攻击型巡飞弹引信安全系统设计说明书
- 格式:doc
- 大小:1.59 MB
- 文档页数:41
填空题:1.引信的定义:引信是利用环境信息(如发射条件),目标信息(如散射特点)或按照事先设定的条件(如时间,指令等),在保证弹药平时和发射时安全的前提下,对弹药实施起爆控制,点火控制及姿态控制的装置。
2. 现代引信的主要功能有:(1)安全控制:保证引信在预定起爆时间之前不起作用,保证弹药在储存、运输、处理和发射中安全;(2)起爆控制:在相对目标最有利位置或时机完全地引爆或引燃战斗部装药;(3)命中点控制:修正无控弹药的飞行弹道或水下弹道,提高对目标的命中概率和毁伤概率;(4)发动机点火控制:控制带有两级发动机导弹的第二级发动机的点火,或控制火箭上浮水雷发动机点火。
3. 引信的组成:发火控制系统、安全系统、能源装置、爆炸序列。
4.引信的作用过程:引信的作用过程是指引信从发射开始到引爆战斗部主装药的全过程。
保险(目标信息或预定信息)、解除保险过程、发火控制过程、引爆过程。
5.引信获取目标方式:触感方式、近感方式、接受指令方式。
6.对引信的基本要求有:安全性、可靠性、使用性、引战配合性、环境适应性、抗干扰性、标准化经济性、长期储存稳定性。
7.引信设计一般程序包括:引信总体论证、引信方案设计、引信工程研制、引信设计定型、引信生产定型。
8.引信安全性设计的一般要求:勤务处理安全性、装填安全性、发射安全性(膛内安全性,炮口安全性)。
计算题:1.有一离心保险机构,其离心销质量m=0.32g,起始偏心距r0=8mm,今用于K1=1000,K2=5000cm-1炮系统,求该离心销所受的最大后坐力和最大离心力。
解:因为m=0.32g r0=8mm K1=8000 K2=5000cm-1∴该离心销所受的最大后坐力为:FSM=K1mg=8000*0.32*10-3*9.8=25.088N最大离心力为Fcm=K2mgr0=5000*0.35*10-3*9.8*0.8=12.544N2. 有一膛内针刺发火机构,已知弹簧预压变形量λ0=3.79mm~4.81mm,截击行程l1=2.491mm,截击抗力FR1=22N~25N,惯性体换算质量m1=1.25g取β=0.5,试求安全落高H?解:惯性体系统的储能表达式Ek=0.5*(m+mu/3)v02(1+β)2 v0=(2gH)0.5∴Ek=(m+mu/3)gH(1+β)2弹簧被压缩后表达式:En=(Fro+Fr1)l/2∴m2gH(1+β)2≤0.5(Fro+Fr1)l若取H≤(Fro+Fr1)l/2m1g(1+β)2则H≤Fr1l(l+2λ0)/2(l+λ0)m1g(1+β)2 =FR1l/2m1g(1+β)2×(l+2λ0)/(l+λ0)对于(l+2λ0)/(l+λ0)=2.491+2×3.79/(2.491+3.79)=10.071/6.281=1.603当λ0=4.81mm (l+2λ0)/(l+λ0)=1+λ0/(l+λ0)=1+4.81/(2.491+4.81)=1+4.81/7.301=1.66 H≤[Fr1l/2m1g(1+β)2×(l+2λ0)/2(l+λ0)]min=(22×2.491)×1.63/(2×1.25g×10-3×10×(1+0.5)2)=1562mm=1.562m3. 有一双行程保险机构,一直惯性筒质量m1=1.27g,上钢球质量m2=0.1g,解除保险行程l1=8mm,弹簧预压型变量λ0=4mm,上钢球脱落时弹簧抗力FR1=12.33N,令用于85mm榴弹上。
巡飞弹姿态约束条件下引战配合系统分析
李炜;王正杰;范宁军
【期刊名称】《宇航学报》
【年(卷),期】2008(029)001
【摘要】多模EFP弹药是各国正在努力发展的新型弹药,这种弹药的最大特点就是战斗部毁伤元素具有射束性,这就对引信系统的设计提出了新的要求.巡飞弹作为多模EFP战斗部应用的典型系统,其动态特性将会直接影响引战配合效率和引信的启动规律.为了能够更好地分析和解决巡飞弹姿态约束对于引战配合影响的问题,首先简要分析了巡飞弹的动态特性,引入目标命中函数的概念来分析巡飞弹姿态对于弹着点的影响.目标命中函数可以直观地表明姿态角对于EFP弹丸弹着点的影响.在评估目标毁伤概率的时候,需要考虑姿态角因素.
