泡沫铝
- 格式:ppt
- 大小:4.30 MB
- 文档页数:45
泡沫铝产业环境评估报告
泡沫铝是一种轻质高强度复合材料,由于其具有良好的性能,应用领域广泛,例如航空航天、交通运输、建筑、包装等领域。
然而,泡沫铝的生产和应用过程会产生环境污染,导致一些环境问题。
因此,对泡沫铝产业进行环境评估非常必要。
首先,在生产过程中,泡沫铝的原材料主要是铝粉和发泡剂。
铝粉本身的生产过程会产生很多污染物,例如氧化铝和氢氧化铝等,这些化学物质会污染水源和土壤,严重时对生态环境造成影响。
而发泡剂中通常含有氟利昂等物质,它们会破坏臭氧层,对人类健康和环境造成很大威胁。
其次,在应用过程中,泡沫铝通常用来制造包装材料,例如食品包装盒、电子产品包装等。
这些包装材料的生产和使用过程中会产生大量废弃物,例如泡沫铝碎片、废旧包装盒等,这些废弃物对环境造成了很大负担,同时可能会对野生动物造成伤害。
因此,泡沫铝产业应当采取一系列措施减少对环境的影响。
首先,可以通过优化生产工艺,减少废弃物的产生。
其次,可以采用更加环保的原材料,例如使用二次回收铝粉或替代发泡剂。
此外,应该加强废弃物处理和回收利用,减少对环境的污染。
总之,泡沫铝的应用前景十分广阔,但是在产业发展过程中需要加强环境保护意识,采取措施减少对环境的影响。
通过优化生产工艺、采用环保原材料和加强废
弃物处理和回收利用,保障环境的同时也可以促进泡沫铝产业的可持续发展。
- 1 -
泡沫铝的密度
泡沫铝是一种由铝与气泡组合而成的新型材料。它的厚度只有几
十到几百微米,但具有极强的韧性和良好的热稳定性。因此,它已经
广泛应用于传热和隔热、消音、抗震、电磁屏蔽等领域,并渐渐受到
人们的关注。有趣的是,它的名字竟然是由一个英文单词“Foam”而
来,意思是泡沫。
那么,泡沫铝的密度到底是多少呢?
一般来说,泡沫铝的密度较低,在30至100 kg/m3 之间,远低
于普通铝材的密度,大约在2500 kg/m3右。通过减少密度,泡沫铝
的强度却不会特别下降,而且它具有更好的抗冲击性、耐磨性、耐化
学腐蚀性等特性。此外,它还具有良好的抗紫外线性和吸水性,表面
光滑。
此外,由于其结构形态,泡沫铝具有更低的导热系数,更高的热
稳定性和抗热冲击性。因此,它通常用于隔热、吸音、抗震等方面,
以减少噪声及若干其他机械性状的损失。
总之,泡沫铝是一种非常具有特色的材料,它的密度较低,具有
良好的热稳定性、抗冲击性及耐磨性,因此被广泛应用于传热和隔热、
消音、抗震等领域。同时,这种材料可以有效地减少噪声,提高机械
结构的耐久性,从而节省能源和降低环境污染。
另外,由于泡沫铝价格较低,因此未来可能会用于更多应用领域,
以期获得更多的经济效益。
因此,泡沫铝具有很多共性,可以作为重要的材料之一,为工业
- 2 -
生产和社会发展做出贡献。
泡沫铝泡沫铝是在纯铝或铝合金中加入添加剂后,经过发泡工艺而成,同时兼有金属和气泡特征。
它密度小、高吸收冲击能力强、耐高温、防火性能强、抗腐蚀、隔音降噪、导热率低、电磁屏蔽性高、耐候性强、有过滤能力、易加工、易安装、成形精度高、可进行表面涂装。
简介泡沫铝具有优异的物理性能、化学性能和力学性能以及可回收性。
泡沫铝的这些优异性能使其在当今的材料领域具有广阔的应用前景,是很有开发前途的工程材料,特别是在交通运输工业,航天事业和建筑结构工业等方面。
性能特点□轻质:密度为金属铝的0.1—0.4倍;□高比刚度:其抗弯比刚度为钢的1.5倍;□高阻尼减震性能及冲击能量吸收率:阻尼性能为金属铝的5—10倍。
孔隙率为84%的泡沫铝发生50%变型时,可吸收2.5MJ/M3C以上的能量。
□良好的声学功能:1、隔声性能(闭孔):声波频率上800—4000HZ 之间时,闭孔泡沫铝的隔声系数达0.9以上。
2、吸声性能(微通孔和通孔):声波频率在125---4000HZ之间时,通孔泡沫铝的吸声系数最大可达0.8,其倍频程平均吸声系数超过0.4。
□优良的电磁屏蔽性能:电磁波频率在2.6—18GHZ之间时,泡沫铝的电磁屏蔽量可达60—90dB。
□良好的热学性能:孔隙率为80---90%的闭孔泡沫铝导热系数为0.3—1W/m#8226;k,相当于大理石。
通孔泡沫铝由于其孔洞相互连通,在强制对流条件下具有良好的散热性。
□不燃烧且有较好的耐热性。
□耐腐蚀性、耐候性好,低吸湿,不老化,无毒性。
□易加工:切割、钻孔、胶结方便;经模压可弯曲成所需形状;能用有机或无机漆进行表面处理;可以两面蒙皮,构成大尺寸的轻质、高刚度板。
□易安装:泡沫铝材料可以被安装在高处而无需机械起重设备,如:天花顶棚、墙壁和屋顶等,可以采用机械方法或直接用螺钉连接和固定,也可以用粘接剂粘贴在墙或天花板上。
□金属薄板——泡沫铝——金属薄板形成的“三明治”结构继承了泡沫铝的优异性能,并具有很高的抗弯强度,可用作新型建材、机车车辆的高刚度结构件等。
泡沫铝项目经济效益和社会效益分析泡沫铝是一种具有轻质、隔热、吸音等特点的高性能材料,在建筑、交通工具、航空航天等领域有广泛的应用。
因此,泡沫铝项目在经济效益和社会效益方面都具有重要的意义。
一、经济效益分析:1.提升产业发展水平:泡沫铝项目的建设和运营将会推动相关行业的产业链的延伸和完善,形成一个完整的生态系统。
例如,泡沫铝的制造过程需要使用铝材,这将促进铝材行业的发展。
同时,泡沫铝的广泛应用也会带动建材、航空航天等行业的发展,进一步提升整个产业的发展水平。
2.增加就业机会:泡沫铝项目的建设过程需要大量的人力投入,如设备安装、生产运营等。
此外,泡沫铝的广泛应用也会给相关行业带来更多的需求,进而刺激劳动力市场的需求。
因此,泡沫铝项目的实施将为当地提供更多的就业机会,有利于促进就业稳定和提高居民收入水平。
3.增加地方政府收入:泡沫铝项目的建设和运营过程中,需要购买设备、原材料、支付用工和税收等,这将为地方政府带来一定的财政收入。
另外,该项目的产值增加和经济效益的提升也将有助于地方税收的增加,从而增加地方政府的财政收入。
4.提高产品附加值和盈利能力:泡沫铝具有许多优良特性,如轻质、隔热、吸音等,因此广受市场欢迎。
通过泡沫铝项目的建设和运营,将为企业带来更多的订单和收入,提高产品的附加值和盈利能力。
二、社会效益分析:1.能源节约和环保:泡沫铝的制造过程相对于传统的铝材制造工艺来说,能够大大节省能源消耗,减少二氧化碳的排放,对环境具有较小的污染。
同时,由于泡沫铝具有优异的隔热性能,可以提高建筑和交通工具的能源利用效率,降低能源消耗。
2.改善生活质量:泡沫铝具有轻质、隔热、吸音等特点,可以广泛应用于建筑领域,提高建筑物的隔热性能、保温性能和减少噪音污染,从而改善人们的居住和工作环境,提升生活质量。
3.促进城市可持续发展:泡沫铝项目的实施有助于推动建筑节能和新型城镇化进程。
通过减少能源消耗和改善建筑环境,可以提高城市的宜居性和可持续发展水平。
泡沫铝lsdyna参数
摘要:
1.泡沫铝的概述
2.lsdyna 参数的含义和作用
3.泡沫铝lsdyna 参数的具体设置方法
4.泡沫铝lsdyna 参数对模拟结果的影响
5.结论
正文:
一、泡沫铝的概述
泡沫铝是一种具有优良性能的材料,它具有较低的密度、良好的力学性能、优异的隔热性能以及较高的耐腐蚀性。
由于其独特的结构,泡沫铝在航空航天、汽车、建筑等领域有着广泛的应用。
二、lsdyna 参数的含义和作用
lsdyna 是一种常用的动力学分析软件,它能够模拟材料的动态性能,如冲击、振动等。
在泡沫铝的模拟中,lsdyna 参数的设置至关重要,它直接影响到模拟结果的准确性。
三、泡沫铝lsdyna 参数的具体设置方法
在设置泡沫铝lsdyna 参数时,需要考虑以下几个方面:
1.模型的建立:根据泡沫铝的实际结构,建立相应的模型。
