循环水结垢原因与防止
- 格式:doc
- 大小:31.00 KB
- 文档页数:4
循环水中加碱的作用
循环水中加碱的作用主要是为了控制水的pH 值,防止腐蚀和结垢。
在循环水系统中,水会不断循环使用,因此水中的矿物质和杂质会不断积累,导致水的pH 值下降,从而增加了水的腐蚀性和结垢的可能性。
为了防止这种情况发生,可以向循环水中加入碱性物质,如氢氧化钠(NaOH)或碳酸钠(Na2CO3),以提高水的pH 值。
加碱可以将水的pH 值控制在合适的范围内,通常为7.0-9.0 之间,这样可以减少水的腐蚀性,防止设备和管道的腐蚀,同时也可以减少结垢的可能性,保证循环水系统的正常运行。
加碱的量应该根据循环水的水质和使用情况进行调整,过多或过少的加碱都会对循环水系统造成负面影响。
同时,加碱也需要注意安全,避免碱液溅到皮肤或眼睛等部位造成伤害。
循环水基础知识问答1.什么是浓缩倍数?哪些因素可以影响浓缩倍数?答:浓缩倍数是指循环水中的含盐量或某种离子的浓度与新鲜补充水中的含盐量或某种离子的浓度比。
影响因素:(1)蒸发损失;(2)排污水量的大小;(3)风吹损失;(4)循环冷却系统的渗漏。
2.循环水中的污垢是什么?是怎样形成的?答:污垢是指除单纯水垢以外的固体物,如泥渣、砂粒、腐蚀产物,微生物粘泥和某些成垢后的集合体。
由以下几个原因形成:⑴由补充水带入的矶花碎片或溶解盐类,这些胶体在循环水系统中升温浓缩后会形成污垢沉积。
⑵结构材料损坏后的碎片和腐蚀产物。
⑶微生物粘泥和死亡的藻类菌体。
⑷工艺介质的渗漏。
⑸加入水处理化学药剂也可能产生污垢。
3.污垢的危害有哪些?答:⑴污垢的沉积降低了传热效率⑵污垢的积聚会导致局部腐蚀⑶污垢在管内沉积降低了水流截面积,增大了水流阻力⑷增加了停车清洗时间,降低了连续运转周期⑸增加了清洗运行处理费用4.循环水中的微生物种类主要分为哪三类?答:细菌、真菌、藻类。
(1)细菌它是一类单细胞生物与水质污垢处理有密切的关系。
循环水系统中常见的细菌有硫氧化菌、铁细菌、硝化菌、其它好气异氧菌、硫酸盐还原菌、反硝化菌。
它们在冷却水系统中会形成严重的细菌粘泥,引起腐蚀,形成粘泥团沉积物。
⑵真菌它是具有丝状营养体的菌丝的寄生植物的总称。
冷却水系统中常见的真菌一般属半知菌类,主要是霉菌和酵母菌。
真菌在冷却水中常形成粘泥,堵塞管道,降低传热效率,有些真菌能利用木材的纤维素为碳源,破坏冷却塔中的木结构,另外真菌的生长和代谢还为细菌的滋生提供了条件和营养。
⑶藻类它是自养的无根茎叶分化的原植体植物,一般具有光合色素,能进行光合作用,制造氧气供生长需要。
生殖器官单细胞构造。
冷却水中常见的藻类有绿藻、蓝藻、硅藻。
藻类进入冷却水系统后,从水和空气中取得CO2、水、磷酸盐和少量矿物质而得以生长。
因而大量繁殖易形成粘泥,堵塞管道,降低传热效率,藻类生长还会形成氧浓差电池,造成垢下腐蚀。
工业循环水管道结垢和腐蚀问题分析摘要:随着社会经济的不断建设和发展,工业化和城市化发展的步伐也在不断加快,工业循环水是一种需要在特定管道下进行运输的工业用品,工业循环水在工业生产中为人们提供了极大的便利,大大提高了工业生产的效率。
但在长期使用工业循环水的过程中,由于管道材料本身的原因或者外部原因,往往会出现内部水质受到影响的现象,这就导致管道内部出现结垢或者腐蚀的现象,对工业生产产生一定的影响。
本文针对工业循环水管道出现的结垢和腐蚀问题,提出相应的解决和完善措施,从而有效保证工业循环水管道的稳定运行。
关键词:工业;循环水管道;结垢和腐蚀;解决措施在工业生产的过程中,循环水管道是十分重要的组成部分,这种管道主要对工业水进行及时的循环和再利用,从而有效降低水资源的消耗,提高工业生产的效益。
但是,在实际的工业生产过程中,循环水包含的物质比较丰富,比如,金属物质、化学物质等,工业循环水会受到相关因素的影响,或多或少会出现结垢和腐蚀的现象,当这种现象得不到及时的处理和解决时,就会导致工业循环水管道性能受到限制,也会极大降低工业生产的效率,企业经济效益和社会效益得到有效的发挥。
所以,在这样的情况下,有必要对工业循环水管道的结垢和腐蚀现象形成的原因进行详细的分析,并采取针对性的措施进行解决,进而提高循环水管道的稳定性,确保管道使用的长久性,进一步提高工业生产的效率,实现经济效益和社会效益的统一。
