 、f 两粒子的轨迹图如图所示,由几何关系有:1R tan θr = 2R tan θr =θα90+=联立解得:θ30=,α60=e 、f 两粒子进入磁场圆做匀速圆周运动的周期满足:112πr T v = 222πr T v=e fe fq q :1:3m m = 在磁场中运动的时间:112θt T 360= 222αt T 360=12t t >两粒子在磁场中运动的时间差为:122πΔt t t 9kB =-=2.如图所示为质谱仪的原理图,A 为粒子加速器,电压为1U ,B 为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B ,左右两板间距离为d ,C 为偏转分离器,内部匀强磁场的磁感应强度为2B ,今有一质量为m ,电量为q 且初速为0的带电粒子经加速器A 加速后,沿图示路径通过速度选择器B ,再进入分离器C 中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析: (1)粒子带何种电荷;(2)粒子经加速器A 加速后所获得的速度v ; (3)速度选择器的电压2U ;(4)粒子在C 区域中做匀速圆周运动的半径R 。
高中物理速度选择器和回旋加速器练习题及答案及解析一、速度选择器和回旋加速器l. 如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两 板间的电势差为U,距离为〃:匀强磁场的磁感应强度为B,方向垂直纸面向里。
一质量为 m. 电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出: 如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为九不计粒子的重力。
求:(1) 匀强电场场强的犬小F :(2) 粒子从A 点射入时的速度人小Vo :(3) 粒子从N 点射出时的动能Ek 。
【答案】(1)电场强度E = M ; (2)岭=二;(3)瓦=犁+上其 d Bd d 2B-d-【解析】【详解】(1) 电场强度£ = ^- a(2) 粒子做匀速直线运动,电场力与洛伦兹力人小相等,方向相反,有:qE = qv.B(3) 粒子从N 点射出,由动能定理得:qE ・h = Ek-如\必2. 如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁 场,电场强度为E=200V/m,方向竖直向下;磁感应强度人小为Bo=O.lT,方向垂直于纸面 向里。
图中右边有一半径R 为0.1m.圆心为O 的圆形区域内也存在匀强磁场,磁感应强度 人小为B=邑,方向垂直于纸面向里。
一正离子沿平行于金属板面,从&点垂直于磁场3的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入 圆形磁场区域,最后从圆形区域边界上的F 点射出己知速度的偏向角不计离子重 3力。
求:(1)离子速度V 的人小;(2) 离子的比荷—;m解得爆=qUh mU 2 ~d~+ 2B 2d 2(3)离子在圆形磁场区域中运动时间仁(结果可含有根号和分式)【答案】(1)2000m/s;(2) 2xlO4C/kg;(3)6【解析】【详解】(1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即:Boqv=qE解得:Ev =——=2000ni/s(2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示由洛仑兹力公式和牛顿第二定律有:V" Bqv = m一由几何关系有:0 R tan —=—2 r离子的比荷为:-^ = 2xlO4C/kgm(3)弧CF对应圆心角为6离子在圆形磁场区域中运动时间匚解得:3. 如图所示,M 、N 为水平放置的两块平行金属板,板间距为L,两板间存在相互垂直的 匀强电场和匀强磁场,电势差为= -U o ,磁感应强度人小为—个带正电的粒子从 两板中点垂直于正交的电、磁场水平射入,沿直线通过金属板,并沿与必垂直的方向由d 点进入如图所示的区域(忽略电磁场的边缘效应).直线边界ab 及ac 在同一竖直平面 内,且沿ab 、ac 向下区域足够大,不计粒子重力,厶= 30。
速度选择器和回旋加速器压轴题知识归纳总结含答案一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。
已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。
一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。
M 、N 两点间的距离为h 。
不计粒子的重力。
求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。
【答案】(1)电场强度U E d =;(2)0U v Bd =;(3)2222k qUh mU E d B d=+【解析】 【详解】 (1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+2.如图所示,有一对平行金属板,两板相距为0.05m 。
电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =33T ,方向垂直于纸面向里。
一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。
已知速度的偏转角60°,不计微粒重力。
求:(1)微粒速度v 的大小;(2)微粒的电量q ;(3)微粒在圆形磁场区域中运动时间t 。