2.材料属性的设置:根据泡沫铝的实际性能,设置其弹性模量、泊松比、密度等材料属性。
3.边界条件的设置:根据泡沫铝的实际应用环境,设置相应的边界条件。
4.载荷的施加:根据泡沫铝的实际受力情况,施加相应的载荷。
四、泡沫铝lsdyna 参数对模拟结果的影响
泡沫铝lsdyna 参数的设置对模拟结果有着重要的影响。
例如,不同的材料属性设置会导致模拟结果的硬度、强度等性能指标的不同;不同的边界条件设置会影响模拟结果的应力分布;不同的载荷施加方式会影响模拟结果的应力- 时间曲线。
五、结论
泡沫铝lsdyna 参数的设置对于模拟结果的准确性至关重要,需要根据泡沫铝的实际性能和使用环境进行设置。
一、引言现代工艺技术的发展,使得泡沫金属的制备技术日趋完善,制造成本不断降低。
以泡沫铝为代表的泡沫金属是近年来发展较快的一种新型功能结构材料。
作为结构材料,它具有轻质和高比强度的特点;作为功能材料,它具有减震、吸收冲击能、耐高温、隔声、吸声[1]、隔热、不燃烧、抗腐蚀、电磁屏蔽等物理性能[2-6]。
最主要的是它可以将低密度、高刚度、冲击吸能性、低热导性、低磁导率和良好的阻尼性综合在一起[7]。
在需要综合利用这些性能的领域内,泡沫金属有着广泛的应用前景[8-9]。
泡沫铝按照基体材料的不同,可将其分为泡沫纯铝和泡沫铝合金两类。
由于泡沫铝合金同时具有纯铝和其它合金元素的性能,与泡沫纯铝相比其强度和吸能能力通常得到了提高。
常见的泡沫铝合金有泡沫铝硅合金、铝镁合金和铝铜合金。
按照孔结构的不同,可将泡沫铝分成开孔和闭孔两种[10]。
泡沫铝具有较高的压缩强度,同时具有较长的平台应力。
压缩过程中的大量能量在近似恒定的应力下被吸收[11],从而使得泡沫铝具有很强的吸能能力。
关于泡沫铝吸能性能的研究文献很多。
Pkarash等人[12]认为泡沫铝的能量吸收能力不仅与基体材料的弹塑性有关,还与其它一些耗散过程有关,如破碎的孔壁之间的摩擦。
Beals等[13]通过对密度不均匀的Alcna 泡沫材料的测试分析,指出密度梯度是削弱泡沫材料能量吸收能力和效率的重要原因。
在传统的管式吸能装置中,采用泡沫铝作为填充物可以提高结构的刚度和吸能能力,从而改进缓冲吸能装置的性能。
国外许多文献都报道了由泡沫铝充当芯材的夹心式组合结构的静动态压缩力学行为的实验研究,国内该方面的文献比较少。
泡沫铝,是一种新型的功能材料, 其发明只有四十余年的历史。
Sosnik 在1948 年提出利用汞做发泡剂, 在液态铝合金中气化制取泡沫铝的想法。
在1956 年, Ellist根据这一想法成功地制造了泡沫铝。
20 世纪60 年代, 美国Ethy l 公司已成为研制泡沫铝的科研中心基地。
泡沫铝的性能特征及应用泡沫铝是一种由金属铝制成的多孔材料,具有轻质、高强度、优良的隔热性能等特点。
在工业与科研领域广泛应用,下面将从材料性能特征和应用两方面进行详细介绍。
一、泡沫铝的性能特征:1. 轻质高强:泡沫铝具有轻质、高强的特点,相对密度低于0.5g/cm³,普通密度在0.2~0.3g/cm³之间,具有较好的比强度和比刚度,使其成为一种重量轻、强度高的材料。
2.优良的隔热性能:泡沫铝具有极低的导热系数,热传导性能相对较差,使其具备较好的隔热性能。
这使得泡沫铝广泛应用于保温隔热、火焰隔离等领域。
3.良好的吸能性:泡沫铝具有优秀的吸能性能,当受到冲击时,能有效吸收和分散冲击能量,减轻冲击对其他结构的伤害。
4.优良的压缩性能:泡沫铝具有较好的抗压性能,即使在高温高压的条件下,也能保持良好的强度和稳定性。
5.耐腐蚀性:铝金属本身具有良好的耐腐蚀性,因此泡沫铝具有较好的耐腐蚀性能,可在潮湿、酸、碱等腐蚀环境中长期使用。
二、泡沫铝的应用:1.航空航天领域:泡沫铝由于轻质高强、储气性能好、低热传导性等特点,被广泛应用于航空航天领域,如导热模块、储气罐等。
2.汽车工业:泡沫铝可以制作汽车零部件,如汽车保险杠、能量吸收器等,可以提供良好的吸能性和碰撞保护性能。
3.建筑领域:泡沫铝具有良好的隔热性能和防火性能,可用于建筑保温材料、隔热层等,提供有效的节能效果。
4.电子领域:泡沫铝具有良好的电磁屏蔽性能,可用于电子设备的外壳、散热器等,保证设备的稳定性和工作效果。
5.化工领域:泡沫铝具有良好的耐腐蚀性和防火性能,可用于化工管道、储罐等设备,提供安全性能保障。
6.其他领域:泡沫铝还可应用于声学隔离、过滤器、水处理等领域。
总之,泡沫铝作为一种多孔材料,具有轻质高强、优良的隔热性能、吸能性等特点,应用领域广泛,从航空航天到汽车工业、建筑领域乃至电子、化工等领域都有应用。
随着科技的不断进步,泡沫铝在更多领域有望得到进一步的应用与发展。
泡沫铝产品的性能优势及其在各领域的应用前景分析泡沫铝是一种由金属铝具有开放多孔结构的材料,具有诸多独特的性能优势以及广泛的应用前景。
下面将对泡沫铝产品的性能优势以及在各个领域的应用进行分析。
首先,泡沫铝具有很高的强度和刚度。
泡沫铝的多孔结构使得其具有轻量化的特点,但同时也保持了良好的强度和刚度。
相比于普通铝材料,泡沫铝的抗弯强度和抗压强度都更高,可以承受更大的荷载。
这一特点使得泡沫铝广泛应用于需要同时具备轻量化和高强度的领域,例如航空航天、汽车制造等。
其次,泡沫铝具有优异的隔热性能。
泡沫铝的多孔结构形成了大量的封闭气孔,这些气孔具有良好的隔热性能,可以有效地隔离高温或低温。
因此,泡沫铝被广泛应用于隔热材料领域,例如建筑、冰箱制造等。
同时,泡沫铝具有良好的防火性能,不易燃烧,可以有效地减缓火势传播。
另外,泡沫铝具有良好的声学性能。
泡沫铝的多孔结构可以吸收和减弱声音、噪音的传播,具有良好的吸音和隔音效果。
因此,泡沫铝被广泛应用于噪音控制领域,例如电子设备、机械设备等。
同时,泡沫铝也可以作为振动控制材料,具有减震效果。
此外,泡沫铝还具有良好的导热性能。
泡沫铝的导热系数较低,可以有效地减少热量传导。
这一特点使得泡沫铝被广泛应用于热传导控制领域,例如制冷设备、热交换器等。
综上所述,泡沫铝具有强度高、轻量化、隔热性好、防火性能佳、声学性能良好以及导热性能优异等诸多性能优势。
因此,泡沫铝在各个领域都有广阔的应用前景。
以下将对泡沫铝在一些常见领域的具体应用进行介绍。
在航空航天领域,泡沫铝可以作为航空器件的结构材料,由于其重量轻、强度高、隔热性好的特点,可以有效地提高航空器的性能。
在汽车制造领域,泡沫铝可以用于制造汽车部件,例如车身结构件和车身面板。
泡沫铝的轻量化特点可以降低车辆重量,提高燃油经济性和驾驶性能。
在建筑领域,泡沫铝可以用作建筑材料,例如隔热板和隔音板。
泡沫铝的隔热性能和隔音性能可以提高建筑物的能源效率和舒适性。
超全面泡沫铝制备工艺汇总泡沫铝是一种具有轻质、高强度、良好吸音性能和导热性能的材料,被广泛应用于航天、汽车、建筑等领域。
下面将对泡沫铝的制备工艺进行超全面的汇总。
1.预处理工艺:a.挑选合适的铝合金材料,主要以铝硅合金为基础。
b.对选定的铝合金进行熔炼、铸造,得到铝合金坯料。
2.粉末冶金法制备泡沫铝工艺:a.将铝合金坯料经过高温处理,使其分解产生气体。
b.将分解后的铝合金坯料冷却,形成泡沫铝坯料。
c.对泡沫铝坯料进行热处理,提高其强度和稳定性。
d.进行表面处理,如抛光、氧化等,改善外观和耐腐蚀性能。
3.发泡剂法制备泡沫铝工艺:a.在铝合金坯料中加入适量的发泡剂,如氯化亚铜。
b.将含有发泡剂的铝合金坯料加热至一定温度,使发泡剂分解产生气体。
c.将分解后的铝合金坯料冷却,形成泡沫铝坯料。
d.进行热处理和表面处理,提高泡沫铝的性能。
4.多孔模板法制备泡沫铝工艺:a.制备多孔模板,如泡沫陶瓷模板或聚苯乙烯泡沫模板。
b.将铝合金坯料涂在多孔模板上,并进行烘烤,使涂层粘结牢固。
