板带轧机电动及液压压下联合控制系统详细版
- 格式:docx
- 大小:105.65 KB
- 文档页数:10
轧机压下装置工作过程一、引言轧机压下装置是轧机的核心部件之一,其作用是将钢坯或钢板压成所需的形状和尺寸。
本文将详细介绍轧机压下装置的工作过程。
二、轧机压下装置的组成1.上辊组:包括上辊、上辊承受器和上辊调整机构。
2.下辊组:包括下辊、下辊承受器和下辊调整机构。
3.中间滚筒组:包括中间滚筒和中间滚筒承受器。
4.液压系统:包括液压站、油缸和管路等。
5.电气控制系统:包括电气控制柜、PLC控制器等。
三、轧机压下装置的工作原理1.准备阶段:首先需要对轧机进行检查,确保设备正常运行。
然后将钢坯或钢板放在轧机进料口处,待进料系统将其送入到轧机内部。
2.预弯阶段:当钢坯或钢板通过上下两个辊之间时,由于强制挤压作用,使得材料表面出现微小的弯曲,这个过程称为预弯。
3.压下阶段:在预弯后,液压系统开始工作,将上下两个辊向内靠拢,钢坯或钢板被挤压成所需的形状和尺寸。
4.拉伸阶段:在钢坯或钢板通过轧机的过程中,由于受到强制挤压作用,材料内部会产生应力。
为了消除这些应力,需要进行拉伸处理。
5.放松阶段:当钢坯或钢板通过轧机后,需要进行放松处理。
这个过程是将轧制后的材料从轧机中取出,并使其自然冷却至室温。
四、轧机压下装置的工作流程1.启动电气控制系统:首先需要启动电气控制系统,并进行各项参数设置。
2.启动液压系统:接着需要启动液压系统,并对其进行调试和校准。
3.进料阶段:当设备正常运行时,将钢坯或钢板放在轧机进料口处,并启动进料系统将其送入到轧机内部。
4.预弯阶段:当钢坯或钢板通过上下两个辊之间时,由于强制挤压作用,使得材料表面出现微小的弯曲,这个过程称为预弯。
5.压下阶段:在预弯后,液压系统开始工作,将上下两个辊向内靠拢,钢坯或钢板被挤压成所需的形状和尺寸。
6.拉伸阶段:在钢坯或钢板通过轧机的过程中,由于受到强制挤压作用,材料内部会产生应力。
为了消除这些应力,需要进行拉伸处理。
7.放松阶段:当钢坯或钢板通过轧机后,需要进行放松处理。
液压AGC控制技术的分析与应用摘要:综述板带轧钢厚度控制技术的发展和产生厚差的原因(主要有:温度、轧制力等)。
着重介绍了液压厚度自动控制的概念、原理、应用等。
关键词:液压AGC;原理;应用第一章液压AGC概念与原理1.1 液压AGC的概念厚度自动控制是通过测厚仪或传感器(如辊缝仪和压头等)对带钢实际轧出厚度进行连续地测量(或估算),并根据实测值与给定值相比较后的偏差信号,借助于控制回路和装置或计算机的功能程序,改变压下位置、轧制压力、张力、轧制速度等,把厚度控制在允许偏差范围之内的方法。
特制品的厚度自动控制在一定尺寸范围内的系统称为厚度自动控制系统,简称为AGC。
液压AGC就是借助于轧机的液压系统,通过液压伺服阀调节液压缸的油量和压力来控制轧辊的位置,对带钢进行厚度自动控制的系统。
1.2板带轧钢产生厚差的原因带钢厚度精度可分为一批同规格带钢的厚度异板差和每一条带钢的厚度同板差。
为此可将厚度精度分解为带钢头部厚度命中率和带钢全长厚度偏差。
从厚差分布特征来看,产生厚差的原因有以下几种: (1)头尾温差,这主要是由于粗轧末出口速度一般比精轧机入口速度要高,因而造成了带钢头部和尾部在空气中停留时间的不同。
( 2)加热炉内导轨在钢胚表面造成的低温段称为水印,由于此段温度变化率大,厚度变动比较“陡”。
(3)活套起套过猛,对带钢产生冲击,使颈部厚度变薄。
( 4 )咬钢时,由于速度设定不协调加上动态速降造成钢套过大,起套并投入高速控制后由于纠偏过快造成带钢拉钢,这一松一紧使厚度减薄,宽度拉窄。
(5)温度波动造成轧制力以及厚度波动。
(6)油膜轴承的油膜厚度发生变化使实际辊缝变化,从而影响轧件厚度。
(7)轧辊偏心将直接使实际辊缝产生高频周期变化。
为了克服或减轻这些干扰因素对成品厚度的影响,除了改进AGC 系统的结构外,还可以将它与各种先进的智能算法相结合,以提高其精度。
1.3液压AGC基本原理1.3.1液压AGC 的设备及其与工作液压AGC技术是将机械、液压、自动控制以及轧制工艺等专业紧密联系在一起的综合先进技术。
轧制厚度及板型控制导读:就爱阅读网友为您分享以下“轧制厚度及板型控制”资讯,希望对您有所帮助,感谢您对的支持! 厚度自动控制和板形控制项目1 板带材轧制中的厚度控制项目2 横向厚差与板形控制技术项目1板带材轧制中的厚度控制一、厚度自动控制的工艺基础 1.p-h图的建立(1)轧制时的弹性曲线轧出的带材厚度等于理论空载辊缝加弹跳值。
轧出厚度:h=S0 +P/K―――轧机的弹跳方程S0 ――空载辊缝P――轧制压力K――轧机的刚度系数根据弹跳方程绘制成的曲线(近似一条直线)――轧机弹性变形曲线,用A 表示。
A(2)轧件的塑性曲线根据轧制压力与压下量的关系绘制出的曲线――轧件塑性变形曲线,用B表示。
B(3)弹塑性曲线的建立将轧机弹性变形曲线与轧件塑性变形曲线绘制在一个坐标系中,称为弹塑性曲线,简称P-h图。
注意A线与B线交点的纵坐标为轧制力A线与B线交点的横坐标为板带实际轧出厚度2. p-h图的运用由p-h图看出:无论A线、B线发生变化,实际厚度都要发生变化。
保证实际厚度不变就要进行调整。
例如:B线发生变化(变为B‘),为保持厚度不变,A线移值A',是交点的坐标不变。
C线――等厚轧制线作用:板带厚度控制的工艺基础板带厚度控制的实质:不管轧制条件如何变化,总要使A 线和B 线交到C线上。
p-h图二、板带厚度变化的原因和特点影响板带厚度变化的因素:1、轧件温度、成分和组织性能不均匀的影响温度↑→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓变形抗力对轧出厚度的影响2、来料厚度不均匀的影响来料厚度↓→压下量↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓来料厚度对轧出厚度的影响3、张力变化的影响张力↑→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓张力对轧出厚度的影响4、轧制速度变化的影响通过影响摩擦系数和变形抗力来改变轧制压力。
摩擦系数↓→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓摩擦系数对轧出厚度的影响5、原始辊缝的影响原始辊缝减小,板厚度变薄。
轧机液压辊缝控制系统的原理及应用许战军(河北钢铁集团 邯钢公司 西区冷轧厂 河北 邯郸 056002)摘 要: 介绍邯宝公司2080冷轧酸轧联合机组轧机液压辊缝控制,通过分析HGC液压缸可以在位置控制模式和轧制力控制模式下运行的模式,由液压辊缝控制(HGC)系统调节轧机对带钢的压下量,直接影响到板型效果。
关键词: 轧机;液压辊缝控制;压下量中图分类号:TG333 文献标识码:A 文章编号:1671-7597(2012)1110010-02用。
在咬钢的瞬间从位置控制转换到轧制控制,反过来也一0 前言样。
由于控制模式转换必须在任何时候都可用,所以控制回路邯钢新区冷轧厂采用德国SMS集团最新的轧制技术,5架串必须时刻调整输出来平衡设定值和实际值。
位置控制和轧辊轧列式6辊轧机,通过弯辊系统、窜辊系统和螺旋压下系统来轧制制力控制从属于更高一级的控制如厚度控制或秒流量控制。
带钢改善板型。
螺旋压下系统主要靠液压辊缝控制(HGC)系同步/倾斜控制系统是建立在位置控制和轧制力控制上统来调节轧机对带钢的压下量。
冷轧就是带钢在再结晶温度进的,以确保两个调节液压缸平行动作,这样可使轧机的上支承行轧制,所以液压辊缝控制的精度直接影响产品的厚度,液压辊保持在轧机中心线上,并可变化。
伺服阀的电源由UPS来提辊缝控制的倾斜控制配合弯辊和窜辊直接影响板型效果。
供,下表是伺服阀在各种模式下的电流值。
1 液压辊缝机械和液压系统结构轧机机架配备了两个HGC液压缸。
液压缸安装在轧机机架上部。
HGC液压缸是用伺服阀进行闭环控制的,伺服阀仅控制液压缸塞侧的压力。
其中液压缸的油压必须是由轧机区高压液压系统提供的。
轧机机架的畜能器,直接在伺服阀之前,确保持续的缓冲油量。
液压缸的杆侧是用一个独立的低压缓冲畜能器管路联结的,可以尽心润滑并且避免真空。
做打开动作时,例如当换辊时HGC液压缸打开,杆侧管路压力会上增加,以提升辊缝开张速度。
HGC液压系统图如下:2.1 位置控制系统位置控制用来控制液压缸位置,在操作侧和驱动侧都有位置控制和倾斜控制。
中板轧机液压压上AGC系统的多级控制张飞;侯建新;杨荃;郭强;黄来顺【摘要】介绍了某钢厂2 600 mm中板轧机液压压上系统的机械和电气特性,其液压系统采用了下置式液压缸,控制系统由基础自动化级和过程自动化级组成并采用多种智能算法,通过投产后现场的实际运行情况来看,该系统操作便捷、稳定可靠,能快速响应各种手动和自动调节,钢板厚度精度达到国内先进水平,提高了产品竞争力,为企业创造了良好的经济效益.%Mechanical and electrical characteristics of hydraulic screw up system of some 2 600 mm plate mill were introduced. Hydraulic cylinders of the mill are down setting type. The control system is composed of basic automation and process automation and adopts lots of intelligent algorithms. Through the actual operation on production,this system is stable,reliable,and convenient,and can make a rapid response to various manual and automatic adjustment,and improves thickness accuracy of steel plate to domestic advanced level. The system enhances the product competitiveness and creates a good economic benefits to enterprises.【期刊名称】《电气传动》【年(卷),期】2012(042)002【总页数】5页(P73-77)【关键词】液压压上;中板;自动厚度控制【作者】张飞;侯建新;杨荃;郭强;黄来顺【作者单位】北京科技大学高效轧制国家工程研究中心,北京100083;北京科技大学高效轧制国家工程研究中心,北京100083;北京科技大学高效轧制国家工程研究中心,北京100083;北京科技大学高效轧制国家工程研究中心,北京100083;邯郸红日冶金有限公司,河北邯郸056304【正文语种】中文【中图分类】TG335液压AGC(automatic gauge control)由于具有低惯量、高响应、高精度及易于实现计算机控制等特点,被广泛地应用于现代化板带轧机生产线的自动厚度控制系统中[1]。
1 引言轧机的压下装置是轧机的重要结构之一,用于调整辊缝,也称辊缝调整装置,其结构设计的好坏,直接关系着轧件的产量与质量。
压下装置按传动方式可分为手动压下、电动压下和液压压下,手动压下装置一般多用于不经常进行调节、轧件精度要求不严格、以及轧制速度要求不高的中、小型型钢、线材和小型热轧板带轧机上。
电动压下装置适用于板坯轧机、中厚板轧机等要求辊缝调整范围大、压下速度快的情况,主要由压下螺丝、螺母及其传动机构组成。
在中厚板轧机中,工作时要求轧辊快速、大行程、频繁的调整,这就要求压下装置采用惯性小的传动系统,以便频繁的启动、制动,且有较高的传动效率和工作可靠性。
这种快速电动压下装置轧机不能带钢压下,压下电机的功率一般是按空载压下考虑选用,所以常常由于操作失误、压下量过大等原因产生卡钢、“坐辊”或压下螺丝超限提升而发生压下螺丝无法退回的事故,这时上辊不能动,轧机无法正常工作,压下电动机无法提起压下螺丝,为了克服这种卡钢事故,必须增设一套专用的回松机构。
电动压下装置的主要缺点之一是运动部分的惯性大,因而在辊缝调节过程中反应慢、精度低,对现代化的高速度、高精度轧机已不适应,提高压下装置响应速度的主要途径是减少其惯性,而用液压控制可以收到这样的效果。
液压压下装置,就是取消了传统的电动压下机构,其辊缝的调节均由液压缸来完成。
在这一装置中,除液压缸以及与之配套的伺服阀和液压系统外,还包括检测仪表及运算控制系统。
全液压压下装置有以下优点:1、惯性小、动作快,灵敏度高,因此可以得到高精度的板带材,其厚度偏差可以控制到小于成品厚度的1%,而且缩短了板带材的超差部分长度,提高了轧材的成品率,节约金属,提高了产品质量,并降低了成本;2、结构紧凑,降低了机座的总高度,减少了厂房的投资,同时由于采用液压系统,使传动效率大大提高;3、采用液压系统可以使卡钢迅速脱开,这样有利于处理卡钢事故,避免了轧件对轧辊的刮伤、烧伤,再启动时为空载启动,降低了主电机启动电流,并有利于油膜轴承工作;4、可以实现轧辊迅速提升,便于快速换辊,提高了轧机的有效作业率,增加了轧机的产量。
轧机辊缝调整原理轧机辊缝调整原理是指在轧机操作过程中,通过改变轧机辊之间的缝隙大小来调整轧机的工作状态和产生所需的轧制效果。
轧机辊缝调整是轧机生产过程中的关键环节,直接影响轧机的稳定性、轧制质量和轧制效率。
下面将详细介绍轧机辊缝调整原理。
一、轧机辊缝调整的作用和意义轧机辊缝调整是为了确保轧机在生产运行过程中能够实现预期的轧制效果,并且保障产品的质量。
它的主要作用和意义如下:1.调整轧机辊缝可以改变轧机的轧制力,从而调整轧制压力和轧制效果。
当轧机辊缝适当变小时,轧制力会增大,可以提高轧制效率和轧制质量,使得轧制产品更加均匀和细致。
2.调整轧机辊缝可以改变轧机的轧制速度,从而调节产品的尺寸精度和表面质量。
当轧机辊缝适当变小时,轧制速度会增大,可以提高产品的尺寸精度,使得产品的直径和厚度误差更小,并且表面质量更好。
3.调整轧机辊缝可以改变轧机的辊缝形状,从而调整轧制过程中的金属流动和形变情况。
当轧机辊缝适当变小时,可以减小产品的副辊直径误差,降低辊缝交叉滑动和胀大现象,提高轧制工艺的可控性和稳定性。
4.调整轧机辊缝可以改变轧机的辊缝分布情况,从而调整轧制产品的尺寸精度和均匀性。
当轧机辊缝适当变小时,可以改善辊缝分布均匀性,降低辊缝位置误差,提高轧制产品尺寸的一致性。
二、轧机辊缝调整的方法和原理轧机辊缝调整的方法和原理主要包括四种:机械调整、压缩调整、电动调整和液压调整。
1.机械调整是最常见的一种调整方法,适用于小型轧机或手动操作的轧机。
它通过调整轧机辊之间的机械间隙来改变轧机辊缝的大小。
机械间隙通常是由螺栓和螺母组成的,通过旋转螺栓和螺母,使得轧机辊的间隙增大或减小。
机械调整的优点是结构简单、操作方便,但调整过程比较繁琐,调整精度也相对较低。
2.压缩调整是一种较为常见的调整方法,适用于大型轧机或自动化操作的轧机。
它通过在轧机辊上施加压力,使得轧机辊之间的缝隙发生变化。
压缩调整的原理是利用压缩机构的力量,将轧机辊下压或推出,从而改变辊缝大小。
SIMATIC TDC控制系统在中厚板厂轧机中应用1、前言宝钢集团新疆八一钢铁有限公司中厚板厂于2008年建成投产,为了更好的控制板形,提高钢板质量,四辊轧机压下系统采用电动压下+液压agc系统。
轧线控制系统采用德国siemens公司的simatictdc控制系统,极大地提高了轧线控制的快速性与稳定性。
2、simatictdc概述由于中厚板生产的特殊性,要想获得理想的产品质量,液压agc 技术是必不可少的,而agc要取得理想的效果,首先要求控制系统必须快速、可靠。
由此轧线控制系统采用 simatic tdc (simatic technology and drive control),即工艺和驱动自动化系统。
它是一种多处理器自动化系统,擅长解决处理复杂的驱动、控制和通讯任务,是对 simatic s7 理想的扩充。
组态和编程使用simatic 工具进行,是西门子全集成自动化理念中的一部分。
tdc由一个或多个模板机架组成,多处理器运行方式可以实现性能的几乎无限制扩展。
simatic tdc采用自由组态、模块化的设计思想,使得系统的结构便于扩展。
系统可以快速实现闭环和开环控制、算术运算以及系统监视和信号通讯等功能。
simatic tdc拥有一套完整的模块化硬件和软件设计模式,能够保证硬件满足各种系统的设计要求。
simatic tdc尤其适用与相互关联的高精度控制系统。
simatic tdc系统采用step/cfc组态语言,计算机用户界面十分友好,易与操作和掌握,适合于从简单到复杂的控制系统的要求。
简单任务可以组态在一个功能包中,较复杂的任务则可由几个功能包共同完成。
对于复杂的功能,可由几个处理器组合在一个simatic tdc控制单元中来完成;更高级的系统则由几个simatic tdc控制单元组合在一起,通过通讯连接交换数据来达到设计要求。
tdc系统特点如下:(1)模块化的系统结构,硬件可扩展。
(2)采样时间间隔短,可达100µs,特别适用需快速响应的动态控制任务。
冷轧板带四辊轧机使用说明书冷轧板带四辊轧机使用说明书2010-09-13 12:05三、设备组成及结构特点机组由电动机、齿轮联轴器、减速机、齿轮联轴器、人字齿轮座、万向接轴托架、万向接轴、工作机座等组成。
由电动机通过一系列传动机构驱动轧机工作辊进行轧制。
工作机座由电动压下装置、平衡装置、工作辊装配、支承辊装配、机架装置、轨座等部件组成。
1电动压下装置电动压下装置是调整上轧辊位置的传动机构,以保证按给定的压下量轧制出所要求的断面尺寸。
该装置是由电动机带动两级蜗轮机构,传给压下螺杆移动轧辊向上或向下运动所达到的。
其中低速级传动蜗杆为球面蜗杆,这种蜗杆承载能力大,体积小,传动效率高。
电动压下装置由两套独立传动机构组成,这可保证在调整轧机时,两个上轧辊的轴承座可以单独运动,该装置在控制电路的配合下,可单独点动,亦可左右连动。
并配有数字显示装置,分别显示左右压下螺杆的压下量。
2平衡装置为了避免轧件进出轧辊时产生冲击,因此在机架窗口板上装有液压平衡装置,借此来消除轧机空载时上支撑辊轴承座与压下螺杆间的间隙以及压下螺杆螺纹间的间隙,液压平衡装置由四个液压油缸通过活塞杆对上轧辊轴承座进行平衡,油缸压力最大为130kg/cm2。
平衡力大小可自动调节。
3辊子装配工作辊材质为60CrMo,两端采用三列滚针轴承以承受径向载荷,并在辊子换辊侧用两只推力球轴承以承受左、右轴向载荷。
支承辊材质为9Cr2Mo,采用双列圆柱滚子轴承(FC轴承,辅以四点接触球轴承承受轴向分力。
每个支承辊轴承座内各装一只,其两个轴承的外侧与端盖及支承辊轴承座内孔底部留有一定的游动间隙,以免在运转过程中发热卡死。
在工作辊轴承座设有槽子,用压板插入槽内作固定轴承座之用。
下支承辊轴承座通过圆弧板与机架窗口底面实现圆弧接触,用以克服轧辊负载后产生变形给轴承带来的不利影响,从而延长其寿命。
工作辊出厂时加工成圆柱形辊身,使用时由用户按需要自行加工合适的辊形,工作辊辊身磨损后可重新加工再用,当辊子直径减小到图纸规定最小值时,就不能再继续使用,应以堆焊方法修复或者更换新工作辊。
鞍山师范学院学报J ou rna l of A nshan N or m a l U n iversity2005204,7(2):41-43冷轧板带机运行中的板形控制史 华(鞍钢职工大学机械系,辽宁鞍山114002)摘 要:分析了热轧过程、冷轧、轧机压下量均匀程度、轧辊变形、压扁量与金属恒流动等影响板材板型的主要因素;介绍了采用液压AGC系统控制板厚及板形、通过轧辊有载辊缝的控制进行板形控制、采用板形控制新技术和采用新型轧机等板形控制的途径和方法.关键词:板形控制;冷轧板带机;轧制中图分类号:TG333.7+2 文献标识码:A 文章篇号:100822441(2005)022*******The Shape Con trol of Runn i n g Cold2rolli n g Str i p M illSH I Hua(D epart m ent of M echanical,A ngang College forW orkers and S taff,A nshan L iaoning114002,China)Abstract:Analyze the main fact ors that affect shape of stri p by hardness homogeneity of r ollbody,r oller out of shape,flattering a mount,metal’s fl owing side ways during the hot r olling p r ocessand cold r olling p r ocess;I ntr oduce t o app ly hydraulic p ressure syste m AGC t o contr ol shape ofstri p and thickness of stri p,contr olling shape thr ough contr olling r oller sea m;app ly ne w technol ogyof shape contr ol and app ly ways and methods of ne w2type r olling m ill’s shape contr ol.Key words:Shape contr ol;Cold2r olling stri p m ill;Rolling 板材轧制过程就是轧机的弹性变形和轧件的塑性变形以取得预期的合格型材的过程.板形是板带的重要指标,包括板带的平直度、横截面凸度(板凸度)、边部减薄三项内容.随着仪表、电器、装备制造业、汽车及轻工业的发展,对板带的板形要求日趋严格.自上世纪60年代开始研究板形以来,为提高产品的精度和成材率,在技术上,研制了各种新型轧机,开发了新工艺、新的检测手段和控制系统;在基础理论上,对板形控制的数学模型进行了深入细致的研究,用计算机模拟轧钢过程,对轧后板形和横向厚差进行精确的设定、预测和控制.本文讨论冷轧带钢机轧制过程中的板形控制问题.1 轧机运行中对板形的影响因素1.1 热轧过程在热轧过程中,金属的晶粒被破碎,同时发生再结晶,再结晶晶粒大小取决于轧制温度、时间和变形程度.通常带钢边沿比中部冷却快,这一区域易生成一种高硬度的不完全再结晶铁素体组织而形成硬度沟,冷轧时延伸困难.两个区域延伸反差很大,导致了带钢内应力的上升,一旦内应力超过带钢的屈服极限,硬沟处便呈现封闭形状的小边浪.1.2 冷轧由于轧制力的作用,轧钢机轧制时工作机座产生一定的弹性变形.机座变形与轧制力有关,在轧制过程中的轧制力有波动,则在一定原始辊缝下,机座的弹性变形也有一定波动.使得轧件沿长度方向的收稿日期:2004-05-21作者简介:史华(1971-),女,辽宁鞍山人,鞍钢职工大学讲师.24鞍山师范学院学报第7卷厚度发生变化,产生了纵向厚度偏差;如果波动沿宽度方向不均匀变化,将使轧件产生横向偏差,并导致板形的变化.1.3 轧机压下量均匀程度如果热轧板带坯料板形良好,在冷轧过程中产生的板带波浪形或瓢曲形,主要决定于板带轧制时纵向延伸的不均匀程度.当板带两边压下量大于中部时,板带两边的延伸量较大,就产生了边浪,如果中部压下量大于边部,使中部的延伸量较大时,则产生中部浪形.1.4 轧辊变形在轧件塑性变形的同时,轧辊也发生弹性变形.轧件的变形热和磨擦热,导致轧辊也发生热变形.此外,由于轧制过程中产生轧辊磨损、轧辊辊缝形状不匀,造成带钢沿宽度方向上延伸分布不匀.