【总页数】4页(P188-191)
【作者】李炜;王正杰;范宁军
【作者单位】北京理工大学宇航科学技术学院,北京,100081;北京理工大学宇航科学技术学院,北京,100081;北京理工大学宇航科学技术学院,北京,100081
【正文语种】中文
【中图分类】TJ430
【相关文献】
1.巡飞弹空中自适应快速初始姿态估计 [J], 李增彦;李小民;刘秋生;周兆英
2.巡飞弹的气动特性分析与弹道姿态仿真 [J], 陶迎迎;张华;郝永平;乔磊;袁备;郭亚
超;李曙光
3.小型巡飞弹引战配合分析 [J], 柏席峰;范宁军;王正杰
4.近程巡飞弹姿态控制优化仿真研究 [J], 黄瑞;陈建辉;高敏;陶贵明
5.基于命中点的巡飞弹引战配合设计 [J], 刘松;范宁军;杨喆
因版权原因,仅展示原文概要,查看原文内容请购买。
机电引信安全执行机构设计摘要:介绍了机电引信安全系统设计的工作原理,分析了隔离机构受力及运动情况,论述了安全系统谐振设计的原理,给出了安全系统性能的主要参数.采用这种设计在导弹的实际使用中,取得了预期的效果。
XX关键词:机电; 引信安全; 设计XX引言导弹引信安全系统的主要作用是为导弹(战斗部) 的保险、解除保险和向战斗部输出引爆能量,它是导弹安全系统和引爆系统中的重要环节.目前国内比较流行的安全系统均为全机械错位式惯性隔离机构,国内大部分型号中使用的安全系统均属于这一类.虽然这类产品工艺比较成熟,但在满足新型号导弹使用要求时,其适应性受到很大的限制,如:钟延时机构和火药延时无法满足新型号导弹灵活多样的特性,在体积、质量和精度上更是无法满足要求.所以,采用机电安全系统的设计,以满足新型导弹武器系统的要求。
XX 机电安全系统设计机电安全系统的工作原理:()利用导弹发射时的过载,使电路工作,同时也使系统处于工作状态;(2)当导弹二级发动机工作时,第一级机械保险解除,并在电路作用下解除第二道保险(远距离解除保险),系统隔离机构开始转换;(3)当光电检测单元检测到正常信号,则第三道保险解除并使系统处于待爆状态;(4)若光电检测单元检测到不正常信号,则电路产生信号使机构反向转换,传爆序列处于隔离状态,系统仍处于保险状态。
在新型导弹安全系统设计时,设计师们继承了传统设计理论,并采用一些。
该机构采用机、电、光设计,使保险零件、保险器、被保险零件均在隔离机构上实现.由于该隔离机构件集环境能源检测、非环境能源检测、保险机构、隔离、光电检测单元、传爆序列等功能于一身,因此该组件在结构和功能上十分复杂,结构精度要求也相当高。
但随着加工技术和能力的不断提高,对批量生产这样一个复杂结构体,已不存在任何困难。
.保险机构在安全执行机构设计中,要求不得少于两道相互的保险.为了既满足设计要求,又不增加体积和质量,所以设计了三道完全不同功能的保险,且不降低产品的可靠性.XXa。
Ξ中美子弹引信设计思想分析与对比赵玉清(红宇机械厂,河南南召 474675)摘 要:通过剖析中美炮用子母弹子弹引信,提炼总结出了中美子弹引信的设计思想,并进行了分析与对比。
中美炮用子弹引信总体技术水平相当。
美军子弹引信的设计思想是:设计必须简单,保证基本的安全特性,低成本,适合批量生产。
不强求符合《引信安全性设计准则》和对软目标的作用可靠性。
美军空——地子弹引信的设计思想是:高安全性,高作用可靠性。
中国子弹引信的设计思想是:追求高安全性,高作用可靠性,对目标作用的高效能和“三化”。
必须符合《引信安全性设计准则》。
通过设置自毁机构提高对目标作用的可靠性、减少瞎火子弹。
关键词:子弹引信;设计思想;分析中图分类号:TJ 43 文献标识码:A 文章编号:1008-1194(2001)04-0041-040 前言常规炮弹、火箭弹、航弹在对付人员、车辆等轻型目标时能量总量集中,趋于过毁伤。
子母弹既能充分发挥毁伤有生力量的效能,又能远距离攻击坦克防护的薄弱环节——顶装甲。
因此子母弹已成为野战火炮和野战火箭炮的主要弹种。
美国155mm 榴弹炮M 483A 1型子母弹,一发子母弹内装88发子弹,分成11层,每层8发,底下3层装24发M 46式多用途子弹,上面8层装64发M 42式多用途子弹,计13层,每层15发。
M 42、M 46多用途子弹配用M 223子弹引信,每发子弹重0.182kg ,直径38.9mm ,能穿透70mm 均质装甲板。
美国M 404式203mm 杀伤子母弹,内装104个M 43系列子弹,计13层,每层8发。
M 43A 1式子弹是一种反跳式杀伤子弹,装有球形杀伤战斗部。
美国M 449式155mm 杀伤子母弹内装60发M 43型子弹。
美国227mm 多管火箭系统(M L R S ),一发母弹装644发M 77子弹,分7层。
一次齐射发射7728发子弹,覆盖面积30000m 2。
在海湾战争中美军2881门6管火箭炮发射1100多万发子弹。
International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2015) Analysis of Repair Level for Missile Based on Reliability CenteredMaintenanceMa Ning, Xiang YujunDepartment of Aviation Ammunition Engineering, The First Aeronautic Institute of the Air Force,Xinyang, 464000, China.Keywords: missile; RCMA; LORA; decision tree model.Abstract. A research of Level of Repair Analysis (LORA) for missile’s equipments to improve its maintainability is proposed. The preventive maintenance mode of a new missile system is determined via using RCMA (Reliability Centered Maintenance Analysis) and performed under the combination with its maintenance actuality. A decision tree model of LORA is established as a result of the analysis on the meaning, structure, non-economic influence factors and analytical procedure of LORA to modify the existing missile maintenance system, as well as reducing the maintenance cost and difficulities.IntroductionWith more new type missiles were fitted out in force gradually, the demand of missile maintenance is highly increased due to armament’s complexities and technologies. A whole normative and complete maintainability system and criterion of normality is not to be established because of lack of scientific and feasible maintenability analysis. Currently, daily