1.结垢和腐蚀产生的原因和机理1.1补充水在进行工业生产的过程中,会消耗大量的水,而为了进一步保证生产的稳定性,就需要对水资源进行及时的补充,但是补充水在进入工业循环水管道之后,也会进一步增加水中的硬度、ph值以及碱度等,这样就极易造成管道内水垢的形成。
当补充水中的硬度和碱度比较大的情况下,结垢也会比较多,同时,在不同温度的影响下,补充水也会达到饱和的状态,这样就会大大增加了循环水管道腐的腐蚀[1]。
除此之外,当使用工业循环水管道的过程中,水质中会出现相应的悬浮物,这些悬浮物具有晶核的作用,会进一步加大水的污浊度,这种情况下,悬浮物也会越来越多,如果这种情况得不到及时的处理,或者不定期对其进行处理,悬浮物堆积得越来越多,这种长期积累的悬浮物会进一步加大管道结垢和腐蚀的可能性,从而降低管道的使用寿命。
影响循环水水质的原因分析及处理方法摘要:目前,采用循环冷却水代替直排水冷却已成为化工行业的共识,循环水的水质直接影响下游装置水冷却器及设备的安全运行,水质超标,会使换热器表面形成水垢,影响换热效果。
同时,采用敞开式循环冷却方式的水场,冷却塔暴露在室外,受外界阳光、灰尘、风吹、雨淋等一系列环境因素影响较大,导致水场逐渐产生严重的沉积物附着,设备腐蚀和微生物大量滋长,以及由此而形成的黏泥污垢堵塞换热器列管等。
这一系列的问题,已是影响安全生产的重大隐患,本文旨在通过分析这些问题的成因,以找到切实可行的解决办法。
关键词:循环水;水垢;微生物;水质1 现存循环水水质问题现以我厂一套循环水装置为分析样本,该循环水系统拥有4台循环水泵,每台设计流量为3084m3/h,压力控制在0.4MPa~0.6MPa,向下游两个装置供循环水,正常状态为两开两备。
1.1 水垢随着大量水分在凉水塔中蒸发,水中含盐量逐渐增大,过饱和后会在换热器表面逐渐析出。
这些物质的主要成分为CaCO3、Mg(OH)2、Ca3(PO4)2,由于这些物质溶解度极低,因而很容易在换热器表面形成水垢。
水垢的存在使换热设备的水流阻力变大,水泵及相关设备的能耗大幅增加;同时也导致换热设备热效率降低,从而降低产品品质和生产效率,对工厂造成一定的经济损失。
1.2 污垢污垢一般是由细小的泥沙、尘土、不溶性盐类的泥状物、胶状氢氧化物、杂物碎屑、腐蚀产物、油污、特别是藻类的尸体及其黏性分泌物等组成。
但污垢在传热表面上黏附不紧,容易清洗,有时只需用水冲洗即可除去。
但在运行中,污垢和水垢一样,也会影响换热器的传热效率。
1.3 微生物由于循环水的循环利用,水中各种离子浓度升高,为微生物的滋生提供了良好的生态环境,如果微生物得不到有效控制,不仅会产生微生物腐蚀,大量细菌分泌出的粘液像粘合剂一样,并以微生物群体及其遗骸为主体,与水中灰尘、杂质、化学沉淀物、腐蚀产物等粘结在一起,形成粘糊糊的胶粘状物,即微生物粘泥。
工业循环水常遇问题及解决方案标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]工业循环水常遇问题及解决方案一、工业循环水随着工业生产的发展,水用量急剧增加,很多地区已经出现供水不足的现象,节约用水刻不容缓!冷却水占工业用水主体,提高其重复利用率、循环使用是节水节能的必须手段二、循环水运行过程中常产生的问题在工业生产的工艺条件下,工业循环水水质常会发生一系列变化,对生产造成危害,如:腐蚀、结垢、菌藻、粘泥等。
这些问题如果得不到有效的解决,则无法进行安全生产,造成巨大的工业损失。
1、水垢由于循环水在冷却过程中不断地蒸发,使水中含盐浓度不断增高,超过某些盐类的溶解度而沉淀。
常见的有碳酸钙、磷酸钙、硅酸镁等垢。
碳酸钙碳酸钙是工业循环冷却水中最常见的水垢,主要是Ca(HCO3)2在循环冷却水的运行中受热分解成CO2和CaCO3。
磷酸钙为了抑制系统材质的腐蚀,常常要加入聚磷酸盐来作为缓蚀剂,当水温升高时,聚磷酸盐会分解为正磷酸盐。
硅酸镁水中的SiO2量过高,加上水的硬度较高,生成非常难处理的硅酸钙(镁)硬垢。
水垢的质地比较致密,大大的降低了传热效率,0.6毫米的垢厚就使传热系数降低了20%。
2、污垢污垢主要由水中的有机物、微生物菌落和分泌物、泥沙、粉尘等构成。
垢的质地松软,阻隔传热、阻隔水流、引起垢下腐蚀,缩短设备使用寿命。
.3、电化学腐蚀循环水对换热设备的腐蚀,主要是电化腐蚀。