c.将铝合金坯料和多孔模板组合,进行高温处理,使铝合金坯料分解产生气体。
d.去除多孔模板,得到泡沫铝坯料。
e.进行热处理和表面处理,提高泡沫铝的性能。
5.熔融法制备泡沫铝工艺:a.将铝合金坯料加热至熔点,得到熔融铝液。
b.在熔融铝液中加入各种发泡剂,如钠盐、重铬酸钾等。
c.在熔融铝液中加入表面活性剂,改善发泡剂分散性。
d.将熔融铝液冷却,形成泡沫铝坯料。
e.进行热处理和表面处理,提高泡沫铝的性能。
6.混合法制备泡沫铝工艺:a.综合应用粉末冶金法、发泡剂法和多孔模板法等多种工艺方法。
b.根据需要,选择合适的工艺组合和顺序。
c.进行热处理和表面处理,提高泡沫铝的性能。
7.稳定性处理工艺:a.对制备好的泡沫铝进行热处理,提高其抗氧化能力和热稳定性。
b.对泡沫铝进行镀层,增加其耐腐蚀性能。
总结:以上是泡沫铝制备的超全面工艺汇总。
不同的制备工艺适用于不同的应用领域和要求。
泡沫铝lsdyna参数(原创版)目录1.泡沫铝的概述2.lsdyna 参数的含义和作用3.泡沫铝 lsdyna 参数的具体设置4.泡沫铝 lsdyna 参数对模拟结果的影响5.结论正文一、泡沫铝的概述泡沫铝是一种具有良好性能的材料,其结构特点是在铝材的基础上,通过特定的工艺形成许多闭孔结构。
这种结构使得泡沫铝具有较低的密度、良好的隔热性能、优异的吸声性能以及抗压强度等特性。
因此,泡沫铝被广泛应用于建筑、交通运输、航空航天等领域。
二、lsdyna 参数的含义和作用lsdyna 是一种常用的有限元分析软件,用于模拟材料的动态性能。
在泡沫铝的模拟过程中,需要设置一系列的参数以便软件能够准确地模拟材料的响应。
这些参数统称为 lsdyna 参数。
lsdyna 参数在泡沫铝的模拟中起到了关键作用,它们可以影响模拟的精度、计算速度以及模拟结果的可靠性。
因此,合理地设置 lsdyna 参数是进行泡沫铝模拟的关键环节。
三、泡沫铝 lsdyna 参数的具体设置在进行泡沫铝的 lsdyna 参数设置时,需要考虑以下几个方面:1.模型的网格划分:网格划分的质量和数量直接影响到模拟的精度。
一般来说,网格数量越多,模拟精度越高,但计算时间也相应增加。
因此,需要在精度和计算时间之间进行权衡。
2.材料的属性:泡沫铝的材料属性包括密度、杨氏模量、泊松比等。
这些属性需要根据实际材料的性能进行设置,以确保模拟结果的准确性。
3.边界条件和载荷:边界条件和载荷是影响模拟结果的重要因素。
需要根据实际问题设置合适的边界条件和载荷,以保证模拟结果的可靠性。
四、泡沫铝 lsdyna 参数对模拟结果的影响不同的 lsdyna 参数设置会导致不同的模拟结果。
在一些情况下,参数的设置可能会对模拟结果产生显著的影响。
例如,网格划分的质量和数量会影响模拟的精度和计算速度;材料属性的设置会影响模拟结果的刚度、强度等性能;边界条件和载荷的设置会影响模拟结果的应力、应变等分布。
㊀第43卷㊀第4期2024年4月中国材料进展MATERIALS CHINAVol.43㊀No.4Apr.2024收稿日期:2022-10-13㊀㊀修回日期:2023-08-31基金项目:国家自然科学基金项目(51904179);山东省自然科学基金项目(ZR2023ME148);山东省精密制造与特种加工重点实验室项目(5322027)第一作者:曹梦真,女,1999年生,硕士研究生通讯作者:安钰坤,男,1987年生,副教授,硕士生导师,Email:anyukun277@DOI :10.7502/j.issn.1674-3962.202210016泡沫铝有限元仿真模型研究现状曹梦真1,邱田伟1,安钰坤1,2(1.山东理工大学机械工程学院,山东淄博255000)(2.山东鸿宇风机有限公司,山东淄博255300)摘㊀要:泡沫铝作为一种兼具结构性和功能性的轻质多孔金属材料,具有优异的阻尼减震㊁吸能防护㊁电磁屏蔽等特性,呈现出广阔的应用前景㊂为改进和拓展泡沫铝在各工业领域的应用,对泡沫铝材料的有限元仿真模拟应运而生,对其的仿真模型也日趋完善㊂综述了泡沫铝仿真模拟中的孔泡建模研究进展,归纳分析了所采用的构建方法与研究结果,总结了各仿真模型的优势和不足,并对泡沫铝仿真建模的发展趋势做出了展望,指出将三维逆向重构技术引入仿真建模,以及将理论分析㊁建模模拟和实验研究相结合是现阶段重要的研究方向㊂关键词:泡沫铝;数值模拟;有限元方法;仿真模型中图分类号:TG146.2;O346㊀㊀文献标识码:A㊀㊀文章编号:1674-3962(2024)04-0323-08引用格式:曹梦真,邱田伟,安钰坤.泡沫铝有限元仿真模型研究现状[J].中国材料进展,2024,43(4):323-330.CAO M Z,QIU T W,AN Y K.Research Status of Finite Element Simulation Model of Aluminum Foams[J].Materials China,2024,43(4):323-330.Research Status of Finite Element SimulationModel of Aluminum FoamsCAO Mengzhen 1,QIU Tianwei 1,AN Yukun 1,2(1.School of Mechanical Engineering,Shandong University of Technology,Zibo 255000,China)(2.Shandong Hongyu Ventilator Limited Company,Zibo 255300,China)Abstract :As a kind of lightweight porous metal with both structural and functional performances,aluminum foam presentsexcellent damping,energy absorption protection,electromagnetic shielding,and other characteristics.Hence,aluminum foam shows broad application prospects.To improve and expand the application of aluminum foam in various industrial fields,the finite element simulation of aluminum foam emerges,and the simulation models are constantly improved.This pa-per focuses on the bubble modeling in aluminum foam simulation,summarizing the construction methods,research results,and the advantage and disadvantage of each model.Additionally,the development trend of aluminum foam simulation model-ing is prospected,such as incorporating 3D reverse reconstruction technology into the modeling process and integrating theo-retical analysis,simulation modeling,and experimental research.Key