第一章常用注塑材料基本知识

  • 格式:doc
  • 大小:9.02 MB
  • 文档页数:18

下载文档原格式

  / 18
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章常用注塑材料基本知识

第1节塑料高分子的结构特点

1.高分子结构单元的化学组成

塑料属于合成高分子材料。人们通过长期的实践和研究,证明高分子是链状结构。一般合成高分子是由单体通过聚合反应连接而成的链状分子,称为高分子链。高分子链中的重复结构单元的数目称为聚合度。高分子链的化学组成不同,聚合物的化学和物理性能也不同。例如:

分子主链全部由碳原子以共价健相联结的的碳链高分子,他们大多由

聚反应制得,如常见的聚苯乙烯(PS)、聚氯乙烯(PVC)、聚乙烯(PE)、聚丙烯(PP)、聚甲基丙烯酸甲酯(PMMA)等,这类高聚物不易水解。

分子主链由两种或两种以上的原子如氧、氮、硫、碳等一共价健相联结的杂链高分子,如聚酯、聚酰胺、聚甲醛(POM)、聚砜等,这类聚合物是由缩聚反应或开环聚合而制得,因主链带有极性,较易水解、醇解或酸解。

主链中含有硅、磷、铝、钛、砷等元素的高分子称为元素高分子,这类聚合物一般具有无机物的热稳定性及有机物的弹性和塑性。

PE的分子链组成-CH2-CH2-CH2-CH2-

PP的分子链组成-CH2-CH-

PS的分子链组成-CH2-CH-

ABS的分子链组成-CH2-CH-CH-CH-CH2-CH-

高分子链结构单元的组成和端基对聚合物的性能有很大的影响。合成高分子的端基取决于聚合过程中链的引发和终止机理,端基可能来自单体、引发剂、溶剂或分子量调节剂,其化学性质与主链很不相同。端基对聚合物的热稳定性影响很大,链的断裂可以从端基开始,所以有些高分子需要封头,以提高耐热性。例如聚甲醛的羟端基被脂化后,热稳定性显著提高。

分子链中结构单元的连结方式往往对聚合物性能有比较明显的影响,用来作为纤维的高聚物,一般都要求分子链中单体单元排列规整,使聚合物结晶性能较好,强度高,便于抽丝和拉伸。例如用聚乙烯醇作维尼纶,只有头尾缩合才能使之与甲醛缩合生成聚乙烯醇缩醛。如果是头头相接的,羟基就不易缩醛化,使产物中仍保留一部分羟基,这是维尼纶纤维缩水性较大的根本原因。而且羟基的数量过多,会使纤维的强度下降。为了控制高分子链的结构,往往需

要改变聚合条件。一般说来,离子型聚合比自由基聚合的产物,头尾结构含量要高一些。

2.高分子的支化与交联

一般高分子都是线型的,分子长链可以卷曲成团,也可以伸展成直线,这取决于分子本身的柔顺性及外部条件。线型高分子的分子间没有化学键结合,在受热或受力情况下分子间可互相移动(流动),因此线型高聚物可以在适当溶剂中溶解,加热时可以熔融,易于加工成型。

如果在缩聚过程中有三个或三个以上官能度的单体存在;或在加聚过程中,有自由基链转移反应发生;或双烯类单体中第二双健的活化等,都能生成支化或交联的高分子。

支化高分子的化学性质与线型高分子相似,但支化对物理机械性能的影响有时相当显著。例如高压聚乙烯(LDPE)由于支化破坏了分子规整性,使其结晶度大大降低。低压聚乙烯(HDPE)是线型高分子,易于结晶,故在密度、熔点、结晶度和硬度等方面都要高于前者。支化高分子又有星型、梳型和无规支化之分,他们的性能也有差别。

星形支化梳形支化无规支化交联网

图1-1 高分子的支化与交联

图1-2表示高分子链的支化与交联。一般说来支化对于高分子材料的使用性能是有影响的。支化程度越高,支链结构越复杂、则影响越大。例如无规支化往往降低高聚物薄膜的拉伸度。以无规支化高分子制成的橡胶,其抗张强度及伸长率均不及线型分子制成的橡胶。