轧辊本身有可能质量不高,形成辊面软点、辊面压痕,都会对板形产生影响,尤其是在板面凸度上的影响[1].1.5 压扁量与金属横流动对板形的影响有些板带横断面在接近板边部厚度突然减小,这一现象称为边部减薄,边部减薄量直接影响板边部切损的大小,与成才率有密切关系.发生边部减薄现象主要原因有:(1)轧件与轧辊的压扁量在轧件边部明量减小;(2)轧件边部金属的横向流动要比内部金属容易得多,这也进一步降低了轧件边部的轧制力及其与轧辊的压扁量,使轧件边部减薄量增加.2 控制板形的基本途径以往对冷轧板形的研究,只注重冷轧的过程,主要集中在轧制过程中轧辊系统的弹性变形、轧辊的磨损、热凸度以及变形区中金属塑性变形等.事实上,冷轧带钢的生产要经过冶炼—连铸—热轧—酸洗—冷轧—退火—平整—涂层—剪切包装等诸多工序.其中热轧、酸洗、冷轧、退火及平整等工序对带钢的板形有直接影响.热轧过程中带钢的板形及带钢性能在宽度方向上和轧制方向上的控制、酸洗的拉矫过程、冷轧过程的板形控制、连续退火时温度和张力的控制、平整机的板形控制及涂层前的拉矫等构成了一个全过程的复杂的冷轧板形控制系统.在这个系统中,前一个工序的出口板形影响后一个工序的板形.所以,带钢的最终板形不可能单独由系统中的某一个工序或某一设备所决定,而由整个系统决定.(1)热轧过程中,根据钢种不同,设定热轧目标终轧温度.必要时还要提高钢坯的出炉温度,确保热轧带钢的边部终轧温度控制晶粒均匀成长,尽量消除硬度沟的影响,为冷轧提供较为合适的板形.尤其是热轧后部设立平整机,通过在热状态下,平整机的拉伸矫平,消化板形缺陷.(2)在选择机型方面从根本上改善冷轧板形.如目前国际上HC系列冷轧机,CVC轧机、PC轧机和VC轧机等,均为采用了板形控制新技术的装备.(3)当轧机的机型及设置已经确定,控制策略和控制系统的结构将对板形好坏起着决定性的作用.现代化的冷连轧机,大多由4~6个机架组成.在末机架设置板形测量辊,实现在线闭环控制,关键是有效控制前道机架的出口板形,确保进入末机架带钢板形缺陷不超出末机架的控制能力.(4)冷轧机下游工序设备的板形控制.通过卷取机张力辊的拉力作用改善带钢的不平直度,平整机在平整过程中改善原先冷轧过程中发生延伸不均匀的纤维条.3 冷轧过程对板形控制的主要方法3.1 采用液压AGC系统控制板厚及板形为了实现轧件的自动测厚控制(简称AGC),使得纵向板形得以实现平直度,在现代板带轧机上,一般装有液压压下装置.采用液压压下的自动厚度控制系统,通常称为液压AGC.AGC系统包括:(1)测厚部分,检测轧件的实际厚度;(2)厚度比较和调节部分,将检测得到的轧件实际厚度与轧件的给定厚度比较,得出厚度差;(3)是辊缝调节部分,根据辊缝调节量讯号,通过压下装置对辊缝进行相应的调整,以减少或消除轧件的厚差,保持板形的恒定.3.2 通过轧辊有载辊缝的控制,进行板形控制如果轧制时各影响因素稳定,则通过合理的轧辊原始辊型设计,可获得良好的板形.但在轧制过程中,各因素在不断变化,需要随时补偿这些变化因素对轧辊有载辊缝形状的影响.因此,按照轧制过程中实际情况,必须随时改变辊缝凸度,这就产生了辊温控制法和液压弯辊控制法.温控制法是人为地沿轧辊辊身长度方向进行冷却或加热,使辊温发生变化改变轧辊凸度,来适应板形控制需要.液压弯滚辊法是将液压缸压力作用在轧辊辊颈处,使轧辊产生附加弯曲,以补偿由于轧制力和轧辊温度等同步变化而产生的轧辊有载辊缝的变化,以获得良好的板形.液压弯辊法能迅速改变辊缝形状,具有较强的板形控制能力,是板形控制的最有效方法.3.3 采用板形控制新技术板形控制新技术的基本原理有:(1)增加有载辊缝的刚度.轧制过程中,轧制力发生波动而仍然能保持有载辊缝形状的稳定性,有利于减小轧后板带板形波动.有载辊缝在轧制时的稳定性可用辊缝刚度系数来表示:Ks =Δq /ΔCR 式中Δq 为单位板宽轧制力的波动量,ΔCR 为辊缝凸度CR 对应于q 的波动量采用提高辊缝系数Ks 来增加板形控制能力的辊缝,视为刚性辊缝型,如:采用工作辊或中间辊(六辊轧机)游动来调节轧制力分布,从而提高了辊缝刚度.(2)加大轧辊辊缝(或有载辊缝)的调节范围.一般四辊轧机,工作辊原始辊型确定后是一定的,显然不能适应各种轧制情况.为了使其(或有载辊型)能适应轧制情况的变化而作相应的变化,应采用加大轧辊原始辊缝调节范围来控制板型,这就是柔性辊缝型.当前,从工艺技术方面改善板形控制已臻于成熟.现有的轧制设备和轧制工艺上的不断改进,使冷轧板带板形控制得到了一定程度上的解决.但板型控制新技术和从控制板型的新型轧机上取得预期的板形控制结果,已成为一种发展趋势.3.4 采用新型轧机,从根本上改善轧机运行中的板形控制(1)目前国际上流行CVC 轧机、PC 轧机和VC 轧机,它们的共同特点是:通过轧辊轴向抽动或摆角位置来改变原始辊缝状态,以实现无极辊缝调整,从而实现板形控制,为柔性辊缝型[2].我国自行研制开发的XGK 型轧机,对传统轧机提出了挑战.