产生原因有设备制造缺陷、水中充足的氧气、水中腐蚀性离子(Cl-、Fe2+、Cu2+)以及微生物分泌的黏液所生成的污垢等因素。
如果不加控制,极短的时间便使换热器、输水管路设备报废。
4、微生物粘泥循环水中溶有充足的氧气、合适的温度及富养条件,很适合微生物的生长繁殖。
如不及时控制将迅速导致水质恶化、发臭、变黑。
冷却塔大量黏垢沉积甚至堵塞,冷却散热效果大幅下降,设备腐蚀加剧。
工业循环水处理技术5、水垢的控制方法?从冷却水中去除成垢钙离子从水中除去Ca2+,使水软化,则碳酸钙就无法结晶析出,也就形不成水垢,主要两种方法。
循环水处理整体解决方案一. 循环冷却水系统概况二. 问题概述循环冷却水系统日常运行面临的问题:2.1 设备结垢,阻碍传热,增加能耗,降低生产负荷结垢:是指水中溶解或悬浮的无机物,由于种种原因,而沉积在金属表面。
冷却水中富含碳酸氢钙等不稳定盐类,在换热管壁受热,即转变为碳酸钙等致密硬垢,规则沉积在管壁,其传热效率仅为碳钢的1%左右,也就是在换热管壁如果沉积0.5mm厚的硬垢,就相当于换热管壁厚增加了50mm,严重阻碍传热的正常进行,能耗增加,从而对生产负荷构成极大影响,甚至停车。
2.2 滋生粘泥软垢,阻碍传热;加速设备腐蚀,特别是发生点蚀事故阻碍传热:微生物繁殖、代产生的黏液(象胶水一样具有很强黏性),与循环水中的悬浮物(补充水进入、冷却塔抽风冷却水洗涤空气灰尘进入)和微生物尸体等交织黏附在一起,随水流黏附在设备壁面,不久就会形成一层滑腻的垢层,即所谓的表面疏松多孔的软垢。
附着在换热管壁的软垢,是热的不良导体(导热系数很小,只有不锈钢材的百分之一),因此会造成换热效果明显下降,影响生产负荷。
发生点蚀:软垢层疏松多孔,为氧气的渗入形成良好通道,在循环水这个大的电导池中(富含盐),形成无数个小浓差电池,每个小电池就是一个点发生电化学反应,从而加速设备点蚀现象的发生,久之即发生纵深腐蚀穿孔事故。
2.3 设备腐蚀,缩短使用寿命腐蚀:是指通过化学或电化学反应使金属被消耗破坏的现象。
在循环水系统中,主要以溶解氧化学或电化学腐蚀为主,这种腐蚀除了会造成系统的水冷设备损坏或使用寿命减少外,还会由于腐蚀造成水冷器穿孔,从而引起工艺介质泄漏造成计划外的停车事故等,另外由于腐蚀会产生锈镏,会引起换热效率下降或管线堵塞等危害。
三. 循环冷却水处理技术要求3.1 循环冷却水系统设计标准HG/T 20690-2000《化工企业循环冷却水处理设计技术规定》,《GB50050-95》3.2 补充水预处理水质要求3.3 循环水系统水处理效果指标3.4补充水量与浓缩倍率、排污水量关系补充水量 = 蒸发水量 + 排污水量 + 风吹损失 + 渗漏.1 蒸发水量: E =⊿T×Q×4.184÷R(m3/h )式中:T—示进出水温差,℃;Q—示循环水量,m3/h;R—示蒸发潜热,kJ/kg;(根据系统设计温度一般R值为2404.5 kJ/kg).2 风吹损失:一般为循环水量的0.1%,为0.5 m3/h;.3 排污水量:B排 = E÷(K-1)- D(风吹)式中:K—示浓缩倍数;D—示风吹损失,一般为循环水量的0.1%;.4 系统渗漏:系统渗漏一般设为0 m3/h与水处理药剂投入关系系统水处理费用与补充水量成正比,因此提高浓缩倍率运行,是降低水处理费用的有效方法,但随浓缩倍率提高一定倍数时,又会使循环水中有害物质含量超标,因此须同时采取一定的辅助措施,如pH调节/加大旁流过滤处理等方法,使系统处理综合成本最低。
水垢处理控制方法循环水处理系统里的水垢控制技术:1、水垢的控制循环水系统中最易生成的水垢是碳酸钙垢,水垢控制即是防止碳酸钙的析出,大致有以下几类方法。
⑴从补充冷却水中除去成垢的钙、镁离子在补充水进入循环水系统之前进行软化处理,除去Ca2+、Mg2+,也就形不成水垢。
目前常用的软化方法有两种:一是离子交换树脂法,该法适于补充水量小的循环水系统间或采用;二是石灰软化法,即投加石灰,使Ca(HCO3)2反应生成C aCO3沉淀提前析出。
该方法成本低,适于原水(尤其是暂时硬度大的结垢型原水)钙含量高,补充水量较大的循环冷却水系统。
⑵加酸或通入C O2气体,降低PH值,稳定重碳酸盐在循环水中加酸(通常为硫酸)或通入CO2气体,降低PH值,使下列平衡左移,重碳酸盐处于稳定状态。
加酸法目前仍有使用,关键是控制好加酸量,否则酸量过多会加速设备腐蚀。