高分子链之间通过支链联结成一个三维空间网型大分子时即成交联结构。交联与支化是有质的区别的,支化的高分子能够溶解,而交联的高分子是不溶

不熔的,只有当交联度不太大时能在溶剂中溶胀。热固性塑料(酚醛、环氧、不饱和聚酯等)和硫化的橡胶都是交联高分子。

-CH2C=CHCH2- -CH-C=CH-C

-CH-C=CH-CH2-

未经硫化的橡胶,分子之间容易滑动,受力后会产生永久变形,不能恢复原状,因此没有使用价值,经硫化的橡胶,分子之间不能滑移,才有可逆的弹性变形,所以橡胶一定要经过硫化变成交联结构后才能使用。又如聚乙烯,虽然熔点在100度以上使用时会发软。可是经过辐射交联或化学交联后,其软化点及强度大大提高。交联聚乙烯大都用作电气接头、电缆和电线的的绝缘套管。

表1-1 包装用辐射聚乙烯薄膜的性能

3.高分子的共聚结构

由两种以上的单体单元所组成的聚合物称为共聚物。对于共聚物来说,除了存在均聚物(由一种单体生成的聚合物)所具有的结构因素以外,又增

加了一系列复杂的结构问题。以由A和B两种单体单元所生成的二元共聚物

为例,按其联接方式可分为交替共聚物、嵌段共聚物与接枝共聚物几种类型交替共聚物-ABABABABABAB-

无规共聚物-AABABABBBABBAB-

嵌段共聚物-AAAABBBBAAAABBBB-

接枝共聚物-AAAAAAAAAAAAAA- 不同的共聚物结构,对材料性能的影响也各不相同。在无规共聚物的分子链中,两种单体无规则的排列,既改变了结构单元的相互作用,也改变了分子间的相互作用,因此,无论在溶液性质,结晶性质或力学性质方面,都与均聚物有很大的差异。例如,聚乙烯、聚丙烯均为塑料,而丙烯含量较高的乙烯-丙烯无规共聚物则为橡胶;聚四氟乙烯是不能熔融加工的塑料,但四氟乙烯与六氟丙烯的共聚产物则为热塑性

塑料。

为了改善高聚物的某种使用性能,往往采取几种单体进行共聚的方法,使产物兼有几种均聚物的特点。例如聚甲基丙烯酸甲酯(PMMA)是一种很好的塑料,性能与聚苯乙烯类似。由于聚甲基丙烯酸甲酯的分子中带有极性酯基,使分子与分子之间的作用力比聚苯乙烯大,因此在高温时流动性差,不宜采取注塑成型法加工。如果将甲基丙烯酸甲酯与少量苯乙烯共聚,可以改善树脂的高温流动性,能采用注塑法成型。又如苯乙烯与少量丙烯腈共聚后,其冲击强度、耐热性、耐化学腐蚀性都有提高,可供制造耐油的机械零件。

ABS树脂是丙烯腈、丁二烯和苯乙烯的三元共聚物。共聚方式是无规共聚与接枝共聚相结合,结构非常复杂:可以是以丁苯橡胶为主链,将苯乙烯丙烯腈接在支链上;也可以是以丁腈橡胶为主链,将苯乙烯接在支链上;当然还可以苯乙烯-丙烯腈接在支链上等等,这类接枝共聚物都称为ABS。因为分子结构不同,材料的性能也有差别。总的说来,ABS三元接枝共聚物兼有三种组分的特性。其中丙烯腈有CN 基,能使聚合物耐化学腐蚀,提高制品的抗张强度和硬度;丁二烯能使聚合物呈现橡胶状韧性,这是制品抗冲强度增高的主要因素;苯乙烯的高温流动性能好,便于加工成型,且可改善制品的表面光洁度。因此ABS是一类性能优良的热塑性塑料。

用阴离子聚合法制得的苯乙烯与丁二烯的嵌段共聚物称为SBS树脂,其分子链的中段是聚丁二烯两端是聚苯乙烯。聚丁二烯在常温下是一种橡胶,而聚苯乙烯是硬性塑料,二者是不相容的,因此SBS具有两相结构。聚丁二烯段形成连续的橡胶相,聚苯乙烯段形成微区分散在树脂中,它对聚丁二烯起着交联作用。由于聚苯乙烯是热塑性的,在高温下能流动,所以,SBS是一种可用注塑的方法进行加工而不需要硫化的橡胶,又称为热塑性弹性体。

4.高分子的聚集态模型

随着人们对高聚物结晶认识的逐渐深入,在已有实验事实的基础上,提出了各种各样的模型,企图解释观察到的各种实验现象,进而探讨结晶结构与高聚物性能之间的关系。下面我们客观地介绍几种主要模型: