功能高分子微球
- 格式:doc
- 大小:1.39 MB
- 文档页数:15
纳米微球是什么它有什么作用
微球,是一种直径比头发丝还小的现代工业基础材料,没有它,手机屏幕将无法生产,药品的药效也很难达到最佳效果。
纳米微球通常是指粒子大小为1至100 nm 的微球,在该尺度下它的性质会有显着改变。
制作纳米微球的材料有哪些?制作纳米微球的材料可分为天然生物材料和合成高分子材料两大类。
天然生物材料主要包括壳聚糖、胶原、淀粉、脂质体、脂蛋白等。
壳聚糖、胶原、淀粉是组织的基质成分,具有良好的生物相容性和生物降解性,细胞毒性低,降解产物可被机体完全吸收;但缺点是力学强度较差,降解速率不易控制。
而合成高分子材料主要包括PEG、(乳酸-羟基乙酸)聚合物(PLGA)和聚乙烯醇(PVA)等,它们在药物运输中得到了很好的应用。
如何制作纳米微球呢?离子交联法是制作纳米微球的基本方法之一,适用于以壳聚糖、海藻酸钠等为材料的纳米微球。
其主要原理是作为药物载体的材料通过离子交联法从乳液中析出,同时通过氢键相互作用和疏水相互作用将药物包埋在载体中,从而制备成载药微球。
该方法制备条件温和,整个过程不使用对人体有害的试剂,也成为载药微球的理想制备方法之一。
纳米微球的典型制备方法还有“乳化-溶剂挥发法”和“微流控法”。
“乳化-溶剂挥发法”是将模型药物先溶解于有机溶剂中,然后滴加到含有表面活性剂的水相中,在均质机的高速剪切下形成油相/水相型乳液,再通过常压或减压方式除去乳液分散。
微球基础学问概括一、定义一般定义上的微球为药物微球:是指药物溶解或分散在成球材料中,形成的骨架型微小球形或类球形微粒,其粒径范围一般在1~250μm,可以供口服、注射、滴鼻或皮下埋植使用。
微球更宽泛的定义为:由无机或聚合物材料制备而成的球形粒子,能够将不同结构和性能的材料通过肯定的方式复合,使之优势互补,微球具有流动性、生物相容性、功能基特性表面效应、体积效应等优良的性质。
微球因其特别尺寸和特别结构在很多紧要的领域起到了特别而关键的作用。
不同粒径和形貌的微球担负着不同的功能。
二、分类微球依照形貌可分为实心微球、空心微球、多孔微球。
依照材质的不同可将微球分为无机微球和有机微球。
三、应用1.色谱介质:性能好的色谱填料不仅要具备分散性好、机械强度高等物理特性,还应具备较好的分别度、较高的生物相容性和稳定性。
对高分子微球改性以后,由于目标分子的需求,可以提升杂质与目标分子分别的程度,收率也相对提高,在其表面上的配基密度也会随之提高。
2.生物医学领域:高分子微球包埋药物后不但可以用于药物的非定向及靶向运输,提高其医疗效果,还可以降低传统药物载体的生物毒性。
高分子微球可以用于细胞的标记分别和药物的释放。
它可以包裹药物并且作为载体,在分析测试中,制得所需要的粒径、结构特别的高分子微球,包裹药物分子。
高分子微球具有化学性能稳定、形状规定可以应用于生物检测方面,前提是在进行修饰以后才可以,例如在分别提纯、固定催化剂、生物芯片的制作等。
从浩繁方面可以看出高分在微球在生物医学方面的应用起着特别关键的作用,随着科技技术的进步,它的讨论价值也会渐渐体现出来。
3.化工领域:粒径恰当的单分散高分子微球可以应用于高效液相色谱填料,单分散多孔结构的高分子微球可以用于化妆品、油墨添加剂、胶黏剂、催化剂载体,涂料等领域。
内在化工涂料部加入乳液有很多的作用,可以提升涂料稳定性和分散性,还可以提升固含量,降低有机溶剂的需要,提高环境的质量。
微球制备工艺-乳化法高分子微球是采用已有的高分子材料,如天然高分子、生物可降解高分子、嵌段高分子材料为载体材料制备微球和微囊。
最常用的制备工艺是乳化-固化法制备的。
微球一般是用O/W或W/O型乳液法制备的实心颗粒称之为微球;用复乳法制备的颗粒一般带有空腔,称之为微囊,两者统称为微球。