servicing, management and fault detection are the major task for new type equipment. The weak ability of maintenance becomes the bottleneck for the improvement of maintainability and work efficiency. Consequently, it is necessary to set up a new reasonable repair level which is combined with comprehensive analysis on various related factorsLORA (level of repair analysis) is a process of analysis and planning for equipment support system [1]. It is normally used to derive a repair level that is feasible and cost-efficiency optimal for the equipment.RCMA on a certain type of missile in service in PLA was given in this paper, the failure mode and their criticality was determined, which laid a foundation and provided inputs for LORA. Furthermore, noneconomic LORA analysis on the equipment during the phase of use and support was done to derive the decision tree model.The paper is organized as follows. In the next section, the analytic method which used in this paper is proposed, and some definitions and assumptions are given. Section 3 presents the reliability centered maintenance analysis procedures. In Section 4, the missile LORA model based on RCMA is discussed, and decision tree model of missile LORA is presented. Finally, the conclusion is given in section5.Level of repair analysisAccording to the definition in the session 'LORA' in GJB2961-97[2], LORA was defined as “the process of economic or noneconomic analysis for a product bound to have failures in its lifetime so as to get its proper level of repair or the decision of disposal”. LORA is an important part of can identify not only the repair sites or disposal location for the equipment and its components, but also the support equipment needed, spare parts storage, maintenance crew needed and their technical capabilities, and training and etc. for different levels of repair institutions.The aim for LORA is to decide whether or not the product needs repairing and in which level of repair institution the product should be repaired, i.e., to allocate maintenance tasks and maintenance resources and to decide the responsibilities of each repair level reasonably[3].Through economic and noneconomic analysis of LORA, the best level for repair action was determined for the defective components of the equipment. Regarding the different phases theequipment is in its life time, LORA can be divided into LORA in development phase and LORA in use and support phase [4]. In this paper, noneconomic LORA in use and support phase of one certain missile equipment was discussed.RCMA on missile equipmentRCMA is one system analysis method that is used to determine the necessity of preventive maintenance for the equipment and to optimize maintenance system. It is aimed to find out all possible failures that may occur in the equipment system and their reasons and causes by carrying out functional and failure analysis [5]. In RCMA, a systematic logic decision method will be used to identify preventive maintenance strategies for each failure. According to GJB1378A-2007[6], RCMA for weapon equipment includes RCMA for system and equipment, structure RCMA, regional inspection and analysis and RCMA results.As for a missile, its primary components include electro-optic, electromechanical electronic items and structural components including the projectile