【答案】(1)2000m/s (2)2×10-22C (3423-【解析】 【详解】(1)在正交场中运动时:0U B qv qd= 可解得:v =2000m/s(2)偏转角60°则轨迹对应的圆心角60°,轨迹半径3r R =2v Bqv m r=mv q rB=解得:q =2×10-22C(3)根据2mT Bqπ=则 4601036023t T -==3.某粒子实验装置原理图如图所示,狭缝1S 、2S 、3S 在一条直线上,1S 、2S 之间存在电压为U 的电场,平行金属板1P 、2P 相距为d ,内部有相互垂直的匀强电场和匀强磁场,磁感应强度为1B 。
【物理】物理速度选择器和回旋加速器练习题含答案含解析一、速度选择器和回旋加速器1.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。
在极板的右侧还存在着另一圆形匀强磁场区域,磁场的方向垂直纸面向外,圆形磁场的圆心O 位于平行金属板的中线上,圆形磁场的半径R =0.6m 。
有一带正电的粒子以一定初速度v 0沿极板中线水平向右飞入极板间恰好做匀速直线运动,然后进入圆形匀强磁场区域,飞出后速度方向偏转了74°,不计粒子重力,粒子的比荷q m=3.125×106C/kg ,sin37°=0.6,cos37°=0.8,5≈2.24。
求:(1)粒子初速度v 0的大小;(2)圆形匀强磁场区域的磁感应强度B 2的大小;(3)在其他条件都不变的情况下,将极板间的磁场撤去,为使粒子飞出极板后不能进入圆形磁场,则圆形磁场的圆心O 离极板右边缘的水平距离d 应该满足的条件。
【答案】(1)v 0=5×104m/s ;(2)B 2=0.02T ;(3) 1.144m d ≥。
【解析】【详解】(1)粒子在电场和磁场中匀速运动,洛伦兹力与电场力平衡qv 0B 1=Eq带电粒子初速度v 0=5×104m/s(2)带电粒子进入磁场后做匀速圆周运动,洛伦兹力充当向心力2002v qv B m r= 轨迹如图所示:由几何关系,带电粒子做圆周运动的半径为 40.8mtan 373R r R ===︒联立解得: B 2=0.02T(3)带电粒子在电场中做类平抛运动水平方向0L v t =⋅竖直方向212y at =由牛顿第二定律 qE ma =粒子飞出极板后不能进入圆形磁场即轨迹刚好与圆形磁场相切,如图所示:由几何关系 ,利用三角形相似,有:22()22L y y Rd +=+ 解得1.144m d =,若想带电粒子不能飞入圆形磁场,应满足 1.144m d ≥。
高考物理速度选择器和回旋加速器基础练习题含解析一、速度选择器和回旋加速器1.如图所示,两平行金属板水平放置,间距为d,两极板接在电压可调的电源上。
两板之间存在着方向垂直纸面向里的匀强磁场,磁感应强度的大小为B。
金属板右侧有一边界宽度为d的无限长匀强磁场区域,磁感应强度的大小为B、方向垂直纸面向里,磁场边界与水平方向的夹角为60°。
平行金属板中间有一粒子发射源,可以沿水平方向发射出电性不同的两种带电粒子,改变电源电压,当电源电压为U时,粒子恰好能沿直线飞出平行金属板,粒子离开平行金属板后进入有界磁场后分成两束,经磁场偏转后恰好同时从两边界离开磁场,而且从磁场右边界离开的粒子的运动方向恰好与磁场边界垂直,粒子之间的相互作用不计,粒子的重力不计,试求:(1)带电粒子从发射源发出时的速度;(2)两种粒子的比荷11qm和22qm分别是多少;(3)带正电粒子在磁场中做圆周运动的轨道半径。
【答案】(1)UdB(2)222vd B222Ud B(3)2d【解析】【详解】(1)根据题意,带电粒子在平行金属板间做直线运动时,所受电场力与洛伦兹力大小相等,由平衡条件可得qUd=qvB解得:v=UdB(2)根据题意可知,带正电粒子进入磁场后沿逆时针方向运动,带负电粒子进入磁场后沿顺时针方向运动,作出粒子在磁场中的运动轨迹如图所示,带负电粒子在刚进入磁场时速度沿水平方向,离开磁场时速度方向垂直磁场边界,根据图中几何关系可知,带负电粒子在磁场中做圆周运动的偏转角为θ1=30°=6带负电粒子在磁场中做圆周运动的轨道半径为:r 1=sin 30d︒=2d 带负电粒子在磁场中运动时洛伦兹力提供向心力,有:q 1vB =211m v r联立解得:11q m =222v d B根据带正电粒子的运动轨迹及几何关系可知,带正电粒子在磁场中的偏转角为:θ2=120°=23π根据带电粒子在磁场中做圆周运动的周期公式:T =2mqBπ 可得带负电粒子在磁场中运动的时间为:t 1=111m q Bθ带正电粒子在磁场中运动的时间为:t 2=222m q Bθ根据题意可知:t 1=t 2联立以上各式,可得22q m =114q m =222U d B(3)带正电粒子在磁场中做圆周运动的轨道半径为:r 2=22m vq B解得:r 2=2d2.如图所示的速度选择器水平放置,板长为L ,两板间距离也为L ,下极板带正电,上极板带负电,两板间电场强度大小为E ,两板间分布有匀强磁场,磁感强度方向垂直纸面向外,大小为B , E 与B 方向相互垂直.一带正电的粒子(不计重力)质量为m ,带电量为q ,从两板左侧中点沿图中虚线水平向右射入速度选择器. (1)若该粒子恰能匀速通过图中虚线,求该粒子的速度大小;(2)若撤去磁场,保持电场不变,让该粒子以一未知速度从同一位置水平射入,最后恰能从板 的边缘飞出,求此粒子入射速度的大小;(3)若撤去电场,保持磁场不变,让该粒子以另一未知速度从同一位置水平射入,最后恰能从板的边缘飞出,求此粒子入射速度的大小.【答案】(1)E B ; (2qELm3)54qBL m 或4qBL m【解析】 【分析】 【详解】(1)若该粒子恰能匀速通过图中虚线,电场力向上,洛伦兹力向下,根据平衡条件,有:qv 1B =qE解得:1E v B=(2)若撤去磁场,保持电场不变,粒子在电场中做类平抛运动,则 水平方向有:L =v 2t竖直方向有:21122L at = 由牛顿第二定律有:qE =ma解得:2qELv m=(3)若粒子从板右边缘飞出,则2222L r L r =+-()解得:5 4r L =由233v qv B m r= 得:354 qBLvm=若粒子从板左边缘飞出,则:4Lr=由244vqv B mr=得:44qBLvm=3.