words :aluminum foam;numerical simulation;finite element method;simulation model1㊀前㊀言泡沫铝是一种由铝合金基体和孔泡复合而成的新材料[1,2],既具有金属材料的结构特性,又有多孔材料的功能特性㊂轻质㊁高比强度㊁阻尼减震以及电磁屏蔽等特性使泡沫铝材料在建筑㊁汽车㊁航天航空等领域拥有广阔的应用前景[3,4]㊂然而,在泡沫铝的发泡制备中,发泡剂是否均匀分散㊁孔泡是否稳定,均会显著影响发泡效果进而影响材料性能㊂为准确模拟实际泡沫铝的性能,构建一个多孔泡沫铝模型是仿真模拟的基础㊂有限元法(finite element method,FEM)又称有限元分析(finite element analysis),由Clough [5]在20世纪70年代首次提出,它作为一种可以用来解决力学问题的数值近似方法,随着计算机的发展不断崛起,被逐步引入多孔中国材料进展第43卷金属材料的模拟研究中[6,7]㊂在建模过程中只需改变相应参数,即可得到不同孔隙分布的模型,缩短试验周期,节约成本提高效率,同时解决泡沫铝样品在实验中不可重复的问题,具有一定的前瞻性㊂同时,仿真模拟也可作为理论分析和实验测试强有力的工具,预测多孔材料宏观尺度的力学性能和破坏损伤机制,有效解决实际生产中的诸多问题㊂目前,有许多微尺度模型可以体现出泡沫铝的结构特性,本文将多孔泡沫铝的仿真模型分为3类:简单晶胞模型㊁随机模型和三维CT重构模型㊂本文针对不同类别具有代表性的模型进行详细阐述,并归纳模型的构建方法与研究结果,分析模拟结果与实验结果的差异,对各模型的优势与不足进行深入探究㊂2㊀简单晶胞模型早期学者对泡沫铝的结构不甚了解,仅用简单实体结构模拟泡沫铝的孔隙,即代表体积单元(representative volume element,RVE)[8,9],又称为镶嵌法[10]㊂该三维模型是将一个独立基本单元不断复制与堆砌形成的,多采用简单立方或近球体模拟孔泡形态㊂RVE法可通过增加晶胞点数或面数提高复杂性,但模型构造方法保持不变㊂2.1㊀立方胞体模型受金属晶体晶格结构[11]的启发,研究人员通过不断堆砌实体单元构建出多孔材料结构㊂立方胞体作为最简单的晶格结构,分为简单立方㊁面心立方和体心立方3类,且此构造方式可以形成具有良好对称性和周期性的高孔隙率几何模型㊂图1为Libonati等[12]建立的3类立方胞体单胞模型(其参数特性如表1所示),该模型可在一定程度上模拟泡沫铝的孔隙结构,在准静态压缩状态下呈现典型的线弹性㊁塑性平台和致密化3个变形阶段,且变形失效模式与实验测试结果高度相关[13],如图2所示㊂袁本立等[14]对1/8胞体结构模型沿z轴加载模拟发现,简单立方结构支撑棱柱存在不均匀性,中心位置与节点过渡处部位差异较显著,在结构吻合度方面略逊于面心立方和体心立方结构㊂刘培生等[15]的八面体模型构造原理与面心立方相似,单元错落有致地分布在3个相互垂直的三维方向上,实现结构整体的密堆积,该模型的承载模拟表明结构状态和承载状态是完全等价的,具有三维同性的优势,然而仅适用于孔隙率大于70%的多孔结构㊂简单的整体结构使立方胞体模型在模拟孔隙率高于80%的试样时结果较为准确[16],但它无法模拟复杂多变的孔隙结构,因此建模精度不高,不能真实地反映多孔材料的力学性能㊂2.2㊀Gibson-Ashby模型美国麻省理工大学Gibson和英国大学Ashby在研究泡沫铝力学性能时构建了Gibson-Ashby经典模型[17],如图3所示[18],该模型由1个孔隙单元和12根相互垂直的棱柱组成,立方框架结构简单均匀且具有各向同性㊁普适性及广泛的应用价值[19]㊂同时,Gibson也最早采用三段式分段函数来表征泡沫铝的应力-应变曲线,从细观梁弯曲理论角度展现了线弹性区㊁屈服平台区和致密化区3个变形阶段,并充分考虑到闭孔泡沫铝的胞壁延展变形,给出了泡沫材料压缩强度表达式:σ∗pl=C1φ㊃ρ∗ρs()3/2+C2(1-φ)㊃ρ∗ρséëêùûú㊃σys(1)其中,ρ∗和ρs分别为泡沫和基体的密度,σ∗pl和σys分别表1㊀立方胞体结构参数及与相对密度的定量关系Table1㊀Cubic cell structure parameters and relationships with relative density Cell type Cell structure Ratio of sphere radius Equations of relative densitySingle-centered cubic cell model Open-cellClosed-cell1/2<r s/a<2/20<r s/aɤ1/2ρfsρs=8π3(r s/a)3-3π(r s/a)2+π4+1ρfsρs=1-4π3(r s/a)3Face-centered cubic cell model Open-cellClosed-cell2/4<r f/a<6/60<r f/aɤ2/4ρffρs=80π3(r f/a)3-122π(r f/a)2+22π+1ρffρs=1-16π3(r f/a)3Body-centered cubic cell modelOpen-cellPartial open-cellClosed-cell1/2<r b/a<32/83/4<r b/aɤ1/20<r b/aɤ3/4ρfbρs=52π3(r b/a)3-(7+43π)π(r b/a)2+34+712()π+1ρfbρs=8π(r b/a)3-43π(r b/a)2+34π+1ρfbρs=1-8π3(r b/a)3423㊀第4期曹梦真等:泡沫铝有限元仿真模型研究现状图1㊀3种立方胞体单胞模型及三维实体模型[12]Fig.1㊀Single cells and the three-dimensional solid models of three cubic cell models[12]图2㊀基于3种立方胞体模型模拟的准静态压缩下的变形失效模式及与实验结果对比[13]Fig.2㊀Simulated deformation failure modes of three cubic cell models under quasi-static compression and comparisons with experimental results[13]图3㊀Gibson-Ashby 模型[18]:(a)单胞模型,(b)拉伸位移及应力云图Fig.3㊀Gibson-Ashby model [18]:(a)single cell model,(b)tensile displacement and stress contour523中国材料进展第43卷为泡沫材料和基体材料的屈服强度,φ为孔棱所占基体材料的体积分数㊂然而,由于发泡过程中孔泡的随机分布,无法有效控制孔棱整体分布,且孔棱与孔壁的分界无统一标准,因此,实际微观结构与理论微观结构仍存在差别,造成理论弹性模量与临界屈服应力高于实际所测结果[20]㊂Tereza等[19]在建模时通过增加棱柱厚度压缩中央孔洞体积构建了不同孔隙率的Gibson-Ashby模型,并发现该模型对大于70%的高孔隙率材料可实现有效预测,相对电导率和相对杨氏模量的预测结果与实验结果都相差4%左右㊂Haag等[21]通过实验对比发现,Gibson-Ashby 