body, sections connectors and internal fastening device. Sections for missiles are sealed to avoid exposure of their internal structures. In most cases, it is not allowed to be opened in case of random failures. When missiles are delivered to flight squadrons, they are normally sealed in their packages and stored in warehouses. Therefore, the structure will rarely be affected by the environment. Structural RCMA for missiles mainly focuses on structural parts of the missile body while internal inspection for the missile is rarely required. So, missile’s RCMA mainly includes system and equipment RCMA.Aims for RCMA of missile system and equipment are as follows:1. Find items that need preventive maintenance and those needless or unimportant items.2. FMECA should be carried out for confirmed important items to identify the possible failures and their reasons, failure modes and their severity.3. When design modification is not feasible, standard logic decision methods should be used to determine preventive strategies. Procedure for missile system and equipment RCMA is shown as follows:Fig.1: RCMA procedure of missile equipment and systemSystem indenture categorization and important items determinationImportant items of missiles refer to subsystems and modules of the missile. For almost every part of a missile is detachable or replaceable, any failure occurring from any part would cause malfunction of the missile. So every missile (module) part can be regarded as important items for RCMA. The indenture categorization of a missile system and equipment should be analyzed follow the order of its assembly from top to end.Fig.2 shows the structure of missile system.Fig.2: Structure of missile systemFailure mode and effect analysis.FMECA(Failure Mode Effect and Criticality Analysis,FMECA)is an analysis methodology by which all potential failure modes are found, the causes and effects of failure modes are analyzed, critical failure modes are selected and methods to mitigate or remove the effects of critical failure modes are provided[7]. It will be done for equipment of missile RCMA so as to identify failure modes, reasons and severity to lay a solid foundation for maintenance and support system planning. Table.1 shows the potential or normal failure modes and phenomenon of missile body[8].Table.1 Define failure mode of missile bodyFailure mode Phenomenon & explaindamage structural faultyqualitative change physical quality and chemical quality, wear, temperature is too high, temperature is too lowposition change vibration, unable keep normal position leakage internal or external leakage of gas,liquid,solidparameters overrun DC resistance, insulation resistance, test parameter overrun upper limit or lower limitabnormalindicationindicate error, indicate ambiguityabnormalelectricalpropertyshort circuit, open circuit, electrical leakageother other fault modesA criticality class can be determined for each failure mode. Table.2 shows the definition of criticality class for failure mode[9].Table.2 Define criticality class for failure modeCriticality class Criticality definitionCategoryI(catastrophic) A failure which may cause death or weapon system loss.Category II(critical) A failure which may cause severeinjury,major property damage, or majorsystem damage which will result inmission loss.Category III(marginal) A