如图所示,M、N为水平放置的两块平行金属板,板间距为L,两板间存在相互垂直的匀强电场和匀强磁场,电势差为MN0U U=-,磁感应强度大小为B.一个带正电的粒子从两板中点垂直于正交的电、磁场水平射入,沿直线通过金属板,并沿与ab垂直的方向由d 点进入如图所示的区域(忽略电磁场的边缘效应).直线边界ab及ac在同一竖直平面内,且沿ab、ac向下区域足够大,不计粒子重力,30a∠=︒,求:(1)粒子射入金属板的速度大小;(2)若bac区域仅存在垂直纸面向内的匀强磁场罗要使粒子不从ac边界射出,设最小磁感应强度为B1;若bac区域内仅存在平行纸面且平行ab方向向下的匀强电场,要使粒子不从ac边射出,设最小电场强度为E1.求B1与E1的比值为多少?【答案】(1)v=0UB L(2)1102B LBE U=【解析】【详解】(1)设带电粒子电荷量为q、质量为m、射入金属板速度为v,粒子做直线运动时电场力与洛伦兹力平衡,根据平衡条件有:qvB0= qE0①E0 =0UL②解得:v=0UB L③(2)仅存在匀强磁场时,若带电粒子刚好不从ac边射出,则其轨迹圆与ac边相切,则11sin 30ad R s R =+︒④ qvB 1 =2v m R⑤得:B 1=3admvqS ⑥ 仅存在匀强电场时,若粒子不从ac 边射出,则粒子到达边界线ac 且末速度也是与ac 边相切,即: x =vt ⑦ y =12at 2⑧ qE 1=ma ⑨tan30º=ad xS y + ⑩y v at = ⑾tan30º =yvv ⑿得:E 1=232admv qS ⒀ 所以:01102B L B E U = ⒁4.1897年,汤姆孙根据阴极射线在电场和磁场中的偏转情况断定,它的本质是带负电的粒子流并求出了这种粒子的比荷,图为汤姆孙测电子比荷的装置示意图。
高考物理速度选择器和回旋加速器专项训练及答案含解析一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.质谱仪最初由汤姆孙的学生阿斯顿设计的,他用质谱仪发现了氖20和氖22,证实了同位素的存在.现在质谱仪已经是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.如右图所示是一简化了的质谱仪原理图.边长为L 的正方形区域abcd 内有相互正交的匀强电场和匀强磁场,电场强度大小为E ,方向竖直向下,磁感应强度大小为B ,方向垂直纸面向里.有一束带电粒子从ad 边的中点O 以某一速度沿水平方向向右射入,恰好沿直线运动从bc 边的中点e 射出(不计粒子间的相互作用力及粒子的重力),撤去磁场后带电粒子束以相同的速度重做实验,发现带电粒子从b 点射出,问: (1)带电粒子带何种电性的电荷?(2)带电粒子的比荷(即电荷量的数值和质量的比值qm)多大? (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从哪一位置离开磁场,在磁场中运动的时间多少?【答案】(1)负电(2)2q E mB L =(3)从dc 边距离d 3L 处射出磁场;3BL Eπ【解析】 【详解】(1)正电荷所受电场力与电场强度方向相同,负电荷所受电场力与电场强度方向相反,粒子向上偏转,可知粒子带负电; (2)根据平衡条件:qE =qv 0B得:0Ev B=撤去磁场后,粒子做类平抛运动,则有:x =v 0t =L2 212qE Ly t m == 得:2 q E m B L=(3)撤去电场后带电粒子束在磁场中做匀速圆周运动,则:200v qv B m r= 得:mv r L qB== 粒子从dc 边射出磁场,设粒子射出磁场距离d 点的距离为x ,根据几何关系:2222L x r r +-=()r=L得:2x L =所以13θπ=23BL t T Eθππ== 答:(1)带电粒子带负电; (2)带电粒子的比荷2qEm B L=; (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从dc 边距离d 点2x L =处离开磁场,在磁场中运动的时间3BL t E =π.3.如图所示为质谱仪的原理图,A 为粒子加速器,电压为1U ,B 为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B ,左右两板间距离为d ,C 为偏转分离器,内部匀强磁场的磁感应强度为2B ,今有一质量为m ,电量为q 且初速为0的带电粒子经加速器A 加速后,沿图示路径通过速度选择器B ,再进入分离器C 中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析: (1)粒子带何种电荷;(2)粒子经加速器A 加速后所获得的速度v ; (3)速度选择器的电压2U ;(4)粒子在C 区域中做匀速圆周运动的半径R 。
高中物理速度选择器和回旋加速器专项训练及答案及解析一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
高中物理速度选择器和回旋加速器试题(有答案和解析)一、速度选择器和回旋加速器1.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =33T ,方向垂直于纸面向里。
一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π3,不计离子重力。
求:(1)离子速度v 的大小; (2)离子的比荷q m; (3)离子在圆形磁场区域中运动时间t 。