它采用了辊系准刚性、消差性、可宽性、不需弯辊和抽辊等新技术,在控制上不需AGC 、APC 等大小闭环等复杂的控制系统,能够生产出横厚差小于±1μm ,纵向厚差小于±2μm 的高精度产品[3].4 结 语轧钢设备运行中的板形控制是一个极其复杂的系统工程.冷轧带钢板形受各工序的影响,必须从整个系统进行全面控制,单一采用何种新型轧机不能代替.在已有的传统轧机运行中,以液压AGC 、弯辊装置等工艺方法改善板形控制是必要的,在一定时期内仍将做为板形控制的主要方法.但在冷轧机组新建或更新技术改造中,采用新机型,从设备改进上入手,使轧制过程中的板形控制登上一个新的台阶,亦是冶金行业发展的趋势.参考文献:[1]陈贻宏.350冷轧机钢度测量研究[J ].武汉钢铁学院学报,1996,(增刊):40-47.[2]傅作宝.冷轧薄钢板生产[M ].鞍山:冶金工业出版社,1996.[3]张凤泉.HC W 轧机辊系变形的有限元计算[J ].钢铁,1992,27(11):28-32.(责任编辑:陈 欣)34第2期史 华:冷轧板带机运行中的板形控制。
文件编号:GD/FS-1885
In Order To Simplify The Management Process And Improve The Management Efficiency, It Is
Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities.
编辑:_________________
单位:_________________
日期:_________________
(安全管理范本系列)
板带轧机电动及液压压下
联合控制系统详细版
专业生产运营 / Sample Professional Contract 文件编码:GD/FS-1885
- 第 2 页 -
板带轧机电动及液压压下联合控制
系统详细版
提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合
理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所
展示内容即为所得,可在下载完成后直接进行编辑。
随着科学技术的进步,我国经济得到了快速的发
展,汽车、电子等行业对板带钢材的质量要求越来越
高。厚度是板带材最重要的质量指标之一,厚度自动
控制AGC控制性能的优劣将直接影响轧制产品的质
量。本文对该轧机采取的改造方案为电动压下和液压
压下联合控制板厚,由电动压下进行辊缝粗调,液压
压下系统负责辊缝精调。
板带轧机厚度控制理论
1.1.影响轧制产品厚度的因素
轧制过程中,影响轧制产品厚度的因素很多,根
据弹跳方程,生产实际中影响轧制产品厚度的因素主
专业生产运营 / Sample Professional Contract 文件编码:GD/FS-1885
- 第 3 页 -
要如下:
1.1.1.轧机的机械装置和液压装置
在轧机加工装配过程中,零部件之间的误差对轧
机的刚度和空载辊缝造成直接影响,从而使得轧制产
品的厚度偏离目标值。轧机开始运作之后,其零部件
会发生变形或扭曲,这都会改变轧机辊缝的大小和形
状。一般情况,轧机的刚度越大,轧机的弹跳量越
小,辊缝的变化程度和轧制产品厚度偏差都越小,产
品尺寸精度就越高。
1.1.2.轧件的来料特性
厚度不均、硬度变化、截面变化、平直度变化等
来料特性会对轧制生产过程中的轧制力大小和辊缝值
变化产生一定影响。当影响因素已知,而来料特性未
知,这就难以满足轧制产品的厚度要求,此时,只有
轧机的厚度自动控制系统才能保证产品的质量。
专业生产运营 / Sample Professional Contract 文件编码:GD/FS-1885
- 第 4 页 -
1.1.3.轧机的控制系统
轧机的控制系统分为轧机硬件设备和控制模型。
限制轧机厚度控制精度的硬件因素主要有计算机的速
度与精度、传感器的精度与稳定性等。
板带轧机压下控制系统
2.1 .电动压下自动控制系统
2.1.1.电动压下控制过程
本轧机的传动侧和操作侧分别安装一台西门子直
流电机,用于空载时粗调轧机辊缝,当接收到粗调辊
缝设定值后,将电动辊缝调到目标设定值,此外,通
过进行倾斜度的监控,使得传动侧和操作侧的压下位
置偏差控制在允许的范围内,即上辊的倾角保持在允
许的偏差范围内。
电动压下控制方式为电机带动齿轮、蜗杆、涡轮
传动,压下两台50HP电机带动齿轮啮合。由于通过
专业生产运营 / Sample Professional Contract 文件编码:GD/FS-1885
- 第 5 页 -
大齿轮连接轴上的蜗杆带动轧机两侧蜗轮,蜗轮与压
下螺丝转动,蜗轮旋转是,压下螺丝上下运动。电机
之间的电磁离合器可以同步控制两边的压下,离合器