failure which may cause minor injury,minor property damage, or minor systemdamage which will result in delay or lossof availability or mission degradation. Category IV(minor) A failure not serious enough to causeinjury,property damage, or systenmdamage, but which will result inunscheduled maintenance or repair.Preventive maintenance type determination.Seven types of preventive maintenance tasks should be included [10]:i) Service. Service is performed in daily use or maintenance for missiles, including periodical inspections for depots environment and package air tightness.ii) Usage inspection. Inspections should be performed according to maintenance plans so as to find potential failures.iii) Monitoring. Normal monitoring for missiles in use should be used to detect potential failures of products. The contents of normal monitor include before use inspection or monitoring for instruments, i.e.iv) Function detection. Quantitative detection for missile technical parameters making sure that all parameters are within range for missions. v) Periodic overhaul. Restoration maintenance work can be performed on mechanical parts in missiles which have obvious wastage characteristics.vi) Periodic disposal. Type of work can be performed on non-repairable components and severely worn components that repair are not applicable, such as initiating devices for missiles. They will be used only once and will be disposed of once the time of storage is full.vii) Comprehensive work. Two or more the above mentioned work types combined together.Missile LORA modelsDetermination of missile repair level.Concerning the complexity of missiles and their maintenance level, two stage maintenance systems are used on missile system maintenance: operation-level maintenance and deport-level maintenance[11].Operation-level maintenance is normally carried out on the operation spot by the crew in operational and maintenance wing, including daily servicing, detection, examination; Several equipment for detection and repair equipment, maintenance spare parts are equipped on the operation-level maintenance institutions. Deport-level maintenance is carried out by the ordnance service depots and the manufacturing contractors. All maintenance tasks should be able to be accomplished in this level of maintenance institution, including major parts repair, spare parts manufacturing and supply, damaged parts repair and reproduction. Maintenance tasks can be done in the depots or at the flight line.Noneconomic factors.The following noneconomic factors should be considered in the LORA for missiles given use and maintenance features of missiles [12-13]:i) Safety. Safety must be considered for weapons like missiles that includes engines and warheads.ii) Present maintenance plan. The present maintenance plan and maintainability of different levels of military maintenance units should be considered.iii) Support equipment. Testing equipment and special tools for maintenance are equipped on the proposed level of repair or not.iv) Package, storage, loading/unloading, and transport. Special needs for package, transport, load/unload and storage. (temperature, moisture, climate, electrostatic proof and etc.) v) Maintenance crew specialty and technical capabilities. Maintenance crew specialty configuration and abilities satisfy a certain level