通CO2气体同样应注意控制好PH值,否则循环水通过冷却塔时,由于CO2的溢出,CaCO3在塔内结晶,堵塞填料,形成钙垢转移现象。
该方法在某些化肥厂、化工厂及电厂等有CO2气体源的企业仍有推广使用的价值。
⑶投加阻垢剂在循环水中投加阻垢剂,破坏CaCO3的结晶增长过程,以达到控制水垢形成的目的。
目前常用的阻垢剂有聚磷酸盐、有机多元膦酸、有机磷酸脂、聚丙烯酸盐等,这也是目前应用最广的控制水垢的方法。
2、污垢的控制控制污垢,可从下面几个方面努力:⑴对补充水进行预处理,降低浊度⑵做好循环水水质处理⑶投加分散剂可将粘合在一起的泥团杂质等分散成微粒悬浮于水中,随水流流动而不沉积,从而减少污垢对传热的影响,部分悬浮物还可随排污排出。
⑷增加旁滤设备如果在系统中增设旁滤设备,控制好旁流量和进、出旁流设备的浊度,就可保持系统长时间运行下的浊度在控制指标内,减少污垢形成。
工业循环水处理知识培训资料第一部分工业循环冷却水结垢腐蚀的成因、处理理论及方法一、水质的简单分类:1、水的成分:水中杂质的组成分为阳离子和阴离子。
阳离子分为两大类:Ca2+、Mg2+和K+、Na+阴离子也分为两大类:1)OH-、CO32-、HCO3-等称为M 碱度;2)Cl-、SO42-、NO3-等2、水的类型:根据水中阴阳离子的配合不同,可组成不同类型的水质;(主要是硬度和碱度的配合)硬度用H来表示,碱度用M来表示。
1)H<M 称为碳酸盐型水2)H>M 称为非碳酸盐型水3)M>H 称为负硬水(高K+、Na+,低Ca2+、Mg2+)4)M=H 称为中性盐水可用下图来表示:3PH>10 M= OH-+CO32-+HCO3-10>PH>8.3 M= CO32-+HCO3-8.3>PH>4.5 M= HCO3-4、M(总)碱度和P(分)碱度的关系:P=0 HCO3-2P<M CO32- =2P HCO3-=M-2P2P=M CO 32- =M2P>M CO 32- =2(M-P) OH - = 2P-MP=M OH -如:我们测得水的碱度,M 碱度为5mmol/L , P 碱度为1 mmol/L ,那么水中CO 32- 含量为2mmol/L , HCO 3- 含量为5-2mmol/L= 3mmol/L 。
5、PH 值同结垢倾向的关系:虽然循环水中的Ca 2+、Mg 2+盐的析出是受补充水的水质和浓缩倍数而决定的,但PH值可改变碳酸盐碱度的形式和数量,因此循环冷却水的结垢倾向是可由PH 值来调整的。
溶于水的Ca (HCO 3)2和CaCO 3有如下平衡关系:Ca (HCO 3)2在水中溶解度很大,20℃时为16.6g/100mL H 2O ,而CaCO 3在25℃时只有1.79 g/100mL H 2O,极易沉淀。
从以上平衡关系来看,H +起着第二平衡的作用。
循环水的问题及解决方案在我国的火力发电厂中,由于循环冷却水系统处理不当而引起的发电机组凝汽器腐蚀结垢问题屡见不鲜。
凝汽器腐蚀容易引起铜管穿孔、开裂,增加设备的检修时间和次数,缩短设备的使用寿命,减少发电量,增加发电成本;凝汽器结垢一方面导致垢下腐蚀,另一方面降低换热器的热交换效率(从而影响到生产效率),增加能源消耗。
在正常运行状况下,凝汽器的真空度下降为89%-92%。
如果所使用的缓蚀阻垢剂的性能不当,导致系统一定程度的结垢,使凝汽器的真空度下降为86%-89%,这将使发电热耗增大4.5%-7.5%,发电煤耗增高8%-14%/kW·H。
如果考虑停车清洗、设备腐蚀和增加维修频率等所引起的连带后果,其经济损失是异常惊人的。
总之,凝汽器腐蚀结垢所造成的直接后果真空度下降、蒸汽出力减小、正常生产处理不当而引起的发电机组凝汽器周期缩短、设备寿命降低、运行成本提高、生产效率下降,带来巨大的经济损失。
因此,采用经济的有效的手段防止循环冷却水系统的腐蚀和结垢是非常重要的。
【火力发电厂循环冷却水的处理方式】我国许多缺水地区的火力发电厂,普遍采用地下水作为循环冷却水系统的补充水。
一般而言,地下水普遍存在含盐量高和硬度、碱度高的特点。
随着系统谁的不断浓缩,硬度离子如(Ca2+,Mg2+,HCO3-等)和侵蚀性离子(如Cl-和SO42-等)的浓度不断升高,超过一定的容忍度后极易引起设备管道的腐蚀与结垢。
另外,在这些缺水地区,为了节水节能的需要,循环水的浓缩倍数一般控制较高,这就进一步加重了系统腐蚀和结垢的危险性。