模型只能对几何模型失稳显著的泡沫结构进行稳态蠕变行为预测,且只能预测泡沫蠕变率的下限,具有很大的局限性㊂刘培生[22]分析发现该模型结构具有无法密堆积㊁棱柱结构不完全等价等缺点,导致受力效果不够理想以及裂纹扩展方式与受力分析存在偏差㊂2.3㊀Kelvin模型Kelvin模型的单胞由8个正六边形和6个正四边形组成,具有26个顶点和36根棱边,又称十四面体模型(图4)㊂该模型单胞可按周期性规则排列填满整个空间,也被认为是最接近泡沫金属的结构模型[23],在模拟低密度的泡沫金属时更具有真实性㊂Kelvin模型属于RVE方法中的一种类型,可通过增加几何结构的复杂性使模型接近真实孔泡㊂Belardi等[24]及Jang等[25]对传统Kelvin 模型进行了改进,建立了沿带离散变化的圆形截面有限元梁模型,并用光束模型校正节点的弹性特性,使该模型在力学性能方面与实体结构的差异大大缩小,且计算量远低于实心Kelvin模型㊂Zheng等[26]与Duan等[27]分别利用LS-DYNA及ABAQUS/Explicit2种有限元模拟软件研究了准静态Kelvin模型单胞的力学响应和变形模式,发现变形模式是从加载端逐渐积累应变,并通过渐进堆积完成整体变形㊂Sun等[28]认为Kelvin模型未考虑顶点对力学性能的影响从而高估了材料的杨氏模量,在应力-应变图中无法准确展现出压缩平台区域㊂对称分布的宏观Kelvin力学模型无法模拟微观结构对整体的影响,致使所得结果与实验结果存在不少偏差㊂图4㊀Kelvin模型结构建模步骤[23]Fig.4㊀Modeling steps for Kelvin modeled structure[23]3㊀随机模型由于用宏观力学模型模拟微观结构特征准确度不高,近年来,诸多学者通过构建随机模型来模拟具有高度复杂孔隙结构的泡沫金属的力学行为㊂与简单晶胞模型同质化连续统一方法不同,随机模型可以模拟泡沫铝发泡成形的过程,实现胞孔随时间/空间的变化,具有非均质多尺度的优势㊂3.1㊀随机胞孔模型随机胞孔模型可分为二维和三维2种,是将简单胞孔在一定平面或空间随机排布而形成的随机模型,可通过调整胞孔尺寸参数和数量来改变孔隙结构,实现随机模型的整体构建㊂Dou等[29]结合C++和ANSYS/LS-DY-NA软件建立了不同相对密度(20%,30%和40%)的二维随机模型,采用圆形孔泡随机分布的建模方式,探究不同相对密度下微惯性效应对应变率效应的影响㊂分析发现相对密度越高应变率效应越明显,该结论与实验结果保持一致,但由于孔壁缺陷,模拟值与实验结果相差10%左右[30]㊂三维随机模型分为球形㊁椭球形和多面体形,该类模型构建步骤如下:先构造一个立方体模型,设定孔隙率㊁孔径范围及最小壁厚等参数,在立方体空间随机生成形核点,使形成的实体胞孔随机排列且不会干涉,最后运用布尔运算即可得到三维随机模型㊂该法得到的模型孔隙结构更接近真实泡沫铝,且仿真结果与实验结果趋于一致㊂Fang等[31,32]利用凸多面体模型模拟泡孔隙单元形成泡沫铝模型并映射生成有限元网格,分析发现多孔材料对冲击作用下的能量吸收源于孔壁的塑性变形(图5)㊂623㊀第4期曹梦真等:泡沫铝有限元仿真模型研究现状图5㊀三维随机多面体泡沫铝模型构建步骤(a)和模拟的准静态压缩时的应力-应变曲线(b)[31,32]Fig.5㊀Modeling steps for three-dimensional random polyhedral aluminum foam model (a)and simulated stress-strain curve during quasi staticcompression (b)[31,32]㊀㊀泡沫铝胞孔内的气体在变形时受到细胞壁坍塌挤压,进而推动下一阶段压缩,因此赋予气体参数并考虑空气效应会更接近实验结果㊂Zhu 等[33]通过不同的渐进损伤模型比较孔泡形态对压缩性能的影响,发现椭球形态的孔泡呈现出各向异性几何结构,胞孔内部气体压力对不同方向施加载荷导致非对称变形,进而使材料拥有更高的弹性模量和抗压强度(30~40MPa)㊂三维随机模型在建立之初就能够考虑到实际的泡沫铝形态,既有宏观规律性又有微观随机性,推广性和实用性更强㊂然而模型的模拟过程也会相对繁琐,模型参数的设置比较复杂且随机因素较多,因此编程前的设计准备以及程序运行所耗费的时间和精力会显著增加㊂3.2㊀Voronoi 模型Voronoi 模型是利用空间分割方法,通过定义切割点的距离将空间划分为规定个数的无缝单元㊂Voronoi 模型的二维及三维模型如图6所示[34,35],成形方法是在一个指定的空间中,先生成距离不能小于规定值并随机排列的形核点,以其为中心按相同速率长大形成胞孔,当相邻胞孔彼此相遇时停止生长,边界即为相邻形核点相连的垂直平分线,直至布满整个空间㊂我国的国家游泳中心 水立方 就是采用了这种构造方式[35]㊂Li 等[36]运用LS-DYNA 有限元软件与霍普金森压杆研究泡沫铝试样在70m /s 的速度下的压缩变形行为,实验与模拟所得的应力-应变曲线如图7所示,均呈现典型的线弹性区㊁屈服平台区和致密化区3个阶段且两数据吻合度较高,表明Voronoi 模型具有准确的预测作用㊂除孔洞结构参数外,基体材料的力学性质也将直接决定泡沫金属的压缩行为和变形模式㊂程和法等[37]对纯铝及铝基泡沫金属进行压缩试验,纯铝为基体的泡沫铝表现出典型的塑性泡沫特征和较低坍塌屈服强度,铝基泡沫金属呈现典型的脆性泡沫特征和较高的弹性模量及屈服强度㊂对于三维Voronoi 模型,学者多选择理想的弹塑性模型来表征泡沫铝单元壁材料[38],如采用著名的Cowper-Symonds 关系表征母材的塑性变形[39]:泡沫铝基体的典型弹性模量为69~73GPa,屈服强度为100~300MPa [40];或是利用von Mises 屈服准则及各向同性硬化塑性材料模型[41,42],通过静态单轴拉伸实验提取屈服应力及切线模量作为实际参数增加模拟结果准确率[43,44]㊂Voronoi 模型的建模过程模拟了泡沫铝材料随机发泡成形的过程,在表现材料微观结构复杂性的同时提高了计算效率,因此获得广泛应用㊂然而,二维或三维Voronoi 模型因采用随机形核成长的建模方式,每个孔泡边缘处均呈现较为尖锐的边界,与实际的胞孔圆弧边界不符[45],易造成应力集中等缺陷㊂此外,Voronoi 模型未考虑泡沫铝多孔泡交界处Plateau Border 边界的真实形貌,因此该模型分析结果与实际有较大差异㊂研究表明,图6㊀Voronoi 模型:(a)2D-Voronoi 壳单元模型[34];(b) 水立方 场馆外墙,(c)3D-Voronoi 几何模型[35]Fig.6㊀Voronoi model:(a)2D Voronoi [34];(b)external wall of the building Water Cube and (c)3D Voronoi [35]723中国材料进展第43卷图7㊀基于Voronoi模型的压缩实验模拟(a)及所得应力-应变曲线及与实验结果对比(b)[36]Fig.7㊀Simulation for compression test based on Voronoi model(a)and simulated stress-strain curve and comparison with experiment result(b)[36]该模型与Kelvin模型相比,对泡沫铝材料体积弹性模量的预测结果低20%[46]㊂为改善Voronoi模型,有关学者通过向模型中加入圆形或椭圆形胞孔来减少模型与实际的偏差,但是该法削弱了随机孔隙优势㊂此外,Voronoi 模型的孔壁厚度是通过壳型建模形成的,其孔壁厚度保持一致,难以实现随机分布,因此当泡沫铝试样孔壁厚度不均甚至相差较大时,模拟结果与实际实验出现较大偏差㊂4㊀三维重构模型三维重构建模是结合同步辐射X射线计算机断层照相技术(synchrotron X-ray computed