of repair.vi) Facilities. Special facilities, repair craft for a certain repair level.vii) Maintenance complexity. Complex maintenance, craft requirements satisfy a certain repair level.viii) Confidentiality. Confidentiality occurs at specific levels of maintenance.LORA procedure.RCMA results should be consulted in LORA for missiles. Noneconomic analysis should be done respectively to determine maintenance task level for items at different indentures [14]. LORA procedure is shown in Fig.3.Fig.3: Procedure of missile LORASome maintenance tasks are affected by multiple noneconomic factors in analysis. Then, comprehensive evaluation should be done to determine a feasible maintenance level. If noneconomic analysis is not enough to determine the maintenance level, comprehensive analysis should be carried out.Missile LORA decision tree modelDecision tree analysis is a traditional methodology in LORA. Decision tree analysis can be used to reduce analysis work in practice [15]. The decision tree model is established as shown in Fig.4. Primary level of maintenance can be determined via LORA decision tree model.From Fig.4, there are three knots for decision making: the first knot will result in operation-level maintenance if the answer is “yes”. This level of maintenance includes only minor work for trouble shooting; the second knot will result in repair work as replacement, normally at operation-level; the third knot will result in deport-level maintenance which requires higher level of repair or complex repair equipment.Fig.4 Decision tree model of missile LORAConclusionsThe noneconomic LORA decision tree model in support phase based on the maintenance’s status quo of PLA's new missiles was established via RCMA on missile system. Scientific analysis on missile faulted-parts’ repair level was carried out to obtain maintenance plan or provide possible theoretic foundation and reference for decision formulating.References[1] Gutin G, Rafiey A&Yeo A. Level of repair analysis and minimum cost homomorphism ofgraphs.Discrete Applied Mathematics, 154(6),pp.881-889,2006.[2]GJB 2961-97,Level of repair analysis.[3] Basten R.J.I, Schutten J.M.J& Heijden M.C.V.D. An efficient model formulation for level ofrepair analysis. Annals of Operations Research, 172(1),pp.119-142,2009.[4] Haritha Saranga, Dinesh Kumar U. Optimization of aircraft maintenance/support infrastructureusing genetic algorithms—level of repair analysis. Annals of Operations Research, 143,pp.91-106,2006.[5] Lu Xiao-Hong, Jia Zhen-Yuan&Gao Sheng-Nan.Failure Mode Effects and Criticality Analysis(FMECA) of Circular Tool Magazine and ATC. Anal and Preven, 13, pp.207-216,2013[6] GJB 1378A-2007,Equipment repair analysis based on RCM.[7] Xu K, Tang L C& Xie M. Fuzzy assessment of FMEA for engine systems. ReliabilityEngineering and System Safety,75(1),pp.17-29,2002.[8] Zhao Da-Lei, Huang Ding-Dong, Li Mu-Yi& Wang Zhe.LORA for Certain Missile-borneEquipments. Computer and Modernization,7,pp.65-68,2013.[9]J.H.KIM,H.Y.JEONG & J.S.PARK. Development of the FMECA process and analysismethodology for railroad systems. International Journal of Automotive Technology, 10(6), pp.753-759,2009.[10]Zhao Jjian-Zhong, Ding Guang-Bing& Guo Hong-Chao.Application maintenance onLORA based on RCM in missile equipment maintenance.Quality and Reliability, 157(1),pp.10-13,2012.