(结果可含有根号和分式)【答案】(1)2000m/s ;(2)2×104C/kg ;(3)4310s 6π-⨯ 【解析】 【详解】(1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即:B 0qv =qE解得:2000m/s Ev B == (2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示由洛仑兹力公式和牛顿第二定律有:2v Bqv m r=由几何关系有:2R tanrθ=离子的比荷为:4 210C/kg qm=⨯ (3)弧CF 对应圆心角为θ,离子在圆形磁场区域中运动时间t ,2t T θπ=2mT qBπ=解得:43106t s π-=2.如图所示,有一对平行金属板,两板相距为0.05m 。
电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =33T ,方向垂直于纸面向里。
一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。
【物理】物理速度选择器和回旋加速器题20套(带答案)一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.有一个正方体形的匀强磁场和匀强电场区域,它的截面为边长L =0.20m 的正方形,其电场强度为54.010E =⨯V/m ,磁感应强度22.010B -=⨯T ,磁场方向水平且垂直纸面向里,当一束质荷比为104.010mq-=⨯kg/C 的正离子流(其重力不计)以一定的速度从电磁场的正方体区域的左侧边界中点射入,如图所示。
高考物理速度选择器和回旋加速器专项训练及答案含解析一、速度选择器和回旋加速器1.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =33T ,方向垂直于纸面向里。
一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π3,不计离子重力。
求:(1)离子速度v 的大小; (2)离子的比荷q m; (3)离子在圆形磁场区域中运动时间t 。
(结果可含有根号和分式)【答案】(1)2000m/s ;(2)2×104C/kg ;(3)4310s 6π-⨯ 【解析】 【详解】(1)离子在平行金属板之间做匀速直线运动,洛仑兹力与电场力相等,即:B 0qv =qE解得:2000m/s Ev B == (2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示由洛仑兹力公式和牛顿第二定律有:2v Bqv m r=由几何关系有:2R tanrθ=离子的比荷为:4 210C/kg qm=⨯ (3)弧CF 对应圆心角为θ,离子在圆形磁场区域中运动时间t ,2t T θπ=2mT qBπ=解得:43106t s π-=2.如图所示,两平行金属板水平放置,间距为d ,两极板接在电压可调的电源上。
两板之间存在着方向垂直纸面向里的匀强磁场,磁感应强度的大小为B 。
金属板右侧有一边界宽度为d 的无限长匀强磁场区域,磁感应强度的大小为B 、方向垂直纸面向里,磁场边界与水平方向的夹角为60°。
平行金属板中间有一粒子发射源,可以沿水平方向发射出电性不同的两种带电粒子,改变电源电压,当电源电压为U 时,粒子恰好能沿直线飞出平行金属板,粒子离开平行金属板后进入有界磁场后分成两束,经磁场偏转后恰好同时从两边界离开磁场,而且从磁场右边界离开的粒子的运动方向恰好与磁场边界垂直,粒子之间的相互作用不计,粒子的重力不计,试求: (1)带电粒子从发射源发出时的速度; (2)两种粒子的比荷11q m 和22qm分别是多少; (3)带正电粒子在磁场中做圆周运动的轨道半径。
【物理】物理速度选择器和回旋加速器练习题及答案及解析一、速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。
照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。
现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。
(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。
【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121m v B qvR =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.如图所示,有一对水平放置的平行金属板,两板之间有相互垂直的匀强电场和匀强磁场,电场强度为E =200V/m ,方向竖直向下;磁感应强度大小为B 0=0.1T ,方向垂直于纸面向里。
图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =33T ,方向垂直于纸面向里。
一正离子沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出已知速度的偏向角θ=π3,不计离子重力。
高考物理速度选择器和回旋加速器练习题及解析一、速度选择器和回旋加速器1.质谱仪最初由汤姆孙的学生阿斯顿设计的,他用质谱仪发现了氖20和氖22,证实了同位素的存在.现在质谱仪已经是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具.如右图所示是一简化了的质谱仪原理图.边长为L 的正方形区域abcd 内有相互正交的匀强电场和匀强磁场,电场强度大小为E ,方向竖直向下,磁感应强度大小为B ,方向垂直纸面向里.有一束带电粒子从ad 边的中点O 以某一速度沿水平方向向右射入,恰好沿直线运动从bc 边的中点e 射出(不计粒子间的相互作用力及粒子的重力),撤去磁场后带电粒子束以相同的速度重做实验,发现带电粒子从b 点射出,问: (1)带电粒子带何种电性的电荷?(2)带电粒子的比荷(即电荷量的数值和质量的比值qm)多大? (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从哪一位置离开磁场,在磁场中运动的时间多少?