乳化-固化法制备高分子微球、生物降解性高分子微球最常用的方法。
制备方法:将高分子材料溶解在有机溶剂或水溶剂中,按照粒径需求和高分子材料的物理化学性质,采用用不同的乳化方法制备成W/O型、O/W型、W/O/W型或O/W/O型乳液,制备乳液时,连续相中需加入乳化剂/稳定剂,使乳液稳定。
然后除去溶剂或物理/化学交联等方法固化得到微球。
微球的形成由成核过程与核成长过程组成,此过程决定微球粒径和粒径分布。
选择合适的制备工艺制备理想的微球。
乳化方法:1、机械搅拌法;2、均质乳化法;3、高压微射流法;4、超声乳化法;5、微孔膜乳化法;6、微流控法。
乳化方法及其制备的乳液特点机械搅拌法最常用的方法,采用搅拌桨将油相和水相混合并将大液滴破损成小液滴,搅拌速度越快获得的液滴越小,一般可以获得几微米至几百微米的液滴。
均质乳化法一种高速搅拌法,通过调节搅拌剪切速度,可获得几十纳米至几微米的微球,但是由于剪切速度高,耗能大并产热,易使对热敏感的API失活。
高压微射流在超高压(310MPa)压力作用下,乳液经过微孔径产生几倍音速的流体,从而达到分散和乳化的目的。
其耗能大并产热,易使对热敏感的API失活。
超声乳化法在超声波能量作用下,油水混合形成乳液。
其产热高,易使对热敏感的API失活,一般需求在容器周围放上冷却装置。
微孔膜乳化法分散相在驱动力下压过膜孔,通过分散相和膜孔之间的界面张力形成均一的液滴,用物理或化学方法固化后可得到均一的微球微流控法通过严格控制两相流动速度来制备粒径可控的液滴,粒径分布系数可达到5%以下。
微流控可实现粒径可控及形貌结构可控,但是现阶段还难以实现大规模制备。
高分子材料在涂料与涂层中的应用近年来,高分子材料在涂料与涂层领域的应用越发广泛。
高分子材料以其独特的化学性质和物理性能,在涂料和涂层的功能性、耐久性和外观效果上发挥重要作用。
本文将探讨高分子材料在涂料与涂层中的应用,并重点介绍几种常见的高分子材料及其功能。
1. 聚合物乳液聚合物乳液是一种由聚合物微粒分散在水相中的分散体系。
它具有优异的胶凝性和可塑性,使其成为一种理想的涂料和涂层材料。
聚合物乳液可以用于水性涂料的制备,提高涂料的粘度、密着性和耐久性。
此外,聚合物乳液还可以作为涂料增稠剂、乳液防水剂和分散剂使用。
2. 聚氨酯聚氨酯是一种具有弹性和耐久性的高分子材料。
在涂料和涂层中,聚氨酯可以用作涂层的基材,提供一定的保护功能。
聚氨酯涂层具有良好的耐腐蚀性、耐久性和耐磨性,可以应用于船舶涂装、汽车涂装和建筑涂装等领域。
此外,聚氨酯还可以作为涂料的增塑剂和增稠剂使用,改善涂料的性能。
3. 聚合物微球聚合物微球是一种由聚合物颗粒组成的微粒体系。
由于其微小颗粒的特性,聚合物微球可以均匀分散于涂料中,形成一种均一的涂层结构。
聚合物微球可以提高涂料的耐候性、抗刮擦性和耐化学品性能。
此外,聚合物微球还可以用作涂料的填料,改善涂料的流变性能和光学性能。
4. 高分子胶粘剂高分子胶粘剂是一种以高分子化合物为基础制备的粘接材料。
在涂料与涂层中,高分子胶粘剂可以用作涂料中的粘结剂和粘接剂。
它可以提供涂料与基材之间的黏接强度,改善涂料的附着性和耐候性。
高分子胶粘剂还可以用作涂料的粘度调节剂,使涂料具有良好的流动性和施工性能。
总结起来,高分子材料在涂料与涂层中的应用广泛且多样。
聚合物乳液、聚氨酯、聚合物微球和高分子胶粘剂等材料都具有独特的性能和功能,可以提高涂料的粘接性、耐候性和外观效果。
随着科学技术的不断进步,高分子材料在涂料与涂层中的应用前景将更加广阔。
新型功能高分子材料的制备与应用高分子材料,是一类长链状分子或网络状结构的复合材料,具有良好的化学稳定性、物理性质、生物相容性等特点,因此在工业、医药、电子等领域中得到广泛应用。
近年来,高分子材料的应用领域不断扩大,并且在材料制备方面也不断创新,产生了许多新型功能高分子材料。