tomography,SXR-CT)进行重构,近乎可实现材料结构1ʒ1无损建模㊂三维重构模型的精度受SXR-CT的扫描步长和分辨率影响,在工业CT技术迅猛发展的背景下,该模型的研究也日趋增多[47,48]㊂此外,对于结构比较复杂的闭孔泡沫结构而言,SXR-CT是一种很有前景的小尺度三维结构研究方法,具有较高的空间分辨率,可以在不破坏原始物体的情况下原位观察结构以及特征的变化[49-51](图8),具有其他模型不具备的真实性和准确性㊂Li等[49]利用SXR-CT技术建立了三维重构模型,有限元方法模拟的应力应变曲线与该试样的真实测试结果如图9所示,2组数据呈现高度吻合;在结构薄弱处首先出现的压缩面逐渐扩展至整个模型,塑性变形带演化规律与实际测试结果契合度较高㊂Kader等[52]发现泡沫铝承载时会在孔壁交界处的Plateau Border形成塑性铰(plastic图8㊀三维重构模型构建流程图[51]Fig.8㊀Flow chart of three-dimensional reconstruction model construction[51]823㊀第4期曹梦真等:泡沫铝有限元仿真模型研究现状hinge),弯曲力矩的存在降低了孔壁的承载性能,而胞壁的速率依赖性和微惯性取决于结构特性[53],从而导致孔隙结构的坍塌㊂目前,基于泡沫铝模型模拟的力学性能与实际测试值之间的误差一般归因于模型构建中忽略了细胞壁的微孔及微缺陷,据统计,直径在30~350μm 范围内的微孔约占金属体积的26%[54]㊂Zhang 等[47]研究发现,在控制微孔缺陷作为单一变量后,垂直载荷和水平载荷方向上的模拟分析结果与真实试样测试结果相比,全局误差分别为15.9%和4.5%㊂图9㊀基于三维重构模型有限元模拟的应力应变曲线及与实验结果对比[49]Fig.9㊀Comparison of stress-strain curves from finite element methodsimulation based on three-dimensional reconstruction model andthe experiment[49]Toda 等[55]关注到应力松弛发生的微裂纹或微孔偏转,他们通过在孔泡之间建立互连来影响金属泡沫的胞孔结构,进而引起显著的裂纹偏转㊂Movahedi 等[56]则认为孔壁中微孔的存在作为裂纹萌生和扩展源进一步诱导了局部应力集中,从而削弱了泡孔结构强度(图10)㊂利用三维重构技术可以真实反映出内部微孔的分布,这也是基于三维重构模型的模拟结果更加准确的原因㊂然而,由于SXR-CT 是基于不同角度的静态图像识别,需要对现有实体进行扫描重构,严重依赖数据收集,因此难以对孔隙率㊁孔径尺寸及分布㊁孔泡壁厚及胞孔形状等参数进行反复多次的定量研究[57]㊂三维重构模型大小受CT 分辨率影响,当试样尺寸过大或分辨率要求太高时,需要大型试验设备及专业人员进行繁琐复杂的重构处理㊂CT 图像阈值的设置会直接决定孔隙率的识别情况,进而导致孔泡与铝基体区域的误判㊂此外,该模型无法实现高通量随机模型的构建,且模型构建成本偏高,这也是制约此技术推广发展的关键因素㊂5㊀结㊀语泡沫铝材料由于发泡条件各不相同,胞孔大小㊁分图10㊀内部微孔分布的三维渲染透视图[56]Fig.10㊀Three-dimensional rendered perspective view of internalmicro-pores distribution [56]布以及胞壁厚度复杂多变,关于泡沫铝模型的构建一直都在不断突破与完善㊂为了分析并预测泡沫铝的承载性能及失效模式,本文分析并讨论了现有的几种泡沫铝有限元模型的优缺点,分别是:以代表体积单元构建的简单晶胞模型,该模型结构简单,但无法反映实际的多孔结构;以随机形核点构建的非均质多尺度随机模型,可实现孔壁和孔泡数目的参数设定;运用X 射线衍射及图像重构技术的三维重构模型,可实体1ʒ1无损建模并能精确反映泡沫材料的微观结构㊂泡沫铝材料内部孔隙具有复杂性和随机性,使材料在承载时表现不同的失效模式,为此寻求并构建一种可精确反映泡沫铝随机孔隙结构的孔泡模型,准确且简单地表征出实际泡沫铝的结构特点并具有一定实用性和推广性,仍是泡沫铝材料数值模拟研究的重要一步㊂参考文献㊀References[1]㊀HU L,LI Y,YUAN G,et al .Journal of Materials Science[J],2022,57(24):11347-11364.[2]㊀AN Y K,YANG S Y,ZHAO E T,et al .Materials and ManufacturingProcesses[J],2018,33(5):528-533.[3]㊀ZHANG W C,JIA L J,ZHOU X W.Journal of Physics:ConferenceSeries[J],2022,2158(1):012034.[4]㊀邹田春,管玉玺.稀有金属材料与工程[J],2023,52(11):3818-3824.ZOU T C,GUAN Y X.Rare Metal Materials and Engineering[J],2023,52(11):3818-3824.[5]㊀PAWSEY S F,CLOUGH R W.International Journal for NumericalMethods in Engineering[J],1971,3(4):575-586.[6]㊀RAMÍREZ J F,CARDONA M,VELEZ J A,et al .Procedia MaterialsScience[J],2014,4:227-231.[7]㊀IJAZ H,SALEEM W,ZAIN-UL-ABDEIN M,et al .Advances in Ma-terials Science and Engineering[J],2017,2017:1-10.[8]㊀LIU C J,ZHANG Y X,YANG C H.Applied Mechanics and Materials[J],2016,846:530-534.923中国材料进展第43卷[9]㊀IASIELLO M,BIANCO N,CHIU W K S,et al.International Journalof Thermal Sciences[J],2019,137:399-409.[10]SHAKIBANEZHAD R,SADIGHI M,HEDAYATI R.Transport inPorous Media[J],2022,142(1):229-248.[11]PITTERI M,ZANZOTTO G.Acta Crystallographica Section A[J],1996,52(6):830-838.[12]LIBONATI F,GRAZIOSI S,BALLO F,et al.ACS Biomaterials Sci-ence&Engineering[J],2023,9(7):3935-3944. [13]LI X,TAN Y H,WANG P,et posites Part A:Applied Sci-ence and Manufacturing[J],2020,135:105934.[14]袁本立,卢子兴.机械强度[J],2007,29(4):627-631.YUAN B L,LU Z X.Journal of Mechanical Strength[J],2007,29(4):627-631.[15]刘培生,夏凤金,罗军.材料工程[J],2009(7):83-87.LIU P S,XIA F J,LUO J.Journal of Materials Engineering[J],2009(7):83-87.