【答案】(1)负电(2)2q E m B L =(3)从dc 边距离d 点距离为32L 处射出磁场;3BL Eπ【解析】 【详解】(1)正电荷所受电场力与电场强度方向相同,负电荷所受电场力与电场强度方向相反,粒子向上偏转,可知粒子带负电; (2)根据平衡条件:qE =qv 0B得:0Ev B=撤去磁场后,粒子做类平抛运动,则有:x =v 0t =L2 212qE Ly t m ==得:2 q E m B L= (3)撤去电场后带电粒子束在磁场中做匀速圆周运动,则:200v qv B m r= 得:mv r L qB== 粒子从dc 边射出磁场,设粒子射出磁场距离d 点的距离为x ,根据几何关系:2222L x r r +-=()r=L得:3x L =所以13θπ=23BL t T Eθππ== 答:(1)带电粒子带负电; (2)带电粒子的比荷2qEm B L=; (3)撤去电场后带电粒子束以相同的速度重做实验,则带电粒子将从dc 边距离d 点3x L =处离开磁场,在磁场中运动的时间3BL t E =π.2.如图所示,半径为R 的圆与正方形abcd 相内切,在ab 、dc 边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m 、带电荷量为+q 的粒子从ad 边中点O 1沿O 1O 方向以速度v 0射入,恰沿直线通过圆形磁场区域,并从bc 边中点O 2飞出.若撤去磁场而保留电场,粒子仍从O 1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.(1)求两极板间电压U 的大小(2)若撤去电场而保留磁场,粒子从O 1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围.【答案】(1)20mv q (2)00212122v v v -+≤≤ 【解析】试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度.(1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有:212R at =,02R v t =,2qUa Rm =解得:2mv U q=(2)由于粒子开始时在电磁场中沿直线通过,则有:02U qv B q R= 撤去电场保留磁场粒子将向上偏转,若打到a 点,如图甲图:由几何关系有:2r r R +=由洛伦兹力提供向心力有:211v qv B m r=解得:1021v v -=若打到b 点,如图乙所示:由几何关系有:2r R R '-=由洛伦兹力提供向心力有:222v qv B m r ='解得:2021v v += 故010212122v v v v -+≤≤=3.如图所示的装置,左半部为速度选择器,右半部为匀强的偏转磁场.一束同位素离子(质量为m ,电荷量为+q )流从狭缝S 1射入速度选择器,速度大小为v 0的离子能够沿直线通过速度选择器并从狭缝S 2射出,立即沿水平方向进入偏转磁场,最后打在照相底片D 上的A 点处.已知A 点与狭缝S 2的水平间距为3L ,照相底片D 与狭缝S 1、S 2的连线平行且距离为L ,忽略重力的影响.则(1)设速度选择器内部存在的匀强电场场强大小为E 0,匀强磁场磁感应强度大小为B 0,求E 0∶B 0;(2)求偏转磁场的磁感应强度B 的大小和方向;(3)若将右半部的偏转磁场换成方向竖直向下的匀强电场,要求同位素离子仍然打到A 点处,求离子分别在磁场中和在电场中从狭缝S 2运动到A 点处所用时间之比t 1∶t 2.【答案】(1)v 0(2)02mv B qL =,磁场方向垂直纸面向外(3)1239=∶t t π【解析】 【详解】(1)能从速度选择器射出的离子满足qE 0=qv 0B 0所以E 0∶B 0=v 0(2)离子进入匀强偏转磁场后做匀速圆周运动,由几何关系得:222()(3)R R L L =-+则2R L =由200v Bqv m R=则2mv B qL=磁场方向垂直纸面向外 (3)磁场中,离子运动周期2RT v π=运动时间101263L t T v π==电场中,离子运动时间203=Lt 则磁场中和在电场中时间之比12239=∶t t π4.如图所示,一束质量为m 、电荷量为q 的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v 0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B ,方向均垂直纸面向内,两平行板间距为d ,不计空气阻力及粒子重力的影响,求:(1)两平行板间的电势差U ;(2)粒子在圆形磁场区域中运动的时间t ; (3)圆形磁场区域的半径R .【答案】(1)U=Bv 0d ;(2)m qBθ;(3)R=0tan2mv qBθ【解析】 【分析】(1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差.(2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间. (3))由几何关系求半径R . 【详解】(1)由粒子在平行板间做直线运动可知,Bv 0q=qE ,平行板间的电场强度E=Ud,解得两平行板间的电势差:U=Bv0d(2)在圆形磁场区域中,由洛伦兹力提供向心力可知:Bv 0q=m 20v r同时有T=2rvπ 粒子在圆形磁场区域中运动的时间t=2θπT 解得t=mBqθ(3)由几何关系可知:r tan2θ=R解得圆形磁场区域的半径R=0tan 2mv qBθ5.如图所示为一速度选择器,也称为滤速器的原理图.K 为电子枪,由枪中沿KA 方向射出的电子,速度大小不一.当电子通过方向互相垂直的均匀电场和磁场后,只有一定速率的电子能沿直线前进,并通过小孔S .