对于有些以地表水作补充水的电厂循环水系统,虽然硬度离子和侵蚀性离子浓度较低,但如果浓缩倍数过高,再加上处理方式不合适,同样也会引起机组的腐蚀和结垢。
为了解决循环冷却水系统的腐蚀结垢问题,国内的火力发电厂常规的处理方法有以下几种。
1、利用软化水降低补水的硬度该方法通过离子交换去除补水中的Ca2+和Mg2+等硬度离子而达到预防无机垢沉积的目的。
工业循环水处理的机理与方法摘要:化工企业循环水的处理效果直接影响化工企业的污水排放,因此有效解决化工企业循环水处理中存在的问题十分重要。
在化工企业的发展中,循环水处理是化工企业发展的关键因素。
大多数化工企业已经意识到循环水处理在企业运营中的重要性,并积极采用先进的新技术处理循环水,以减少循环水对化工企业造成的危害。
关键词:工业;循环水处理;机理与方法前言化学工业的废水处理没有得到有效改善。
与其他行业排放的废水相比,化工废水的成分复杂,含有重金属等有害物质,因此化工废水的排放一直是社会关注的焦点。
如果不加限制地排放,将对地表水和周围环境产生不可逆转的影响。
1化工企业循环水处理问题1.1工艺介质发生泄漏在化工生产过程中,在所用到的化工水循环装置中,设备的内部会有工艺介质,这些工艺介质存在泄漏的风险,工艺设备的泄漏会导致换热设备的表面形成一层油膜,这种物质的产生会给一些微生物提供生存的条件,尤其适应藻类的生存,如果不能够有效地对这一问题进行控制,那么将会给设备带来负面的影响,不利于设备的正常运行,甚至这些介质的泄漏还会对循环水造成污染,这对循环用水的出路也是非常不利的。
1.2浓缩倍数不够高现阶段的化学企业的生产运行过程中,需要利用大量的水资源,但在实际的循环冷却水系统中,主要存在的问题是热负荷不够高,但是循环水的保有量比循环水量高得多,这种按情况容易引发循环水的浓度系数不够高的现象,不能够降低水循环的腐蚀性的问题,导致水循环系统水质被污染。
想要有效地缓解这种现象,需要使用稳定剂对循环水的浑浊度进行控制,而这将会加大循环水成本的投入,同时也要保障水循环系统的正常运行不会受到影响,减少因为水循环系统中水质浑浊比较严重而导致滋生大量细菌的现象,大量的细菌滋生又会产生生物黏泥,这些黏泥会黏附在换热管道设备上,影响换热设备的运行功率,同时也会影响工作的运行。
2化工企业循环水污染的危害2.1腐蚀铁质设备循环水中存在有泄漏物,这些泄漏物会给一些细菌微生物提供良好的栖息环境,浑浊水中大量的营养物质使得微生物的生长迅速,那么会导致水质的黏泥量大量增长,发生出水口、吸收口堵塞的现象从而导致循环水工作受限,还会对铁质的管道等零件造成腐蚀,根据不同的现象要制定不同的解决处理方式,根据泄漏物的不同以及其化学性质的不同,可以制定针对性的解决方案。
循环水高碱度原因及处理建议循环水是指在工业生产过程中通过合理的处理和回收再利用的水。
由于经过多次循环使用,循环水的碱度会逐渐增加,这给生产过程带来了一些问题。
本文将深入探讨循环水高碱度的原因,并提出一些建议和措施来处理这个问题。
1. 循环水高碱度的原因:1.1 水质来源:循环水的主要来源是生产过程中的冷却水和洗涤水。
这些水源中可能含有大量的溶解性盐类,如钾离子、钠离子等。
当循环水多次循环使用之后,这些溶解性盐类会积累并导致循环水的碱度升高。
1.2 化学反应:在循环水的长时间使用过程中,水和气体或其他物质发生化学反应也会导致碱性物质的积累,从而使循环水的碱度逐渐增加。
1.3 水质控制不当:循环水的质量控制对于保持水体的碱度是至关重要的。
如果没有适当的水质控制措施或水处理设备失效,循环水的碱度就很可能升高。
2. 循环水高碱度的危害:2.1 影响生产效率:循环水高碱度会影响工业设备的正常运行,尤其是对于使用水作为冷却介质的设备而言。
高碱度会导致设备表面的结垢、腐蚀甚至堵塞,从而降低传热效率和水流量,进而影响生产效率。
2.2 增加设备维修成本:循环水高碱度会导致设备的损坏和腐蚀。
频繁的设备维修和更换元件不仅会增加维修成本,还会延长生产线的停机时间,对企业造成经济损失。
2.3 环境影响:高碱度的循环水被排放到环境中可能对水生生物和生态系统造成一定的影响,甚至导致水体污染。
3. 处理循环水高碱度的建议:3.1 定期监测和检测:建立一套完善的循环水碱度监测系统,定期对循环水进行检测和分析。
及时了解水质的变化情况,可以采取相应的处理措施以防止碱度过高。
3.2 适时进行水质调整:根据监测结果,通过添加适量的酸性溶液或碱性溶液来调整循环水的碱度,使其保持在合适的范围内。
3.3 定期清洗和维护设备:定期对循环水系统中的设备进行清洗和维护,特别是冷却设备和管道。
清除设备表面的结垢和沉积物,以减少碱性物质的积累和对设备的损害。
循环水结垢怎样解决
我公司循环水使用情况:进水温度小于33℃、回水温度小于50℃。
使用2级反渗透纯水作循环水,PH7.22、电导率1.7μS/cm、氯化物小于10mg/L、钙离子0.37 mg/L、镁离子0.1 mg/L、总碱度7.5 mg/L。
运行15天后,开始在冷却铜套上结垢。
每天补充新纯水约40吨、水循环量为250立方米/小时。
结垢时PH7.29、电导率44μS/cm、氯化物小于10mg/L、钙离子1.97 mg/L、镁离子0.33mg/L、总碱度17.9 mg/L、总硬度14.5 mg/L。
所有供水管道为不锈钢管路。
水池用环氧树脂作
1布三涂。
用自来水作循环水前15天也不结垢,15天后也会结垢,中间加自来水补充。
是什么原因造成的结垢?。
解答循环水的问题及解决方案想了解环保水处理技术请上水博网.想了解最新环保设备产品及价格请上水博商城,环保从业人员最喜爱的微信平台!在我国的火力发电厂中,由于循环冷却水系统处理不当而引起的发电机组凝汽器腐蚀结垢问题屡见不鲜。
凝汽器腐蚀容易引起铜管穿孔、开裂,增加设备的检修时间和次数,缩短设备的使用寿命,减少发电量,增加发电成本;凝汽器结垢一方面导致垢下腐蚀,另一方面降低换热器的热交换效率(从而影响到生产效率),增加能源消耗。
在正常运行状况下,凝汽器的真空度下降为89%-92%。
如果所使用的缓蚀阻垢剂的性能不当,导致系统一定程度的结垢,使凝汽器的真空度下降为86%-89%,这将使发电热耗增大4.5%-7.5%,发电煤耗增高8%-14%/kW·H。
如果考虑停车清洗、设备腐蚀和增加维修频率等所引起的连带后果,其经济损失是异常惊人的。
总之,凝汽器腐蚀结垢所造成的直接后果真空度下降、蒸汽出力减小、正常生产处理不当而引起的发电机组凝汽器周期缩短、设备寿命降低、运行成本提高、生产效率下降,带来巨大的经济损失。
因此,采用经济的有效的手段防止循环冷却水系统的腐蚀和结垢是非常重要的。
【火力发电厂循环冷却水的处理方式】我国许多缺水地区的火力发电厂,普遍采用地下水作为循环冷却水系统的补充水。
一般而言,地下水普遍存在含盐量高和硬度、碱度高的特点。
随着系统谁的不断浓缩,硬度离子如(Ca2+,Mg2+,HCO3-等)和侵蚀性离子(如Cl-和SO42-等)的浓度不断升高,超过一定的容忍度后极易引起设备管道的腐蚀与结垢。
另外,在这些缺水地区,为了节水节能的需要,循环水的浓缩倍数一般控制较高,这就进一步加重了系统腐蚀和结垢的危险性。
对于有些以地表水作补充水的电厂循环水系统,虽然硬度离子和侵蚀性离子浓度较低,但如果浓缩倍数过高,再加上处理方式不合适,同样也会引起机组的腐蚀和结垢。
为了解决循环冷却水系统的腐蚀结垢问题,国内的火力发电厂常规的处理方法有以下几种。
浅谈如何保证循环水水质对炼油企业循环水系统水质存在的一些主要问题如硬度高、浊度高等引起结垢、腐蚀的因素进行分析,提出合理的解决办法,保证循环水水质,以利于生产的正常进行。
标签:循环水;水质;水垢;腐蚀1 影响水质的因素(1)污垢影响。
循环水冷却塔不是一个全封闭系统,塔池与外界直接接触,由外界带来的污染物比较多。
由于塔池周围的尘土、泥沙、杂草、树叶等杂物,在风天极易进如冷却塔水池。
这些有机及无机杂质,就会随水流经管道及换热器,在其表面沉积而形成污垢。
如果换热器漏油量比较大,这些漏油和其他污物就会粘附在换热器和管壁上。
由于温度高,通过复杂的作用,也会形成坚硬的污垢。
在夏季气温高就会有藻类在冷却构筑物与水接触的漏光部位大量繁殖,由于藻类群体的生长,影响了水和空气的流动,而藻类脱落后便成为污垢沉淀。
此外它们的群体体积很大,防碍了热传递,同时有机污垢还能造成强烈的腐蚀。
所以污垢对循环水的危害极大,不仅使传热效率下降,过水断面减小,同时也加重了腐蚀。
极大的影响了循环冷却水系统的正常运行,影响生产甚至会出现严重事故。
(2)水垢影响。
由于水中含有Ca、Ma等离子硬度,就会在换热器及管道表面形成沉积,而形成水垢。