[16]KRISHNAN S,GARIMELLA S V,MURTHY J Y.Journal of HeatTransfer[J],2008,130(2):024503.[17]GIBSON L J,ASHBY M F.Cellular Solids[M].Cambridge:Cam-bridge University Press,1997:270-274.[18]KORNIEVSKY A,NASEDKIN A.Materialia[J],2022,26:101563.[19]TEREZA U,WILLI P.Scripta Materialia[J],2019,159:1-4.[20]KANG Y A,ZHANG J Y,TAN J C.Journal of Central South Univer-sity of Technology[J],2007,14(1):301-305.[21]HAAG M,WANNER A,CLEMENS H,et al.Metallurgical and Mate-rials Transactions A[J],2003,34(12):2809-2817. [22]刘培生.有色金属[J],2005,57(2):55-57LIU P S.Nonferrous Metals Engineering[J],2005,57(2):55-57.[23]TALEBI S,SADIGHI M,AGHDAM M M,et al.Materials TodayCommunications[J],2017,13:170-177.[24]BELARDI V G,FANELLI P,TRUPIANO S,et al.European Journalof Mechanics A/Solids[J],2021,89:104291.[25]JANG W Y,KYRIAKIDES S,KRAYNIK A M.International Journalof Solids and Structures[J],2010,47(21):2872-2883. [26]ZHENG G,ZHANG L Q,WANG E D,et al.Thin-Walled Structures[J],2022,177:109405.[27]DUAN Y,DU B,SHI X P,et al.International Journal of Impact En-gineering[J],2019,132:103303.[28]SUN M R,YANG L,HU C Z,et al.International Journal of Heat andMass Transfer[J],2021,165:120637.[29]DOU R J,QIU S W,JU Y,et putational Materials Science[J],2016,112:205-209.[30]邱飒蔚.闭孔泡沫铝夹层板局部压缩性能研究[D].昆明:昆明理工大学,2016.QIU S W.Study on Local Compression Performance of Closed Cell Aluminum Foam Sandwich Plate[D].Kunming:Kunming University of Science and Technology,2016.[31]FANG Q,ZHANG J H,ZHANG Y D,et posite Structures[J],2015,124:409-420.[32]FANG Q,ZHANG J H,ZHANG Y D,et al.International Journal ofImpact Engineering[J],2015,82:103-112.[33]ZHU Y X,LUO G Q,ZHANG R Z,et posites Science andTechnology[J],2020,192:108110.[34]李志强,王志华,赵隆茂.太原理工大学学报[J],2008,39(4):436-440.LI Z Q,WANG Z H,ZHAO L M.Journal of Taiyuan University of Technology[J],2008,39(4):436-440.[35]ZHANG C Y,TANG L Q,YANG B,et putational MaterialsScience[J],2013,79:45-51.[36]LI L,XUE P,LUO G.Materials&Design[J],2016,110:72-79.[37]程和法,黄笑梅,许铃.有色金属[J],2003,55(3):10-12.CHENG H F,HUANG X M,XU L.Nonferrous Metals Engineering [J],2003,55(3):10-12.[38]ZHUANG W M,WANG E M,ZHANG H L.Mechanics of Materials[J],2023,182:104684.[39]LUO G,CHAI C P,CHEN Y S,et al.Thin-Walled Structures[J],2023,190:110931.[40]ZHUANG W M,WANG E M.Mechanics of Materials[J],2022,169:104319.[41]MA G W,YE Z Q,SHAO Z S.International Journal of Impact Engi-neering[J],2009,36(6):775-782.[42]LI J D,MA G W,ZHOU H Y,et al.International Journal of Protec-tive Structures[J],2011,2(3):333-349.[43]BENSALEM I,BENHIZIA A.Thin-Walled Structures[J],2022,181:109991.[44]MEGUID S A,STRANART J C,HEYERMAN J.Finite Elements inAnalysis and Design[J],2004,40(9-10):1035-1057. [45]ZHU H X,WINDLE A H.Acta Materialia[J],2002,50(5):1041-1052.[46]ROBERTS A P,GARBOCZI E J.Journal of the Mechanics and Phys-ics of Solids[J],2002,50(1):33-55.[47]ZHANG Z C,FENG H M,XU T,et posite Structures[J],2022,283:115090.[48]COSTANZA G,GIUDICE F,SILI A,et al.Metals[J],2021,11(9):1370.[49]LI J,WU C Q,HAO H,et posite Structures[J],2018,203:599-613.[50]JEON I,ASAHINA T,KANG K J,et al.Mechanics of Materials[J],2010,42(3):227-236.[51]ZHU X L,AI S G,LU X F,et al.International Journal of Heat andMass Transfer[J],2014,72:242-249.[52]KADER M A,ISLAM M A,SAADATFAR M,et al.Materials&De-sign[J],2017,118:11-21.[53]SUN Y L,LI Q M,LOWE T,et al.Materials&Design[J],2016,89:215-224.[54]MUKHERJEE M,GARCÍA-MORENO F,JIMÉNEZ C,et al.ActaMaterialia[J],2017,131:156-168.[55]TODA H,TAKATA M,OHGAKI T,et al.Advanced Engineering Ma-terials[J],2006,8(6):459-467.[56]MOVAHEDI N,LINUL E,MARSAVINA L.Journal of Materials En-gineering and Performance[J],2018,27(1):99-108. [57]WANG E D,SUN G Y,ZHENG G,et posites Part B:Engi-neering[J],2020,202:108247.(编辑㊀惠㊀琼)033。