[11] Chen Xue-Chu.Modern Maintenance Theory. Beijing:National Defense Publishing service,2003.[12]Wang Yuan-Da. Methodology of LORA.Fire control and command control, 33(4),pp. 1-3,2008[13] Basten R.J.I, Heijden M.C.V.D.Schutten J.M.J. A minimum cost flow model for level of repairanalysis. International Journal of Production Economics, 133(1),pp.233-245,2011.[14]Huang Jian-Xin.SAM equipment LORA model in service. Tactical missile technologies,6,pp.31-34. 2005.[15]Xie Xin-Lian, Huo Wei-Wei&Xu Hao.Analysis of repair level for ship equipment based ondecision tree.Ship Engineering,31(6),pp.84-87,2009.。
第31卷第1期2010年1月兵工学报ACT A ARMA MENTAR IIVo.l 31No .1Jan .2010弹体姿态调控引信系统设计与仿真刘松,范宁军(北京理工大学引信动态特性国防科技重点实验室,北京100081)摘要:为减小巡飞弹弹体姿态偏差对引战配合的不利影响,提出弹体姿态调控引信的概念。
在利用弹上信息的基础上,设计一种通过弹上加装微型脉冲推冲器产生的直接力快速调控弹体滚转角的引信;建立滚转角调控量计算模型,利用相平面分析法,设计微型脉冲推冲器的启动策略,保证弹体姿态在起爆时满足最佳引战配合要求。
仿真结果表明调控时间短,使用的微型脉冲推冲器数量少,利用引信进行姿态调控是可行的。
关键词:自动控制技术;巡飞弹;引信;姿态调控;脉冲推冲器 中图分类号:TP41011文献标志码:A文章编号:100021093(2010)0120018205The Desi gn and Si m ula ti on ofM un ition A ttitude C or rection Fuze Syste mLIU Song ,FAN N i n g 2jun(Key De f ence Sc i ence and Technology Laboratory for Fuze Dy na m ic Characteristics ,B eiji ng Institute of Technology ,Be ijing 100081,Ch i na)Abs tra c t :In order to reduce the adverse eff ects of body a ttitude deviation on f uz e 2warhead coordinati o n,the conception of attitude correcti o n f uze was proposed .Based on the gi v en i n f or mation of t h e muniti o ns a t the end of trajectory ,a f uze with so me i n sta lled m icro i m pu lse t h rusters f or roll angle rap i d regulati n gwas desi g ned ;the mode l of the regulati n g quantity of roll angle was set up ;t h e i n itia l strategy of m icr o i m pu lse thrusters was desi g ned by phase p lane analysis ,to m eet the opti m al f uze 2war head effic iency re 2qu ire ments on detonation .The si m ulated results sho w t h at the correction pr ocess takes shorter ti m e and f e wer m icro i m pu lse thrusters ,theref ore it is f easible to use f uze i n the body attitude correcti o n .Ke y w ords :auto matic con trol technology ;loitering munitions ;f uze ;attitude correction ;im pu lse thr uster收稿日期:2009-01-07作者简介:刘松(1979)),男,博士研究生。
1 引言巡飞弹是一种能在目标区域上方进行“巡弋飞行”,“待机”执行多种作战任务的新概念弹药。
它由战斗部、制导装置、推进系统、控制装置、稳定装置等组成,可承担监视、侦查、战斗毁伤评估、空中无线中继以及攻击目标等。
攻击型巡飞弹不仅可以在目标上方执行监视、目标指示和毁伤评估等任务,还携带者不同类型的战斗部,能寻找最佳时机对目标进行精确打击。
因此,它对敌方目标就像一把“达摩克利斯之剑”,长时间在其头顶上巡飞,随时可以发起攻击,使其不敢轻举妄动。
弹药的飞行轨迹包括弹道段、巡飞段和攻击段三部分,主要采用多模式战斗部,可根据目标类型采用不同的起爆方式。
1.1 本课题的背景和应用价值伊拉克战争使人们清楚地看到,要确保在战场上的毁伤优势,其弹药是一关键。
首先,为在敌防区外攻击其纵深目标,必须提高弹药的射程[1,2]。
提高射程将为战场指挥官完成所希望的任务提供更多的选择,并可以提高完成任务的效果。
第二,为避免被反击火力命中,必须确保弹药具有精确命中和高效毁伤能力,使作战人员能够“发射后不管”和“发射后转移”,提高己方的战场生存力,同时在现代世界和政治环境中,至关重要的是在打击目标的同时,尽可能地减少对友军和平民所造成的间接伤害,现代战争表明,巡飞弹完全可以具备这些功能。
第三,减少对指定目标失效所需的弹药用量,这是减少后勤负担的最有效途径;战时弹药的消耗量十分的惊人,而部队的携运量十分有限,如果不能有效地减少弹药的消耗量,战时再补给将成为影响战役或战斗进程的软肋。
据称,通过试验表明,采用“巡飞弹”配合完成打击任务,摧毁一个坦克连至少可以减少20%的弹药消耗量。
同时由于采用多管火箭炮发射巡飞弹,速度快,可确保无人侦察机顺利的突破敌防区,并获取对重要目标的空中侦察情报,这将对作战中取胜起到至关重要的作用。
世界上的一些发达国家,如美国、俄罗斯、法国、英国等都很重视巡飞弹的发展与应用技术[1,2]。
因此,其研究对我国武器装备技术近中远期的发展具有重要意义。
近年来,国内外的研究动态充分反映出弹药领域的研究主要集中在增程和精确打击两个方面。
对于我国来说,发展炮弹增程和精确技术更有着特殊的意义。
这是因为,首先,为在敌防区外攻击其纵深目标,必须提高弹药的射程。
提高射程将为战场指挥官完成所希望的任务提供更多的选择,并可以提高完成任务的效果;而且远程火炮射程远、射击区域大、火力猛、机动性强,就可以在敌火炮射程范围之外提前对敌进行火力压制;第二,为避免被反击火力命中,必须提高弹药具有精确命中和高效毁伤能力,在确保有效打击敌方的同时更能够提高己方的战场生存力[1,2]。
同时,在现代世界和政治环境中,至关重要的是在打击目标的同时更能够提高己方的战场生存力。