设产生匀强电场的平行板间的电压为300 V ,间距为5 cm ,垂直纸面的匀强磁场的磁感应强度为0.06 T ,问:(1)磁场的方向应该垂直纸面向里还是垂直纸面向外? (2)速度为多大的电子才能通过小孔S?【答案】(1)磁场方向垂直纸面向里(2)1×105m/s 【解析】【分析】 【详解】(1)由题图可知,平行板产生的电场强度E 方向向下.带负电的电子受到的静电力F E =eE ,方向向上.若没有磁场,电子束将向上偏转,为了使电子能够穿过小孔S ,所加的磁场施于电子束的洛伦兹力必须是向下的,根据左手定则分析得出,B 的方向垂直于纸面向里.(2)能够通过小孔的电子,其速率满足evB =eE 解得:v =E B 又因为E =U d所以v =UBd=1×105m/s 即只有速率为1×105m/s 的电子才可以通过小孔S6.如图所示,M 、N 为水平放置的两块平行金属板,板间距为L ,两板间存在相互垂直的匀强电场和匀强磁场,电势差为MN 0U U =-,磁感应强度大小为0B .一个带正电的粒子从两板中点垂直于正交的电、磁场水平射入,沿直线通过金属板,并沿与ab 垂直的方向由d 点进入如图所示的区域(忽略电磁场的边缘效应).直线边界ab 及ac 在同一竖直平面内,且沿ab 、ac 向下区域足够大,不计粒子重力,30a ∠=︒,求:(1)粒子射入金属板的速度大小;(2)若bac 区域仅存在垂直纸面向内的匀强磁场罗要使粒子不从ac 边界射出,设最小磁感应强度为B 1;若bac 区域内仅存在平行纸面且平行ab 方向向下的匀强电场,要使粒子不从ac 边射出,设最小电场强度为E 1.求B 1与E 1的比值为多少?【答案】(1)v =00UB L(2)01102B LB E U = 【解析】 【详解】(1)设带电粒子电荷量为q 、质量为m 、射入金属板速度为v ,粒子做直线运动时电场力与洛伦兹力平衡,根据平衡条件有:qvB 0= qE 0 ① E 0 =U L② 解得:v =0U B L③ (2)仅存在匀强磁场时,若带电粒子刚好不从ac 边射出,则其轨迹圆与ac 边相切,则11sin 30ad R s R =+︒④ qvB 1 =2v m R⑤得:B 1=3admvqS ⑥ 仅存在匀强电场时,若粒子不从ac 边射出,则粒子到达边界线ac 且末速度也是与ac 边相切,即: x =vt ⑦ y =12at 2⑧ qE 1=ma ⑨ tan30º=ad xS y+ ⑩ y v at = ⑾tan30º =yvv ⑿ 得:E 1=232admv qS ⒀所以:01102B L B E U = ⒁7.如图,在整个直角坐标系xoy 区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在x>0区域还存在方向垂直于xoy 平面向内的匀强磁场。
物理速度选择器和回旋加速器题20套(带答案)及解析一、速度选择器和回旋加速器1.边长L =0.20m的正方形区域内存在匀强磁场和匀强电场,其电场强度为E =1×104V/m ,磁感强度B =0.05T ,磁场方向垂直纸面向里,当一束质荷比为mq=5×10-8kg/C的正离子流,以一定的速度从电磁场的正方形区域的边界中点射入,离子流穿过电磁场区域而不发生偏转,如右图所示,不计正离子的重力,求: (1)电场强度的方向和离子流的速度大小(2)在离电磁场区域右边界D=0.4m 处有与边界平行的平直荧光屏.若撤去电场,离子流击中屏上a 点;若撤去磁场,离子流击中屏上b 点,则ab 间的距离是多少?.【答案】(1)竖直向下;52s 10m /⨯(2)1.34m 【解析】 【详解】(1)正离子经过正交场时竖直方向平衡,因洛伦兹力向上,可知电场力向下,则电场方向竖直向下; 由受力平衡得qE qvB =离子流的速度5210m /s Ev B==⨯ (2)撤去电场,离子在磁场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m r=故0.2m mvr qB== 离子离开磁场后做匀速直线运动,作出离子的运动轨迹如图一所示图一由几何关系可得,圆心角60θ=︒1sin (0.60.13)m x L D R θ=+-=- 11tan (0.630.3)m=0.74m y x θ==-若撤去磁场,离子在电场中做类平抛运动,离开电场后做匀速直线运动,运动轨迹如图二所示图二通过电场的时间6110Lt s v-==⨯ 加速度11210m /s qEa m==⨯ 在电场中的偏移量210.1m 2y at ==粒子恰好从电场右下角穿出电场,则tan 1y xvv α==由几何关系得20.4m y =a 和b 的距离()120.63-0.30.40.2m ab y y y L =++=++=1.34m2.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。
速度选择器和回旋加速器习题知识归纳总结及答案解析一、高中物理解题方法:速度选择器和回旋加速器1.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。
在极板的右侧还存在着另一圆形匀强磁场区域,磁场的方向垂直纸面向外,圆形磁场的圆心O 位于平行金属板的中线上,圆形磁场的半径R =0.6m 。
有一带正电的粒子以一定初速度v 0沿极板中线水平向右飞入极板间恰好做匀速直线运动,然后进入圆形匀强磁场区域,飞出后速度方向偏转了74°,不计粒子重力,粒子的比荷q m=3.125×106C/kg ,sin37°=0.6,cos37°=0.8,5≈2.24。
求:(1)粒子初速度v 0的大小;(2)圆形匀强磁场区域的磁感应强度B 2的大小;(3)在其他条件都不变的情况下,将极板间的磁场撤去,为使粒子飞出极板后不能进入圆形磁场,则圆形磁场的圆心O 离极板右边缘的水平距离d 应该满足的条件。
【答案】(1)v 0=5×104m/s ;(2)B 2=0.02T ;(3) 1.144m d ≥。