一、新型功能高分子材料的制备1、自组装法制备复合材料自组装法是一种利用分子之间的自组装能力制备复合材料的方法。
自组装法制备出的材料具有较高的比表面积和孔径分布范围,因此具有很好的催化、吸附和分离性能。
自组装法可以制备多种复合材料,例如:介孔材料、金属有机骨架材料等。
2、激光制备高分子材料激光制备是一种以激光为热源制备高分子材料的新技术。
这种方法可以制备出高分子微球、纳米颗粒等,具有高纯度、均一性和可控性优点。
同时,激光制备还可以使高分子材料在局部区域形成不同的物理、化学性质,实现多种不同功能的复合材料的制备。
3、电解还原法制备多孔高分子材料电解还原法是一种利用电化学法制备多孔高分子材料的技术。
通过调节电流密度和电解液 pH 值等条件,可以制备出孔径不同、孔隙率不同的多孔高分子材料。
这种方法可以制备出孔径为纳米级的多孔高分子材料,具有高比表面积、高可逆气体吸附性能等特点。
二、新型功能高分子材料的应用1、医用高分子材料在医药领域,高分子材料的应用十分广泛。
例如,生物降解材料被广泛应用于医用缝线、注射自降解填充剂、组织工程等领域;细胞培养与工程领域,高分子材料被广泛应用于组织工程、细胞培养基质、药物输送等应用中。
2、能源高分子材料在能源领域,高分子材料的应用也不断扩大。
例如,利用高分子材料设计新型离子液体和凝胶电解质,开发出新型电池和超级电容器等高效电化学器件;制备出柔性太阳能电池、柔性热电材料等。
3、环保高分子材料在环保领域,高分子材料的应用也屡见不鲜。
例如,利用高分子材料制备出有机催化剂,实现环境清洁剂的高效催化降解;利用高分子材料制备出具有高比表面积和可定向饱和吸附特性的吸附剂,实现废水和废气的高效吸附和处理等。
表面含羧基的磁性高分子微球的制备和表征杨 旭1,2, 李 欣2, 潘复生1, 陶长元3(1.重庆大学材料科学与工程学院,重庆400044;2.第三军医大学化学教研室,重庆400038;3.重庆大学化学化工学院,重庆400044)摘 要:以共沉淀法制备的Fe 3O 4为磁性来源,选用丙烯酰胺、N ,N ′2亚甲基双(丙烯酰胺)和丙烯酸分别作为聚合单体、交联剂和功能基单体,通过反相乳液聚合,包裹制备携带羧基的磁性高分子微球。
考察了Fe 3O 4投入量、功能基单体量、交联剂量、聚合时间和介质的变化对磁性高分子微球的形态、磁性质及表面羧基含量的影响。
采用SE M 、IR 、721E 分光光度计和化学滴定法进行表征,制备出粒径在500nm ~10μm ,表面羧基携带量为1.0mm ol/g 的磁性高分子微球。
关键词:Fe 3O 4;磁性高分子微球;反相乳液聚合;羧基中图分类号:T Q 225 文献标识码:A 文章编号:036726358(2006)052276205Preparation and Characterization of Magnetic P olymerMicrospheres with Surface Carboxyl G roupsY ANG Xu1,2, LI X in 2, PAN Fu 2sheng 2, T AO Chang 2yuan3(1.Department o f Materials Science and Engineering ,Chongqing University ,Chongqing 400044,China2.Department o f Chemistry ,the Third Military Medical University ,Chongqing 400038,China3.Department o f Chemistry and Chemical Engineering ,Chongqing University ,Chongqing 400044,China )Abstract :A method for producing polymer 2coated magnetic microspheres with surface carboxyl groups by inverse emulsion polymerization is described.Experiments were performed with acrylamide m onomer ,amm onium persulfate initiator ,Fe 3O 4magnetic particles ,acrylic acid functional group m onomer and N ,N ′2methylene bisacrylamide cross 2linking agent.Five factors which in fluence the m orphology ,magnetic properties and am ount of surface carboxyl groups of the magnetic polymer microspheres were taken into account :am ount of Fe 3O 4,am ount of acrylamide 2acrylic acid ,am ount of N ,N ′2methylene bisacrylamide ,reaction time and medium.The properties of the magnetic polymer microspheres were charactered by SE M ,IR spectroscopy ,721E spectrophotometer and chemical titration.S pherical magnetic polymer particles with 1.0mm ol Πg carboxyl groups and the size from 500nm to 10μm were obtained.K ey w ords :magnetite ;magnetic polymer com posite microsphere ;inverse emulsion polymerization ;carboxyl groups收稿日期:2005211230;修回日期:2006203210基金项目:国家自然科学基金联合基金资助项目(10476035)作者简介:杨 旭(1969~),男,四川通江人,讲师,博士生,主要从事功能材料方面的研究。
医用用高分子材料医用高分子材料在医学领域中发挥着重要的作用。
这些材料具有良好的生物相容性和生物降解性,能够在医疗过程中与人体组织相互作用,达到修复、替代或辅助治疗的效果。
下面将详细介绍医用高分子材料的分类、特点以及在医学领域中的应用。
医用高分子材料主要分为生物可降解高分子材料和生物惰性高分子材料两大类。
生物可降解高分子材料具有良好的可降解性和吸附能力,可被分解为无毒的溶解物,不会对人体产生负面影响。
常见的生物可降解高分子材料有聚酯类、聚酮类和聚脲/聚氧甲基纳/聚亚甲基纳等。
聚酯类材料具有良好的生物可降解性和生物相容性,在医学领域中广泛应用于各种领域。
例如,聚乳酸(PLA)和聚羟基烷酸酯(PHA)等聚酯类材料可以用于制备可降解的缝合线、保持器和修复材料等。
此外,聚-ε-内酯(PCL)是一种常见的有机溶剂可降解高分子材料,在组织工程和药物传递领域也有广泛的应用。
聚酮类材料具有较高的熔融温度和耐疲劳性,可以制备出具有优异力学性能的材料。
多异氰酸酯(MDI)和聚己内酯(PCL)共混物(PHDI)是一种常见的聚酮类材料,可以用于制备心脏瓣膜、关节替代物和人工血管等。
