位错马氏体与低碳马氏体型钢
- 格式:ppt
- 大小:2.37 MB
- 文档页数:41
中内部相组成发生了变化,从而引起了钢的性能的变测得钢中马氏体是碳溶于α体,此,曾一度认为和固溶体四十年代前后,在亚点阵的概念发现,碳原子处于三种分布位置时,都能形成由碳原子构成的八面体,这种可能出现的原子阵列,称为点阵。
点阵,结果使的α度,称为新形成马氏体的正方度远高于公式给出的正方度,①切变共格和表面浮突现象变而使点阵发生改组,且一边凹陷,一边凸起,带动界面附近未转变的奥氏体也随之发生弹塑性马氏体转变切变示意图马氏体转变只有点阵改组而无成份变化,转变时原子做有规律的整体迁移,每个原子移动的距离不超过一个原子间距,且原子之间的相对位置不发生变化。
1、(有三种不同的取向,所以四种和{111}M但很快停止,不能进行到终了,需进一步降温。
始点种结构的过程。
①把面心立方点阵看做体心立方点阵,其轴比(为1.41长,使得轴比为①和马氏体板条具有平直界面,界面近似平行于奥氏体的面,所以一个奥氏体晶粒内可能形成四种马氏体板条束。
相同惯习面的马氏体板条平行排列构成马氏体板条群条间残余奥氏体薄膜的碳含量较高,在室温下很稳定,对钢的机械性能会产生显著影响。
亚结构:为与剧烈冷作硬化的光镜下片状马氏体是铁基合金中的另一种典型的马氏体组织,常见于淬火也称于氏体晶粒体的大小受到限制。
因此片状马氏体的大小不一,越是后形成向关系为中脊为高密度的相变孪晶区。
相变孪晶的存在是片状马氏体组织的重要特征。
孪晶间距大约为片的周围部分,存在高密度的位错(非孪晶区)。
1)蝶状马氏体板条状马氏体和片状马氏体的形成温度范围之间的温度区域这种马氏体的立体形态为Fe-18Ni-0.7Cr-0.5C蝶状马氏体的立体形状1)化学成分部亚结构的主要因素,其中尤以碳含量最为重要。
在随马氏体的形成温度降低马氏体;状。
低碳马氏体钢的用途是什么低碳马氏体钢是一种具有优异性能和广泛用途的金属材料。
它的用途包括但不限于以下几个方面。
首先,低碳马氏体钢在机械制造领域中广泛应用。
由于其优异的强度和韧性,低碳马氏体钢常用于制造高性能的机械零件,如汽车零件、航空发动机零件、机器工具、轴承、齿轮等。
与传统的碳素钢相比,低碳马氏体钢具有更高的强度和硬度,同时保持良好的可塑性和冲击韧性。
这使得它在机械制造中承受高负荷和复杂工况环境的能力更强,从而延长了机械设备的使用寿命。
其次,低碳马氏体钢在能源行业中有广泛的应用。
在电力发电设备和核能工业中,低碳马氏体钢常用于制造耐高温和耐腐蚀的核反应堆组件、锅炉、汽轮机叶片等。
由于低碳马氏体钢具有良好的高温强度和抗氧化性能,使得它能够在高温和恶劣的工作环境中保持稳定的性能,确保设备的安全可靠运行。
此外,低碳马氏体钢在船舶和海洋工程领域也得到了广泛应用。
作为一种耐海水腐蚀的金属材料,低碳马氏体钢常用于制造船体结构、海洋平台、海洋石油钻井设备等。
其优异的耐蚀性能使得船舶和海洋工程设备能够长时间在海水环境中使用而不受腐蚀影响,确保其结构的强度和稳定性。
此外,低碳马氏体钢还广泛应用于建筑和桥梁工程中。
由于其良好的韧性和强度,低碳马氏体钢被用于制造桥梁的主梁和支撑结构等承受重载的部件。
同时,低碳马氏体钢具有较高的焊接性能,可以方便地与其他金属材料进行焊接,提高了建筑和桥梁工程的施工效率和质量。
最后,低碳马氏体钢还在石油和化工工业中有广泛应用。
在石油和化工设备中,低碳马氏体钢常用于制造耐腐蚀和耐高压的容器、管道和阀门等。
其杰出的耐蚀性和高压性能使得它能够在恶劣的工作环境中承受高压和腐蚀介质的侵蚀,确保设备的正常运行和安全性。
综上所述,低碳马氏体钢具有优异的性能,在机械制造、能源、船舶和海洋工程、建筑和桥梁工程以及石油和化工工业等领域均有广泛的应用。
随着科学技术的不断发展和创新,相信低碳马氏体钢的应用范围还会进一步扩大。
简述钢中低碳马氏体和高碳马氏体的形貌特征和亚结构钢是一种重要的金属材料,常见的钢种有低碳钢、中碳钢和高碳钢。
其中,马氏体是一种常见的组织结构,可以分为低碳马氏体和高碳马氏体。
低碳马氏体的形貌特征是细小的板条状,显微硬度高。
亚结构主要为均质的板条状马氏体和残余奥氏体。