水垢主要危害能使传热效率下降,过水断面减小,影响换热器正常使用。
我厂采用除盐水系统补水,应该说软化水硬度很小,几乎为零。
但是实际中每天通过检测化验硬度都不超过0.01mgN/l,有时超高主要有三个方面的原因:一是系统中含有少量的盐,硬度不为零。
通过蒸发、风吹等损失一部分循环水,加剧了循环水浓缩作用。
浓缩倍数增大,使系统中含盐量相对增多。
二是装置操作不当,有串新鲜水现象。
由于新鲜水含有盐类硬度较多,一旦系统中有新鲜水加入,就会使系统中硬度很难在短期内消除(除非家处理药剂)。
三是软化水本身处理的除盐水有时就不合格,为生水,这样同样也会使系统中硬度增高。
所以在现行的运行生产中,硬度的消除比较困难,要得到合乎要求的循环水也是比较难的,水垢的消除还的进一步进行处理。
循环水结垢原因与防止
1、固相物的生成
⑴形成污垢的原因:
①多组份过饱和溶液中盐类的结晶析出;
②有机胶状物和矿质胶状物的沉积;
③不同分散度的某些物质固体颗粒的粘结;
④某些物质的电化学还原过程生成物等。
以上混合物沉积总称作污垢。
⑵形成水垢的原因:
水中溶解盐类产生固相沉淀是构成结垢(水垢)的主要因素,其产生固相沉淀的
条件是:
①随着温度的升高,某些盐类的溶解度降低,如Ca(HCO3)2、CaCO3、Ca(OH)2、
CaSO4、MgCO3、Mg(OH)2等;
②随着水份的蒸发,水中溶解盐的浓度增高,达到过饱和程度;
③在被加热的水中产生化学过程,某些离子形成另一些难溶的盐类离子。
具备了上述条件的某些盐类,首先在金属表面上个别部分沉积出原始的结晶胚,
并以此为核心逐渐合并增长。之所以易沉积于金属表面,这是因为金属表面在微
观上具有一定的粗糙度,微观上的凹凸不平成为过饱和溶液中固体结晶核心;同
时加热面上的氧化膜对固相物也有很强的吸附力。作为构成水垢的盐类——钙
镁,在过饱和溶液中生成固相结晶胚芽,逐变而为颗粒,具有无定形或潜晶型结
构,接着互相聚附,形成结晶或絮团。固相沉渣的生成与胚芽核心的生成速度有
关,即与单位时间内出现的结晶核数量与结晶生长的线速度有关,而这两个因素
又与水温和水中含盐浓度及其它杂质的存在有关。
2、重碳酸盐的分解
冷却水结垢的主要原因是因为水中含有较多的重碳酸钙,在加热过程中失去平
衡,分解为碳酸钙、二氧化碳和水。碳酸钙溶解度较低,因而首先在冷却设备表
面沉积下来。温度、压力等因素也影响结垢的强度与速度。重碳酸钙是反溶解度
盐类,在超过一定温度(临界点)时,其饱和浓度急剧减小。
3、钙、镁碳酸盐水垢
碳酸盐水垢通常以致密的结晶沉淀在加热器壁面甚至冷却塔填料或壁上。但当水
温在过热面超过100℃时,CaCO3沉淀是海绵状的絮状体。虽然,在沸腾温度以
下,也有可能出现硫酸钙的沉淀,但这只能是特例,因为硫酸钙的三种状态:C
aSO4、2CaSO4·H2O、CaSO4·2H2O三者的溶解度都很大,因而在冷却水的具体
条件下,可以完全不必考虑硫酸钙的沉积问题。氢氧化钙的溶解度也是随温度升
高而降低的,但在一般情况下在水中不会生成氢氧化钙,因而也不必考虑。重点
在于钙镁的碳酸盐:
Ca2++2HCO3=H2O+CO2↑+CaCO3↓
Ca(HCO3)2=CaCO3↓+H2O+CO2↑
Mg(HCO3)2=MgCO3↓+H2O+CO2↑
MgCO3的溶解度比CaCO3的溶解度大六倍以上,而且在水中的MgCO3会很快水解。
MgCO3+H2O=Mg(OH)2↓+CO2↑
在水中以Mg(OH)2状态存在,而Mg(OH)2的溶解度因温度升高所起的变化较慢,
基本上很少会沉积,况且在天然水中的钙离子远远大于镁离子,镁盐的沉积在数
量上影响较微,可以忽略不计。
4、垢成份及来源
⑴污垢的分类:
无机盐类的沉积称为"垢",它有固定晶格,比较硬,其主要成份为Ca3(PO4)2、
CaCO3、SiO2,镁盐和铁的氧化物。而有机物、菌类、藻类、悬浮物等称为"污",
即水中呈胶体状的粘泥。它比较软,无固定形态。
⑵污垢成份:
污垢包括水垢、腐蚀产物、生物污泥、悬浮物沉积等。其主要成份为:SiO2、P
2O5、SO42-、Fe2O3、Al2O3、CaO、MgO、CuO、CO2、灼烧减量等。
⑶污垢来源:
胶体有机物泥、原水滓、污物、可溶性铁、微生物沾污物、灰尘、空气带入;活
性气体:H2S、SO2、NH3等;源水垢:CaCO3、CaSO4、MgSiO3;腐蚀产物:Fe2O