同时,在现代世界和政治环境中,至关重要的是在打击目标的同时,尽可能的减少对友军和平民所造成的间接伤害。
第三,我国弹药种类少,为了在未来战争中立足于和敌方装备体系的有效对抗,缩短与发达国家的差距,就必须发展我国的炮弹增程技术和精确打击技术;第四,国际政治军事环境趋于紧张(特别是我国的周边环境),我国迫切需要远程弹药和高效率的打击弹药。
因此,在尽短的时间内大幅度提高我军火炮射程和提高打击命中率是一项十分紧迫的任务,而巡飞弹的研制可以对弹药射程的提高及打击命中率的提高兼而顾之。
各国在研制和改进火炮的过程中,追求的重要目标之一是增大射程。
我国目前的增程技术虽然有了很大的进步,但就国内外军事及战场发展趋势来看,还是需要进一步研制更远射程的弹药。
从目前我国的技术基础及国外的研究情况来看,研究炮弹冲压增程技术是可行的。
早在七十年代国内航天部有关单位对冲压发动机燃料及燃烧性能进行了探索性试验研究,八、九十年代开始用于导弹的冲压发动机技术研究,在推进剂、燃料稳定性、燃烧效率、结构设计等方面取得了初步成果。
但未来的战争以信息化弹药为主,信息化弹药泛指以弹体作为运载平台,能够实现态势感知、电子对抗、精确打击、高效毁伤和毁伤评估等功能的灵巧化、制导化、智能化、微型化、多能化弹药。
在数字化战场上,灵巧化弹药将能够自主搜索、锁定并摧毁敌方目标,这方面主要以美国的“萨姆”、法国的“斯马特”末敏弹为代表。
制导化弹药将能够依靠指令或自主判定飞行弹道并修正弹道、命中并摧毁预定攻击目标,美军的“红斑蛇”、俄军的“红土地”激光制导弹药、美军的联合直接攻击弹药(JDAM)GPS/捷联惯导复合制导的GBU-37侵彻弹,以及弹道修正弹等都属于这类弹药。
智能化弹药则能够依靠战场信息链路获得所攻击目标的信息或自主发现巡逻区域的目标,完成目标类型识别、攻击任务再分配,并摧毁目标,目前美军正在研制的“卡洛斯”或加装数据链的各种超远程导弹、炮弹等都属于这类弹药。
此外,能够为战役或战术指挥员提供战场态势信息、目标毁伤信息的视频侦察弹,能够对威胁地域进行监测的战场传感器弹药,能够对地方战役、战术通信进行压制干扰的通信干扰弹,能够对敌方电子装备实施硬摧毁的高功率微波弹药,这些信息化弹药将使毁伤功能最终融入C4ISR网络,构成侦察、通信、决策、打击、毁伤、评估等一体化的C4KISR网络,极大的提高战场毁伤的时效性和有效性,为战场制胜奠定装备基础。
目前我国用于信息化弹药技术方面所进行的研究工作很少,为了在未来战争中掌握作战主动权,能够有效地在不同纵深上打击敌人和保护自己,并在武器性能方面缩小与发达国家的差距,我国必须开展相关的研究工作。
这就需要我们在信息化弹药技术上的研究中加快步伐[1,2]。
在未来战争中,巡飞弹射程远、功能多,在执行侦察、定位、指示、信息中继、毁伤评估等任务时,空中待机时间长。
若能在战场中使用,必将大大提高武器系统对目标的打击能力和精度,减少不必要的后勤负担。
此外,作战部队在各种作态势下的能力可得到扩展,在各个作战阶段都能够提供持续不断的火力支援,大大提高部队的战斗力。
发展巡飞弹,高效精确打击敌指挥所、坑道、机库和掩体等,不仅是我国炮兵装备技术发展的需要,也是航弹、导弹装备技术的发展和未来战争需要,更是当前对台军事斗争的急需。
因此巡飞弹的研究对我国武器装备的发展意义重大[1,2]。
1.2 巡飞弹的特点巡飞弹主要由有效载荷、制导装置、动力推进装置、控制装置(含大展弦比弹翼)、稳定装置(含尾翼或降落伞)等部分组成。
巡飞弹有许多优越之处,与无人机相比,它可以像常规弹药一样,由多种武器平台发射或投放,可配用到各军兵种,能快速进入作战区域,突防能力强,战术使用灵活,与常规弹药相比,它多出一个“巡飞弹道”,留空时间长、作用范围大,可发现并攻击隐蔽的时间敏感目标,与巡航导弹相比,它成本低(不到后者的1/10)、效费比高,尺寸小、雷达截面积小、隐身能力较强,能承受极高的过载,与电视侦察弹相比,它侦察时间长、面积大,发现目标的概率大:与制导炮弹相比,它能根据战场情况变化,自主或遥控改变飞行路线和任务,对目标形成较长时间的威胁,实施“有选择”的精确打击,并实现弹与弹之间的协同作战[1,2]。
1.3 巡飞弹的发展现状自1994年美国开始研制低成本自主攻击弹药(LOCASS)以来,巡飞弹就在世界弹药及制导武器领域引起广泛关注。
美国在该领域独领风骚,已开始发展各种平台携带的巡飞弹,主要型号包括:127毫米舰炮发射的前沿空中支援弹药(FASM)、155毫米榴弹炮发射的“快看”(Quicklook)侦察型巡飞弹、155毫米榴弹炮或127毫米舰炮发射的炮射广域侦察弹(WASP)、坦克炮发射的一次性多用途炮射巡飞弹、“网火”非直瞄火力系统发射的“拉姆”(LAM)巡飞弹、“洛卡斯”(LOCASS)自主攻击弹药系统、“主宰者”(Dominator)巡飞弹、“低成本持续区域控制”(LOCAPD)小型弹药等。
除美国外,俄罗斯、以色列、美国、德国、意大利、法国等发达国家也加入巡飞弹药的发展行列。
俄罗斯研制了“旋风”300毫米火箭弹投放的R-90巡飞子弹药(LCLC),以色列也正在研制单兵使用的巡飞弹等。
1.4 巡飞弹的分类1.4.1 按主要功能划分1.侦察型巡飞弹。
这类巡飞弹携带昼夜光电传感器、CCD摄像机等侦察、通信器材,在目标上方执行搜索、侦察、监视、指示、监控、中继通信以及毁伤评估等任务。
可长时间监视与指示战场目标(尤其是时间敏感目标),并把获取的信息随时告知己方指挥系统。
弹药的飞行轨迹包括弹道段、巡飞段两部分,在携带的燃料燃尽后自毁。
典型型号有美国的“快看”155毫米侦察型巡飞弹、俄罗斯的R-90侦察型巡飞子弹药和以色列的单兵侦察型巡飞弹等。
美国陆军研制的“快看”155毫米侦察型巡飞弹携带昼夜传感器,在50千米远处的巡飞时间为30分钟,并将目标信息传输给地面指挥中心,在其他精确制导弹药攻击目标后,“快看”侦察型巡飞弹可对毁伤进行评估。
以色列的“陨石”单兵巡飞弹是一种筒式发射的便携式侦察型巡飞弹。
该弹重6.5千克、直径120毫米、翼展1.7米,作战范围10千米,可在目标区域上方巡逻飞行60分钟以上,提供目标的实时图像并直接支援作战部队[2]。
2.攻击型巡飞弹。
这类巡飞弹不仅可以在目标上方执行监视、目标指示和毁伤评估等任务,还携带着战斗部,能寻找最佳时机对目标进行“巧妙”的精确打击。
长时间在其头顶上巡飞,随时可以下手攻击,使其不敢轻举妄动。
弹药的飞行轨迹包括弹道段,巡飞段和攻击段三部分,主要采用多模战斗部,可根据目标类型采用不同的起爆模式。
其典型产品是美国的“拉姆”和“洛卡斯”。
“拉姆”巡飞弹采用小型涡轮喷气发动机、多模式战斗部和空/地/延时三模式引信、自主目标识别装置和激光雷达导引头,利用GPS /惯性系统进行导航,利用双向数据链路进行战场信息传输,具有搜索、监视、毁伤评估、空中无线中继以及攻击目标的功能,可在70千米的距离上巡飞30分钟,搜索50~70千米’区域内的目标。
“洛卡斯”是一种由火箭弹/导弹/布撒器等平台投放的微小型巡飞子弹药,主要由小型涡喷发动机、多模式战斗部、激光雷达导引头、GPS/惯性制导装置以及保险装置组成,可进行广域搜索、识别和摧毁多种地面机动目标,是对付时间敏感目标的有效弹种[3]。
1.4.2 按介入战场的方式划分1、身管火炮/火箭炮发射型。
这类安飞弹一般采用充气式弹翼,与常规弹药一样发射。
发射后呈弹道飞行,在预定时间和高度上,弹体上弹出一副大展弦比弹翼,进入滑翔弹道飞行阶段,至目标区后进入巡飞弹道,在目标区上方执行各种作战任务。
如美国LAM巡飞攻击弹药。
2、机载投放型。
这类巡飞弹与常规机载导弹一样由飞机挂载投放,不用承受高过载。
飞至目标区后进入巡飞弹道,执行作战任务。
如美国“空中主宰者”攻击弹药。
3、单兵投放型。
这类巡飞弹有多种用途,可执行近距离侦察或攻击任务,由士兵从屋顶、窗口或狭窄小巷发射,非常适合城区作战。