离开时,两边压下电机可以进行单独调节。
2.1.2.电动压下定位过程的控制算法
2.1.3.电动压下电机的控制方式
在此调速系统中,转速调节器是主导调节器,它
使控制电机的转速时刻随着给定电压发生变化而变
化,转速调节器的输出限幅值决定控制电机的最大允
许电流,稳态运行时可以对负载的变化起抗扰作用,
从而实现无静差转速。
2.2 .液压压下控制
传统电动AGC存在很多问题,比如响应速度
慢、调节精度差、压下效率低等。此案待会的轧机一
般都采用液压压下控制方式或者电液相结合的控制方
专业生产运营 / Sample Professional Contract 文件编码:GD/FS-1885
- 第 6 页 -
式。液压压下控制系统可以根据轧制实际情况改变,
实现动态调节,从而保证轧制产品的厚度保持不变。
其优点主要有以下几点:
2.2.1.液压AGC 的响应速度快,调整精度高。
液压AGC系统的伺服系统灵敏度高、摩擦力小,使
得系统的惯性大幅度降低,得以快速响应控制信号。
相对于电动AGC来说,其具有较高的阶跃响应频
率,这个数值一般在25Hz 左右。同时,液压采用
先进的反馈方式,控制精度可以达到2.5um,这远
抄电动装置的精度。
2.2.2.液压AGC 的过载保护简单可靠。液压压
下系统有防止轧机过载的安全阀等,这可以方式损坏
轧辊与轴承。在出现异常状况时,如卡钢、堆钢等,
可以快速排出液压缸中的压力油,实现过载保护。
采用液压压下方式可以根据工艺需要灵活地进行
专业生产运营 / Sample Professional Contract 文件编码:GD/FS-1885
- 第 7 页 -
控制。液压压下方式可以方便的对轧机的当量刚度进
行控制,实现轧机的“恒辊缝控制”与“恒压力控
制”之间的转换,以满足不同轧制阶段对机架当量刚
度的要求,适应各种金属、各种规程及不同厚度的轧
制要求。
2.2.3.液压AGC 的体积小、重量轻,具有惯性
低、工作平稳的优点,在功率相同的情况下,特别是
在大功率工况下,液压AGC 与电动AGC 相比,上
述优点的体现尤为明显。
2.2.4.液压AGC 装置均采用标准液压元件,结
构简单,使繁杂的机械结构得以简化,更能节约成
本。
3. 基于AMESIM 和MATLAB 的HAPC 仿真
研究
3.1. 电液伺服位置仿真模型建立
专业生产运营 / Sample Professional Contract 文件编码:GD/FS-1885
- 第 8 页 -
根据液压压下伺服系统的物理模型特点,在
AMESIM 环境下构造其机械液压模型,具体步骤如
下所述:
3.1.1.建立系统模型:首先选择AMESIM 的
“绘图模式”,根据轧机液压压下系统的实际物理模
型,搭建好液压压下系统框架如图3所示。利用
AMESIM 能够实现与MATLAB/Simulink 进行联合
仿真的接口,在已经搭建好的液压压下模型中搭建进
行联合仿真控制模块。
3.1.2. 选择系统子模型:根据实际需要,对系统
中各个模块选择合适的子模型并进行储存。
3.1.3.设置系统参数:根据实际设置系统的参
数,进行联合仿真时使用这一步骤生成的S函数。
3.1.4.运行系统:点击菜单“Tools”中的
“start MATLAB”选项,这时系统的AMESIM 物
专业生产运营 / Sample Professional Contract 文件编码:GD/FS-1885
- 第 9 页 -
理模型被MATLAB 软件当作一个普通的S函数,完
成数据交换,实现液压压下系统的联合仿真。
Simulink 模型及参数准备好之后,点击运行按
钮,则系统开始运行,进行仿真。
3.2 .仿真结果与分析
当空载时,液压缸位移的变化就是辊缝的变化,
取输入阶跃信号rin=0.15mm。
由仿真结果图7可以得到:模糊PID 控制效果
明显优于常规PID,常规PID 超调量为37%,而模
糊PID 无超调,无振荡,上升时间比较快。与常规
PID 控制相比,模糊PID 系统响应快,稳态误差
小,能够有效改善系统的动态性能,得到比较满意的
控制效果。
由于电液伺服控制系统是典型的非线性系统,存
在时变性、不确定性、外界干扰以及多种外界因素等
专业生产运营 / Sample Professional Contract 文件编码:GD/FS-1885
- 第 10 页 -
的影响,采用传统PID 算法时,难以选择控制参
数,系统存在抗扰能力低、超调量大等缺点;试验结
果表明该模糊PID 自动厚度控制系统,能使厚度控
制偏差快速接近目标值,大大提高了厚度控制精度,
既保留了PID 控制器无静差的特点,又能获得模糊
控制鲁棒性强的优点。
可在这里输入个人/品牌名/地点
Personal / Brand Name / Location Can Be Entered Here