3、循环水生产中泄漏物:烃、硫化物、微生物污垢。
冷却水系统中的污垢,不单纯是钙镁碳酸盐的结垢沉积,污垢的成份及其形成的
因素是复杂的。
①结晶:溶解盐类的析出,以如前述,主要是钙、镁的碳酸盐;在热交换器加热
面上也有可能产生硅酸盐水垢(当水中SiO2含量>200PPM时),以及含有钙、
镁、铝、钠等复盐的硬垢。而当水中磷酸盐和铁含量较高,而碱度又低时,则有
可能产生铁磷酸盐的水垢NaFePO4。结晶水垢的种类大致有:
a、低温下的重碳酸钙热分解:α-CaCO3松软水垢;
b、高PH时Mg(OH)2的沉积:Mg(OH)2;
c、壁面致密的碳酸钙 β-CaCO3;
d、过剩的铁离子:FeCO3。
②沉积:腐蚀产物、粘土、砂尘的沉积,如补充水中带入的泥砂或悬浮物,进冷
却塔空气带入的微尘粒子;换热器中渗漏的工艺杂质、油脂、细菌、藻类、真菌
类所生成的粘泥。这些沉积物往往吸附在化学反应晶体水垢表面上而对反应起催
化作用,加速了污垢的形成。
③反应与聚合:油泥、有机氧化物等的沉积。
④腐蚀所造成的糙壳:
⒌阻垢机理
水中的钙、镁离子与碳酸根、磷酸根等结合生成难溶的小晶体,这些小晶体不断
碰撞并按一定的方向增长变成大晶体。水中的钙、镁盐晶体及其不溶性微粒同时
受到两个力的作用,即与管壁上的水垢结合生成体积更大的垢的结晶力和水流的
剪切力,当结晶力较大时便易使垢增长,当结晶力较小时(如加入阻垢剂后)或
剪切力较大(如水流速较大的部位)时,垢无法增厚,水中的微粒只能以水渣的
形式被水冲走。
⑴增溶机理
有些阻垢剂能与水中的钙镁离子形成比碳酸钙等难溶盐更稳定的可溶解于水的
络合物,使钙、镁无法形成碳酸钙等小晶体。这种阻垢剂不但能阻垢,若浓度达
到一定程度,还能起到除垢的作用。
⑵晶格畸变的机理
阻垢剂的活性基团与碳酸钙等晶体上的钙结合,由于阻垢剂分子的空间阻扰,使
碳酸钙等难溶盐无法按正常的晶格方向增长,结晶力被削弱,垢变得松软,易被
水流冲掉。
⑶自解脱机理
阻垢剂分子与难溶盐小晶体共同沉淀形成垢,由于阻垢剂分子破坏了垢的晶格顺
序,垢之间的结晶力较弱,这种垢无法形成坚实的垢,只能形成软垢。随着软垢
的增厚,受到水流的冲击力也增大,当冲击力大于结晶力时,软垢与阻垢剂分子
一起脱落被水冲走。因此加了这种阻垢剂循环水只能结一层薄薄的水垢。
⑷分散机理
某些阻垢剂分子加入水中后能水解电离出高分子阴离子,这些阴离子能强烈地吸
附在水中的各种微粒表面,使这些微粒都带负电荷。由于静电相斥力的作用,这
些带负电荷的微粒无法碰撞生成大晶体,只能呈分散状态悬浮于水中。
⒍控制结垢的措施
⑴水的软化
用石灰软化法、反渗透法或离子交换法对循环水作软化处理,降低或去除水中的
钙、镁离子,因无法形成饱和溶液而使水垢无法生成。
软化水消除了生成水垢的隐患,却无法防止污垢的生成。同时,软水的腐蚀速度
要远远大于硬水的腐蚀速度。许多行之有效的常用缓蚀剂须有钙、镁离子才能发
挥作用,因此使用软水作循环水水源给缓蚀剂的筛选带来限制。
⑵加酸或通CO2气体
重碳酸盐在水中存在着下列平衡:
Ca(HCO3)2=Ca2++2HCO3-
HCO3-=H++CO32-
Ca(HCO3)2=CaCO3+H2O+CO2↑
从上述离解平衡可看出加酸或加CO2都可使Ca(HCO3)2稳定。但这种方法只能防
止碳酸盐垢的形成,而对其它垢则不起作用。
加酸若控制不当,如加酸过多,或加酸速度过快,造成局部浓度过高等,都易造
成金属的腐蚀。
⑶增加旁滤设备
对于敞开式冷却水系统来说,增加旁滤设备可有效地减缓污垢的生成。因为空气
带入的灰尘,菌藻的尸体,补充水带入的各种杂质可被旁滤设备过滤去除。但这
种方法无法防止水垢的生成。
⑷电子处理
电子处理对小型系统或某一特定的对象(如冷凝器)有较好的防垢、除垢的效果,
但对大型系统或循环周期长的系统效果欠佳。
⑸投加阻垢剂、分散剂
从污垢的形成机理可看出,污垢的形成需先生成晶核,形成少量的微晶粒,这些
微晶粒由于布朗运动和金属器壁碰撞,从而吸附于金属表面并不断变大。因此可
加入阻垢剂破坏水垢的晶格,抑制水垢增长变厚。或加入分散剂,把这些微粒稳
定地分散在水中,防止在器壁上沉积变成污垢。
①酸化降低PH值:通常用硫酸,用量80~90mg/L,把PH值控制在6.0~6.5。
②添加螯合剂,如聚磷酸盐,硫代磷酸盐,多元醇酯类,也称结垢抑制剂。