【解析】【详解】(1)粒子在电场和磁场中匀速运动,洛伦兹力与电场力平衡qv 0B 1=Eq带电粒子初速度v 0=5×104m/s(2)带电粒子进入磁场后做匀速圆周运动,洛伦兹力充当向心力2002v qv B m r= 轨迹如图所示:由几何关系,带电粒子做圆周运动的半径为 40.8m tan 373R r R ===︒联立解得: B 2=0.02T(3)带电粒子在电场中做类平抛运动水平方向0L v t =⋅竖直方向212y at =由牛顿第二定律 qE ma =粒子飞出极板后不能进入圆形磁场即轨迹刚好与圆形磁场相切,如图所示:由几何关系 ,利用三角形相似,有:22()22L y y Rd +=+ 解得1.144m d =,若想带电粒子不能飞入圆形磁场,应满足 1.144m d ≥。
(物理)物理速度选择器和回旋加速器题20套(带答案)及解析一、速度选择器和回旋加速器1.图中左边有一对水平放置的平行金属板,两板相距为d ,电压为U 0,两板之间有垂直于纸面向里的匀强磁场,磁感应强度大小为B 0.图中右边有一半径为R 的圆形匀强磁场区域,磁感应强度大小为B 1,方向垂直于纸面朝外.一束离子垂直磁场沿如图路径穿出,并沿直径MN 方向射入磁场区域,最后从圆形区域边界上的P 点射出,已知图中θ=60o ,不计重力,求(1)离子到达M 点时速度的大小; (2)离子的电性及比荷q m. 【答案】(1)00U dB (2)00133U dB B R【解析】(1)离子在平行金属板之间做匀速直线运动,由平衡条件得:qvB 0=qE 0 已知电场强度:00U E d= 联立解得:0U v dB =(2)根据左手定则,离子束带负电离子在圆形磁场区域做匀速圆周运动,轨迹如图所示:由牛顿第二定律得:21mv qvB r= 由几何关系得:3r R =0133Uqm dB B R=点睛:在复合场中做匀速直线运动,这是速度选择器的原理,由平衡条件就能得到进入复合场的速度.在圆形磁场区域内根据偏转角求出离子做匀速圆周运动的半径,从而求出离子的比荷,要注意的是离开磁场时是背向磁场区域圆心的.2.PQ和 MN分别是完全正对的金属板,接入电动势为E的电源,如图所示,板间电场可看作匀强电场,MN之间距离为d,其间存在着磁感应强度为B,方向垂直纸面向里的匀强磁场。
紧挨着P板有一能产生正电荷的粒子源S,Q 板中间有孔J,SJK在一条直线上且与MN 平行。
产生的粒子初速度不计,粒子重力不计,发现粒子能沿着SJK 路径从孔 K射出,求粒子的比荷qm。
【答案】222EB d【解析】【分析】粒子在PQ板间是匀加速直线运动,根据动能定理列式;进入MN板间是匀速直线运动,电场力和洛伦兹力平衡,根据平衡条件列式;最后联立求解即可.【详解】PQ板间加速粒子,穿过J孔是速度为v根据动能定理,有:212qE mv=沿着SJK路径从K孔穿出,粒子受电场力和洛伦兹力平衡:qEqvBd=解得:222q Em B d=【点睛】本题关键是明确粒子的受力情况和运动情况,根据动能定理和平衡条件列式.3.某粒子实验装置原理图如图所示,狭缝1S、2S、3S在一条直线上,1S、2S之间存在电压为U的电场,平行金属板1P、2P相距为d,内部有相互垂直的匀强电场和匀强磁场,磁感应强度为1B。
小型医用回旋加速器培训考试题及答案
(一)简述等时性回旋加速器的基本工作原理,并说明与相对论效应的关系?
答:①回旋加速器由离子源产生的带电粒子在两D盒缝隙中被电场加速进入D盒内,在罗仑兹
力作用下做圆周运动,离子来到D盒缝隙时,高频电场的方向正好使离子再次加速,随后进入
另一边的D盒内作圆周运动,如此周而复始的来到D盒缝隙,实现多次加速,离子圆周运动半
径r 随速度v 增加,能量不断增加,最后达到引出半径r时,获得最大能量,被引出打到靶上。
保证粒子每次通过D盒缝隙均被加速的条件是:高频电场的频率f D 为带电粒子的回旋频率f
C
的整倍数h,f D = h f C h 称为谐波数。
②相对论效应使fC随m 增加而减小,逐渐f D = h f C 不再满足,粒子的速度达到极限。突破相
对论效应限制:使f C 不随m 增加而减小,可设计磁场的分布使其强度B 随粒子轨道半径r的
增加而增加,并刚好抵消m 的增加,从而使f C 保持恒定。最后实现等时性加速。
(二)写出计算粒子加速器的最高能量计算公式,说明公式内符号的代表意义及单位。用公式计算能量18MeV
回旋加速器,质子引出的半径是多少?
答:能量计算公式:W = 48(BR)²Z²/A , B-引出半径处的平均磁感应强度(Tesla)
R—引出轨道半径(m),Z—离子的电荷数,A—离子的原子量数
例如:W=18MeV, 对质子Z=1,A=1,在引出半径处B=1.3T带入上式
(BR)²= 18/48=0.375,BR= √0.375 =613,R=0.613m/1.3 =471mm≈480mm
(三)画出14MeV小回旋加速器高频D电路等效电路图(电容耦合),并说明等效电路图中符号的意义
答: 14MeV回旋加速器是外部离子源,两个D形盒在中心连接在一起,D电路等效电路图如下,CK1,CK2 分
别为D电路耦合电容,C1,C2 为D盒对地等效电容,L1,L2 为地电路的等效电感。R1,
R2为回路等效电阻。
Ck1 CK2
左D输入右D输入
C1 R1L1 L2 R2 C2
(四)等时性回旋加速器高频D电路的频率如何决定?举例说明。
答:回旋加速器高频D电路的频率由粒子加速器的回旋频率决定,
回旋加速器的高频频率必须等于粒子加速器的回旋频率的整数倍。
粒子的回旋频率fc= ω/2π= Z e B/2πmc , 简化后得 fc =15.2•Z/A•B
如果B=1.3特斯拉,Z/A =1 ,fc = 15.2•1.3 = 19.76≈20MHz (基波)
如果是2倍频加速fc=20X2=40MHz。
(五)说出高频放大器输出功率最大时,末级输出阻抗与D电路同轴线阻抗最佳
匹配条件,不匹配将产生何影响?