高碳马氏体的形貌特征是粗大的棒状或板条状,显微硬度高,但易产生脆性断裂。
亚结构主要为板条状马氏体、残余奥氏体和碳化物。
了解钢的组织结构和亚结构有助于提高钢材的性能和使用寿命。
- 1 -。
低碳马氏体显微组织性能及处理工艺锻轧后空冷:贝氏体+马氏体+铁素体性能:σ=828MPa;σ=1049MPa -室温冲击功96J制造汽车时的轮托架锻轧后直接淬火并回火:低碳回火马氏体σ=935MPa;σ=1197MPa室温冲击功50J,-40℃的冲击功32J,制造汽车操作杆具有高强度,高韧性和高的疲劳强度,适用于工程机械运动的部件和低温下适用部件2,低碳马氏体的合金化低碳加入Mo Nb V B等与合理的Mn、Cr配合提高淬透性,Nb还细化晶粒BHS系列:Mn-Mo-Nb 成分:c:0.1%,Mn1.8%,Mo0.45%,Nb0.05%Mn-Si-Mo-V-Nb系列铁素体-马氏体双相钢特征:显微组织:铁素体+岛状马氏体+少量残奥性能特点:1,低的屈服强度一般不超过350Mpa2, ε曲线是光滑的,没有屈服平台,更没有锯齿形屈服现象3,高的均匀加延伸率和总延伸率,在24%上4,高的加工硬化指数,你>0.245,高的塑性变化双相组织或得方法1热处理双相处理刚在Ac1与Ac3双相区加热,组织为α﹢γ,随加热温度升高,钢种---相增加,在冷却过程中,保证转变产物α﹢M而不是α﹢P双相钢的力学性能与组织有密切的关系,钢的化学成分,亚临界区加热温度,最终冷却速度,将起决定性作用热轧双相钢热轧后从A状态冷却时,先形成70—80%的多边形铁素体,使未转变的A有足够稳定性,避免发生珠光体和贝氏体相变,在以后冷却转变变成M工艺要求:合理设计合金成分和实现控轧与控冷双相钢优异性能的原因屈服强度和高应变硬化率的原因存在三种可能首先在马氏体区域存在残余应力,这些应力来源于快速冷却时马氏体相变的体积和形状变化其次,由于这些体积和形状变化效应,使周围铁素体经受塑性变形,导致铁素体中存在高密度的可动位错。
再次,伴随着马氏体的残余奥氏体,在成形操作时,发生应变诱发马氏体相变。
双相钢的典型成分和用途化学成分:W(c)0.04-0.1.% W﹙Mn﹚0.8-1.8% W﹙Si﹚0.9-1.5% W﹙Mo﹚0.3-0.4% W﹙Cr﹚0.4-0.6%用途:强度成形性的综合性能好,满足汽车冲压成形件的要求。
什么是马⽒体?有何特性?⼀、什么是马⽒体?马⽒体,也有称为⿇⽥散铁,是纯⾦属或合⾦从某⼀固相转变成另⼀固相时的产物;在转变过程中,原⼦不扩散,化学成分不改变,但晶格发⽣变化,同时新旧相间维持⼀定的位向关系并且具有切变共格的特征。
马⽒体最先在淬⽕钢中发现,是由奥⽒体转变成的,是碳在α铁中的过饱和固溶体。
以德国冶⾦学家阿道夫·马滕斯(A.Martens)的名字命名;现在马⽒体型相变的产物统称为“马⽒体”。
马⽒体的开始和终⽌温度,分别称为M始点和M终点;钢中的马⽒体在显微镜下常呈针状,并伴有未经转变的奥⽒体(残留奥⽒体);钢中的马⽒体的硬度随碳量增加⽽增⾼;⾼碳钢的马⽒体的硬度⾼⽽脆,⽽低碳钢的马⽒体具有较⾼的韧性。
它通常是指钢的⼀种很硬的晶体结构,但也可指任何由位移相变形成的晶体结构。
它包括⼀类具有条状或板状晶粒的硬矿物。
⼆、马⽒体典故对于学材料的⼈来说,“马⽒体”的⼤名如雷贯⽿,那么说到阿道夫·马滕斯⼜有⼏个⼈知道呢?其实马⽒体的“马”指的就是他了。
在铁碳组织中这样以⼈名命名的组织还有很多,今天我们就来说说这些名称和它们背后那些材料先贤的故事。
马⽒体(Martensite),如前所述命名⾃Adolf Martens (1850-1914)。
这位被称作马登斯或马滕斯的先⽣是⼀位德国的冶⾦学家。
他早年作为⼀名⼯程师从事铁路桥梁的建设⼯作,并接触到了正在兴起的材料检验⽅法。
于是他⽤⾃制的显微镜观察铁的⾦相组织,并在1878年发表了《铁的显微镜研究》,阐述⾦属断⼝形态以及其抛光和酸浸后的⾦相组织。
他观察到⽣铁在冷却和结晶过程中的组织排列很有规则,并预⾔显微镜研究必将成为最有⽤的分析⽅法之⼀。
他还曾经担任了柏林皇家⼤学附属机械⼯艺研究所所长,也就是柏林皇家材料试验所("Staatliche Materialprüfungsamt")的前⾝,他在那⾥建⽴了第⼀流的⾦相试验室。