泡沫铝lsdyna参数【实用版】目录1.泡沫铝的概述2.LS-DYNA 参数的含义3.泡沫铝 LS-DYNA 参数的选择与设置4.泡沫铝 LS-DYNA 参数对仿真结果的影响5.结论正文1.泡沫铝的概述泡沫铝是一种具有良好性能的材料,其结构特点是在铝材的基础上,通过特定的工艺形成微小的独立气泡,使材料具有较低的密度和良好的隔热性能。
泡沫铝广泛应用于建筑、交通、航空等领域。
2.LS-DYNA 参数的含义LS-DYNA 是一种广泛应用于工程领域的有限元分析软件,可以对各种材料和结构进行模拟分析。
在 LS-DYNA 中,参数设置是影响仿真结果的关键因素。
参数主要包括材料参数、边界条件参数、求解参数等。
3.泡沫铝 LS-DYNA 参数的选择与设置对于泡沫铝这种具有特殊性能的材料,在 LS-DYNA 中进行仿真分析时,需要正确选择和设置参数。
主要包括以下几个方面:(1)材料参数:选择合适的材料模型,如泡沫铝的弹性模量、泊松比、密度等;(2)边界条件参数:根据实际问题,设置合理的边界条件,如固定边界、滑动边界、对称边界等;(3)求解参数:根据问题规模和计算机性能,选择合适的求解算法、时间步长、迭代次数等。
4.泡沫铝 LS-DYNA 参数对仿真结果的影响不同的参数设置会导致 LS-DYNA 仿真结果的差异。
对于泡沫铝这种具有特殊性能的材料,参数设置尤为重要。
以下几个参数对仿真结果影响较大:(1)材料参数:弹性模量、泊松比等直接影响泡沫铝的力学性能;(2)边界条件参数:不同的边界条件会导致不同的应力分布和变形情况;(3)求解参数:求解算法、时间步长、迭代次数等会影响计算速度和精度。
5.结论总之,在进行泡沫铝 LS-DYNA 仿真分析时,需要综合考虑各种参数的设置,以获得较为准确的仿真结果。
泡沫铝导热系数1. 引言泡沫铝是一种轻质、高强度的材料,具有良好的导热性能。
导热系数是评价材料导热性能的重要指标之一。
本文将介绍泡沫铝的导热系数及其影响因素。
2. 导热系数的定义导热系数(thermal conductivity)是指单位时间内,单位距离内,单位温度差下物质传导热量的多少。
通常用字母λ表示,单位为W/(m·K)。
3. 泡沫铝导热系数的测量方法泡沫铝导热系数的测量可以采用稳态法和非稳态法两种方法。
3.1 稳态法稳态法是通过测量样品两侧温度差和传热面积,利用导热方程计算出导热系数。
该方法适用于导热系数较小或边界条件恒定的情况。
3.2 非稳态法非稳态法是通过测量样品在恒定温度梯度下的温度变化来推断出材料的导热系数。
该方法适用于导热系数较大或边界条件不恒定的情况。
4. 影响泡沫铝导热系数的因素泡沫铝导热系数受以下因素的影响:4.1 泡沫铝材料的密度泡沫铝材料的密度越大,其导热系数越小。
这是因为密度高的泡沫铝材料内部孔隙较小,导致热传导路径变长,从而降低了导热性能。
4.2 泡沫铝材料的孔隙率泡沫铝材料的孔隙率越高,其导热系数越大。
这是因为孔隙率高的泡沫铝材料内部空气比例高,空气是良好的绝缘体,会阻碍热传导。
4.3 泡沫铝材料表面处理泡沫铝材料表面处理方式不同,对其导热系数也有影响。
一些表面处理方法如电镀、阳极氧化等可以增加泡沫铝表面与外界环境之间的接触面积,提高传热效果。
4.4 泡沫铝材料的纯度泡沫铝材料的纯度越高,其导热系数越低。
杂质会对泡沫铝内部的热传导产生干扰,影响导热性能。
5. 泡沫铝导热系数的应用领域由于泡沫铝具有良好的导热性能,所以在许多领域得到了广泛应用。
5.1 热交换器泡沫铝能够提供良好的传热效果,因此在热交换器中被广泛应用。
它可以用于汽车发动机散热器、空调系统等。
5.2 隔音材料由于泡沫铝具有良好的绝缘性能,同时又具备较高的导热系数,因此可以用作隔音材料。
它可以减少声音的传播,并且不会影响传递热量。
泡沫铝铝粉型号全文共四篇示例,供读者参考第一篇示例:泡沫铝是一种轻质、可回收的材料,具有良好的隔热、防火、保温性能,因其具有极佳的抗压强度和保温性能,被广泛应用于建筑业、航空航天、汽车制造、家居装饰等领域。
而泡沫铝铝粉则是泡沫铝制品的一种重要原料,通过铝粉的添加可以提高泡沫铝的结构强度和硬度,提高产品的耐用性和稳定性。
下面将介绍一些常见的泡沫铝铝粉型号及其特点。
1. 泡沫铝铝粉型号ALP-1000ALP-1000是一种常见的泡沫铝铝粉型号,具有较高的纯度和良好的加工性能。
它采用高纯度的铝粉为原料,经过特殊工艺制成,具有均匀的颗粒大小和良好的流动性。
ALP-1000铝粉适用于各类泡沫铝制品的生产,如泡沫铝板、泡沫铝管等,可以提高产品的力学性能和表面质量,使产品更加坚固耐用。
总结:泡沫铝铝粉是泡沫铝制品的重要原料之一,不同型号的铝粉适用于不同领域的泡沫铝产品生产。
在选择泡沫铝铝粉型号时,需根据产品的具体要求和工作环境来选择合适的型号,以确保产品具有良好的性能和稳定性。
希望上述介绍对大家有所帮助,谢谢!泡沫铝是指由铝和铝合金粉末与发泡材料混合后经高温加热而成的一种轻质、具有优异性能的新型材料。
泡沫铝因其质量轻、抗压强度高、热传导性能好、吸声性能优异等特点,被广泛应用于航空航天、能源、化工、建筑等多个领域。
而泡沫铝铝粉作为生产泡沫铝材料的关键材料之一,型号繁多,下面将对几种常见的泡沫铝铝粉型号进行介绍。
一、ZHN-1000型泡沫铝铝粉ZHN-1000型泡沫铝铝粉是目前市场上比较常见的一种泡沫铝材料,其主要原料为高纯度的铝合金粉末和发泡材料。
ZHN-1000型泡沫铝铝粉具有低密度、高强度、热传导性好、耐腐蚀性强等优点,广泛应用于航空航天领域和高端压力容器制造等领域。
ZHL-500型泡沫铝铝粉是一种中等密度的泡沫铝材料,适用于各种机械设备和电子器件的隔热隔音等领域。
ZHL-500型泡沫铝铝粉具有良好的机械性能和导热性能,广泛应用于汽车制造、船舶建造和建筑领域。
一种泡沫铝的制备方法
泡沫铝的制备方法主要包括以下步骤:
1. 原料准备:选择高纯度的金属铝作为原料,将其切成块状。
2. 预处理:将切割好的金属铝块进行表面处理,包括去除氧化层、清洁杂质等,以提高铝的表面纯度。
3. 铝块预热:将金属铝块在高温下预热,以使其快速熔化。
4. 加入发泡剂:在熔化的金属铝中加入发泡剂,如钠硅酸盐或氯化铝等。
发泡剂会产生气泡,使铝变成泡沫状。
5. 发泡过程:在铝熔体中添加发泡剂后,迅速冷却或用冷水冷却,使铝熔体立即凝固。
在凝固的过程中,发泡剂会释放气体,形成泡沫铝。
6. 切割和调整:将制得的泡沫铝块进行切割和调整,使其符合所需尺寸和形状。
7. 表面处理:对泡沫铝块进行表面处理,如抛光、喷涂等,以提高其外观和耐腐蚀性能。
以上是一种常用的泡沫铝制备方法,具体方法和步骤可能会因不同生产厂家和产
品要求而有所变化。