答:同轴线的特性阻抗应当和末极放大器输出阻抗匹配,必须是D电路和同轴线谐振在高频
频率时阻抗为纯电阻,同轴线特性阻抗为50欧姆,放大器末级输出阻抗也应当接近50欧
姆。当不匹配时,高频放大器反射功率增大,谐振腔失谐,D电路损耗增大。
(六)简述负氢离子源的基本工作原理?
答:离子源的热灯丝发射的电子在弧电压加速下与H2分子(或H原子)碰撞,使分子处于激发
态(H2*),(H2 + e H2*)H2*与电子作用产生H-和H。(H2* + e H- + H)这种反应的几
率较小,产生的负氢离子流较小。
离子源放电室真空度不高,H-与气体碰撞很易丢失电子,难以获取高强度H-离子束。等离
子体建立在两个相对的阴极和对阴极之间,在磁场中将保持等离子体浓聚。
在电场中,电子和H-离子获得的动能相等:meve2=mHvH2 v e/ v H = ( m H /me )1/2 = 44,在
引出区电子流约是H-离子流的44倍。因此,H-离子源的引出系统,应有抑制或消除电子的
功能。才能使负氢离子束流从离子源内引出,在加速器内不断加速获得能量。
(七)简述回旋加速器的基本组成,并说明其主要功能?
答:回旋加速器的基本组成及主要功能如下:
①磁场系统:为加速粒子提供向心力—罗伦兹力;
②高频系统:为加速粒子提供加速电场;
③离子源系统:提供要加速的带电离子束;
④引出系统:加速粒子束引出打到靶上;
⑤靶系统:为生产同位素进行特定核反应的场所;
⑥真空系统:避免束流丢失和高压电场绝缘;
⑦冷却系统:为加速器高热部件降温;
⑧控制系统:控制和监控各个系统,并发出各种指令,使加速器协调正常
运行,以完成用户的相应任务。
(八)生产放射性示踪剂药物FDG(氟代脱氧葡萄糖)的靶材料是什麽?加速器
应具备哪些条件?
答:生产放射性示踪剂药物FDG的靶材料是H218O水。
加速器具备的条件:
1) 能量:加速器分固定的能量或可变能量。
2)可选择的核反应。
3)束流的强度、束流强度越高,产额越高。但不能进入产额饱区。
4)轰击时间。轰击时间一般在核素的1~2个半衰期内完成,轰击时间太长,由于衰变,
产额增加不明显。
5)靶的构造以及靶材料的化学形式。
6)制药室与回旋加速器厅相邻,地沟加铅块屏蔽。,以利于放射性核素快速传递,房间
敷设去污地板,地板下的地沟敷设传输放射性核素尼龙管道去热室内的化学合成箱。
7)热室一个,热室和玻璃门用铅制造,厚65mm,热室外10cm距离处,剂量符合国家标准,
(1-10μSv)。热室有排风设备,电源、操作工具等。
(九)简述小型回旋加速器的自屏蔽系统要求是什麽?
答:自屏蔽装置,通常有两个屏蔽层。
•内屏蔽层(30cm)
由含有环氧树脂和碳硼化合物的高密度铅构成,
能使高能中子的能量降低至热中子水平
吸收放射性核素产生的γ射线
•外屏蔽层(70cm)
含有聚乙烯和碳硼化合物的水泥块,聚乙烯30%,含碳硼化合物水泥70%
通过热中子的弹性碰撞,继续减缓中子的运动,最终吸收
将产生的次级γ射线的辐射减至最小。
加速器大厅墙壁厚0.8-1.0米
左右。
(十)简述PET(正电子放射断层扫描仪)基本工作原理及其主要应用?
答:PET 的基本工作原理是:在临床应用中,用非常少量的放射性标记化合物(称为发射正电子的放射
性药物或放射性示踪剂),用静脉注射注入到人体内,其后进行适当时间的吸收,药
物浓聚在诊断部位,在放射核衰变期间放射出正电子,经过短距离的传输(约3--5mm)
后,与人体内周围的电子相遇,两个正负电子结合产生“湮灭”反应,同时放出飞
行方向相反的一对光子,光子能量为511Kev, 将这种特别的光子,在扫描仪相反方向
的两个符合探测器之间12微秒内进行符合接收,光电信号转换放大,送入计算机,
采用专用的软件程序,将电信号重建为图像信号,在扫描仪显示器上显示出病灶大
小、形状、位置及内部结构。这种图像可形成病灶的三维立体图形切片显像,完成
病灶不同部位深度的检查诊断。
PET的临床主要应用,在心脏病学、神经病学和肿瘤领域进行疾病诊断和研究。PET中心一般地可正常的生产
近十种放射性示踪剂
和放射性药物,各种相关的临床参数可以确定,包括葡萄糖代谢缺
氧,血流和神经受体图谱等。对心脏病人存活心机的检查,定量地和定性地评估,
局部的冠状血流和新陈代谢以及今后心肌的存活力。
对肿瘤的研究和诊断,检查和测定肿瘤组织的恶变程度;研究组织的分化程度等;对神经病学中,癫
痫病病人的评估,PET在临床癫痫病中,对诊断和治疗癫痫病人是有重要意义的。
供稿人; 张兴治 2016/3/16