生物惰性高分子材料具有优异的生物相容性,不会引起明显的炎症反应和免疫反应。
常见的生物惰性高分子材料有聚乙烯醇(PVA)、聚己内酯(PCL)、聚甲基丙烯酸甲酯(PMMA)等。
聚乙烯醇(PVA)是一种具有高透明度和生物相容性的高分子材料,可以用于制备人工眼角膜、人工关节和人工内膜等。
聚己内酯(PCL)具有良好的生物相容性和降解性能,可以用于制备支架、药物传递系统和组织工程支架等。
聚甲基丙烯酸甲酯(PMMA)是一种常见的生物惰性高分子材料,具有高透明度和良好的抗菌性能,可以用于制备人工眼架和透明人工组织等。
医用高分子材料在医学领域中的应用非常广泛。
首先,它们可以用于制备生物打印支架,用于组织工程,如骨骼和软组织再生。
其次,医用高分子材料可用于制备生物医药用途的药物输送系统。
得分:_______ 南京林业大学研究生课程论文2013 ~2014 学年第二学期课程号:23412课程名称:材料现代分析原理与方法论文题目:功能高分子微球及其制备的研究进展学科专业:材料学学号:3130161姓名:王礼建任课教师:高勤卫二○一四年五月功能高分子微球及其制备的研究进展王礼建(南京林业大学理学院,江苏南京210037)摘要:由于功能高分子微球具有比表面积大、吸附性强等性质,应用前景诱人,已引起国内外学者的广泛关注。
本文主要介绍了功能高分子微球及其若干制备技术的研究进展,对其在众多领域中的应用进行了综述,并扼要分析了功能高分子微球的研究前景和方向,为功能高分子微球技术的应用和推广提供一定的思路。
关键词:功能高分子微球;制备;应用;进展Research Progress of Functional Polymer Microsphereand its PreparationWANG Li-jian(College of Science, Nanjing Forestry University, Nanjing 210037, China)Abstract: Functional polymer microspheres have attracted wide attention of scholars at home and abroad, because of their large surface area, strong adsorption properties and good potential future in applications. In the present article, the preparing ways for and research progress in functional polymer microspheres are addressed. In addition, possible hotspots of future study on functional polymer microspheres are analyzed, so as to provide perspectives on applications and promotions of its technology.Key words:f unctional polymer microspheres; preparation; application; progress 近年来,随着现代科学技术的飞速发展,高分子微球材料的研究与应用发展也异常迅速,由于其特殊的尺寸和外貌形态,因此具有了其他材料所不具备的功能。
在当今社会中,高分子微球材料的应用已经深入到生活中的方方面面,从纸张表面涂层、涂料、化妆品等大宗产品到用于药物缓释的微胶囊、分离蛋白质的层析介质等高附加价值产品,都用到了高分子微球材料[1]。
目前制各功能高分子微球的常用方法有无皂乳液聚合[2]、分散聚合[3]、种子聚合[4]等。
其中无皂乳液聚合由于在聚合反应体系中不含或仅含少量乳化剂,而且所制备的微球表面比较洁净,形态规则,单分散性好,因此成为制备纳米级功能高分子微球的主要方法之一。
分散聚合由于其能通过一步法制备微米级、单分散的高分子微球,因此也成为制备微米级功能高分子微球的主要方法之一。
1 高分子微球的定义及功能高分子微球是指直径在纳米级至微米级,形状为球形或其他几何体的高分子材料或高分子复合材料,其形貌可以是多种多样的,包括实心型、空心型、多孔型、哑铃型、洋葱型、汉堡型等等。
高分子微球也包括微囊,微囊通常是指微球中间有一个或多个微腔,而且微腔内包埋了某种特殊物质的微球。
微球和微囊因其特殊尺寸和特殊结构在许多重要的领域起到了特殊并且关键的作用。
图1 PVA空心微球的TEM图[5]Fig.1 TEM image of PVA hollow microspheres高分子微球由于其特殊的形态和结构在许多领域里起了重要作用[6]。
例如可作为微存储器,存储和保护某些重要物质,以便在需要的地点和时间,以一定的速度释放这些特殊物质;微分离器,有选择的筛选某种特殊物质或让某些特殊的物质通过,主要应用于提纯蛋白质、血液净化用等;微反应器,使反应在特殊的空间里进行,从而生成特定的物质;微结构单元,微球作为材料的特定组成部分,从而提高材料的某些特殊性能,主要应用为塑料添加剂、涂料等。
2 高分子微球的发展高分子微球材料的起源很悠久,起先高分子微球材料主要用于橡胶制品的添加剂,这些高分子微球材料都是具有弹性的高聚物,如聚丁二烯等。
随着技术的发展,高分子微球开始用于涂料、胶黏剂、塑料添加剂、建筑材料等领域。
近十几年来,高分子微球的应用领域由传统的工业应用发展到高端技术领域,如医药领域、生物化学领域等。
因此,高分子微球的制备与应用又进入一个新的发展高潮。
高分子微球材料的研究进展可以分为制备研究和应用研究两个阶段,这两者既是先后相继的,同时又是相互独立和相互促进的。
高分子微球制备技术已发展相对完善,建立了制备0.01-l00um尺寸的高分子微球体系。
尤其在近十年,纳米微球和超大型微球的制备技术也有了突破性进展。
一般采用自由基聚合方式来直接制备高分子微球,这种制备方法能够低成本、简单的制备出满足各种需求的功能高分子微球;因此受到了科学家和企业家的青睐。
但是,一些天然高分子、生物可降解的高分子微球以及其他一些特殊的高分子微球无法用自由基聚合法来制备,针对这些特殊的高分子微球科学家也已经研发出了许多其他的制备方法。
在高分子微球的应用领域方面,传统工业领域中的产品得到了进一步发展,如涂料领域,产品的结构已由大众化走向个性化,即产品的多样化和环保化。
在药物输送系统中的应用是近年来发展最快的,这一方面是由于人类对医疗设备的要求随着物质生活的提升而越来越高;另一方面,围绕药物包埋、微胶囊的制备方法及其应用所研究的内容远比其他领域要多,导致对微球的质量要求也越来越高。
3 高分子微球的制备方法高分子微球的主要制备方法有乳液聚合、无皂乳液聚合、分散聚合和悬浮聚合等。
不同的聚合方法可得到不同组成、粒径的聚集体,其粒径的分散度也不同。
乳液聚合和无皂乳液聚合方法一般适合制备粒径不超过1μm的微球,分散聚合和大分子单体参与的分散共聚合方法可制备得到粒径尺寸范围更大的高分子微球。
3.1 乳液聚合乳液聚合法是制各高分子微球最常用的方法,它以水作溶剂,对保护环境十分有利。
用此方法可以较容易地合成几十到几百纳米的高分子微球[7]。
乳液聚合最简单的配方主要由单体、水、水溶性引发剂和水溶性乳化剂四部分组成。
乳液聚合和本体聚合、溶液聚合、悬浮聚合同属于自由基反应,但乳液聚合相对于其它聚合方法,由于其特殊的聚合机理,从而表现出许多优点[8]:(1)以水为介质,价廉环保安全。
乳液粘度较低,利于传热、管道输送和连续生产;(2)有利于产品的直接使用和环保产品的生产,如粘结剂、皮革、纸张处理剂等;(3)聚合速率快,产物分子量高,可以在较低温度下进行反应。
Xu等[9]用w/o/w乳液聚合的方法一步合成笼子形状的多孔聚合物微球作为催化剂载体。
他们巧妙地使用了N-(4一乙烯基苄基)-N,N-二甲胺(VBA)这种物质。
季铵盐本身的结构使得微球具有笼子形状,用作催化剂载体时其本身可以起到表面活性剂的作用,省去了离心的步骤,简化了操作。
整个过程仅需用苯乙烯、VBA合成PS-co-PVBAH(聚苯乙烯一聚乙烯基苯胺盐酸盐的共聚物)多孔微球。
当然乳液聚合也有许多缺点,比如需要固体产品时,乳液需要进行破乳、凝聚、洗涤、干燥等许多后处理步骤,成本太高;产品中留有乳化剂,给产品性能带来不良因素等。
赵大庆等[10]应用乳化聚合技术,以醛或硼砂为交联剂,获得PVA微球,但该技术只能使用低浓度的PVA溶液,致使PVA微球的力学性能不足。
李志伟等[11]用乳液聚合的方法合成了表面富含梭基的聚苯乙烯纳米微球,并用自组装的方法将其在玻璃表面组装成膜。
图2中(a)和(b)分别为空白玻璃和40%混合溶剂中PS/PAA纳米微球组装薄膜的AFM形貌图。
从图(b)我们可以看到,组装后薄膜的表面形貌、平均粗糙度(RMS,3.2nm)与玻璃表面图(a)的形貌、平均粗糙度(RMS,7.4nm),有极大的区别,所以我们认定聚苯乙烯纳米微球已组装在玻璃表面,图(b)表面微粒为聚苯乙烯纳米粒子而不是粗糙的玻璃表面。
从图(b)还可以看出,聚苯乙烯纳米微球在玻璃表面形成了均匀、覆盖度大的聚合物纳米微球薄膜。
图2 (a) 空白玻璃表面的AFM图;(b) 聚苯乙烯/聚丙烯酸纳米薄膜的AFM图Fig.2 (a) AFM photographic images of glasses(b) AFM photographic images of PS/PAA nanoparticles ultra-thin film3.2 无皂乳液聚合无皂乳液聚合是指在反应过程中完全不加乳化剂或仅只入微量乳化剂的乳液聚合过程,又称为无乳化剂乳液聚合。
此方法是在传统的乳液聚合的基础上进化而来的。
由于传统的乳液聚合要使用乳化剂,所以产品的性能往往达不到人们的要求,因此人们就想办法尽量不使用乳化剂,后来发现只要在聚合过程中加入少量的亲水性单体,聚合反应也可以快速进行。
由于无皂乳液聚合方法制备出的高分子微球形状规则、单分散且表面洁净,因此越来越受到人们的关注。
无皂乳液聚合过程中由于不使用乳化剂或乳化剂浓度很低,因此比传统的乳液聚合有以下特点[12]:(1) 聚合过程中不含乳化剂,在某些应用场合不用进行除乳化剂的后处理过程,避免了在使用过程由于乳化剂的存在对产品性能的不良影响,降低了产品成本。
(2) 制备的高分子微球表面洁净,形态规整,粒径单分散性好。
李玉等[13]等采用无皂乳液聚合法制备了亚微米级聚苯乙烯(Ps)微球,然后通过加入微量乳化剂或伊环糊精对无皂乳液聚合法进行改进。
结果表明,Ps微球的粒径随St单体浓度和氯化钠浓度的增加而增加、随着K2S2O8浓度的增加而减小。
通过调节这3种原料的浓度,可制得粒径在450-1000nm且单分散系数小于0.08的Ps微球,但产品收率较低,仅为30%左右。
3.3 分散聚合分散聚合是指单体溶于介质,而生成的聚合物不溶于介质中的聚合方法,分散聚合也常常被认为是一特殊类型的沉淀聚合。
目前该领域研究最多的是在极性介质中的分散聚合和分散共聚,用于制备单分散微米级高分子微球。
分散共聚是向微球中引入功能基团或功能高分子链最方便的方法之一。
姚尚风等[14]以对氯甲基苯乙烯为功能单体,经分散聚合制备了表面带有适量氯原子、粒径均匀的交联聚苯乙烯微球,利用微球表面氯原子的活性,引发单体进行ATRP 反应,可达到对微球表面的改性。