处理器调度之动态优先数调度算法
- 格式:doc
- 大小:253.50 KB
- 文档页数:6
短作业优先调度算法例题详解短作业优先调度算法例题详解什么是短作业优先调度算法?短作业优先调度算法是一种常见的进程调度算法,它的主要思想是优先调度执行当前剩余运行时间最短的作业。
在这种算法下,长时间作业的响应时间会相对较长,但是短时间作业的响应时间会更短。
算法原理短作业优先调度算法的原理是按照作业的执行时间来进行调度,优先选择执行时间较短的作业。
当一个作业到达时,操作系统会检查作业的执行时间,并将其与已有作业的执行时间进行比较,选择执行时间最短的作业进行调度。
算法实现以下是一个简单的短作业优先调度算法的例子:1.输入作业的数量和每个作业的执行时间。
2.按照作业的执行时间对作业进行排序,从执行时间最短的作业开始执行。
3.执行作业直到所有作业执行完毕。
例题解析假设有三个作业需要执行,它们的执行时间分别为5、2和8。
使用短作业优先调度算法对这些作业进行调度。
1.首先,按照作业的执行时间对作业进行排序,排序后的顺序为2、5和8。
2.执行时间最短的作业是2,因此首先执行该作业,剩下的两个作业的执行时间分别为5和8。
3.接下来,执行时间较短的作业是5,执行该作业后,剩下的作业的执行时间为8。
4.最后,执行剩下的唯一一个作业,执行时间为8。
根据以上步骤,最终的作业执行顺序为2、5和8。
优缺点分析短作业优先调度算法的优点是能够最大程度地缩短短时间作业的响应时间,提高系统的吞吐量。
然而,这种算法容易造成长时间作业的等待时间过长,可能会导致长时间作业的执行效率较低。
总结短作业优先调度算法是一种常见的进程调度算法,其核心原理是选择执行时间最短的作业进行调度。
通过对作业的排序和执行,可以最大程度地减少短时间作业的响应时间。
然而,这种算法也存在一些问题,如可能会导致长时间作业的等待时间过长。
因此,在实际应用中,需要根据具体情况选择合适的调度算法。
算法的应用场景短作业优先调度算法适用于作业的执行时间差异较大的情况。
在这种情况下,短时间作业可以迅速得到执行,提高系统的响应速度。
实验7 进程调度模拟程序设计一、实验目的在采用多道程序设计的系统中,往往有若干个进程同时处于就绪状态。
当就绪进程个数大于处理器数时,就必须依照某种策略来决定哪些进程优先占用处理器。
本实验模拟在单处理器情况下的处理器调度,帮助学生加深了解处理器调度的工作。
二、实验内容设计一个按优先数调度算法或时间片轮转法实现处理器调度。
1.给出进程调度的算法描述(基于动态优先级和时间片轮转调度算法的描述)。
2.用C语言设计一个对n个并发进程进行调度的程序,每个进程由一个进程控制块(PCB)结构表示,该进程控制块应包括下述信息:进程标识ID、进程优先数PRIORITY (并规定优先数与优先权成正比)、时间片数CHIP、进程已经占用CPU的时间CPUTIME,进程还需要运行的时间ALLTIME(当进程运行完毕时,其值为0)、进程的状态STATE(为简化起见。
设每个进程处于运行E(excecuting)、就绪R(ready)和完成F(finish)三种状态之一,并假设起始状态都是就绪状态R。
),以及进程队列指针NEXT(用来将PCB 排成队列)等,可按照调度算法的不同而增删。
3.调度程序应当包含2种不同的调度算法,运行时可以任选一种,以利于各种方法的分析和比较。
4.程序应能显示或打印各种进程状态和参数变化情况,便于观察。
即要显示每个时间片内各进程的情况,并且指出运行进程及就绪和阻塞队列中的内容。
三、实验指导1. 按优先数调度算法(1) 假定系统有五个进程,每一个进程用一个进程控制块PCB来代表,进程控制块的格式为:其中,进程名——作为进程的标识,假设五个进程的进程名分别为P1,P2,P3,P4,P5。
指针——按优先数的大小把五个进程连成队列,用指针指出下一个进程的进程控制块的首地址,最后一个进程中的指针为“0”。
要求运行时间——假设进程需要运行的单位时间数。
优先数——赋予进程的优先数,调度时总是选取优先数大的进程先执行。
动态资源分配算法一、概述动态资源分配算法是指在计算机系统中,根据当前的资源情况和任务需求,动态地分配资源,以达到最优的资源利用效果。
该算法主要应用于操作系统、数据库管理系统、网络服务器等领域。
二、静态资源分配算法与动态资源分配算法的区别静态资源分配算法是指在任务启动之前就已经确定了每个任务所需要的资源,并且将这些资源分配给相应的任务。
而动态资源分配算法则是在任务运行时根据实际需要来进行资源分配。
三、常见的动态资源分配算法1. 抢占式调度抢占式调度是指当一个进程正在执行时,另一个优先级更高的进程需要运行时,操作系统可以暂停当前进程并让更高优先级的进程运行。
这种方式可以保证高优先级进程及时得到执行,但也可能会导致低优先级进程长时间得不到执行。
2. 时间片轮转调度时间片轮转调度是指将所有就绪队列中的进程按照一定顺序排列,并为每个进程规定一个时间片。
当一个进程用完了它的时间片后,它就会被放到队列末尾等待下一次调度。
这种方式可以避免进程长时间得不到执行,但也可能会导致进程频繁地切换,影响系统性能。
3. 优先级调度优先级调度是指根据进程的优先级来进行调度。
高优先级的进程会先被执行,而低优先级的进程则需要等待高优先级进程执行完毕后才能得到执行。
这种方式可以保证高优先级进程及时得到执行,但也可能会导致低优先级进程长时间得不到执行。
4. 最短作业优先调度最短作业优先调度是指在所有就绪队列中选择需要运行的任务中,选择所需时间最短的任务进行执行。
这种方式可以保证任务能够尽快地完成,但也可能会导致长时间运行的任务得不到充分利用。
四、动态资源分配算法的应用场景1. 操作系统操作系统需要根据当前系统资源情况和用户需求来动态分配CPU、内存等资源,以达到最好的性能和用户体验。
2. 数据库管理系统数据库管理系统需要根据当前数据库负载情况和用户请求来动态分配CPU、内存、磁盘等资源,以提高数据库访问效率和可靠性。
3. 网络服务器网络服务器需要根据当前网络流量和用户请求来动态分配带宽、CPU、内存等资源,以提高服务器响应速度和稳定性。
第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。
二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。
2. 实现三种调度算法:FCFS、RR和DP。
3. 创建一个进程队列,用于存储所有进程。
4. 实现调度函数,根据所选算法选择下一个执行的进程。
5. 模拟进程执行过程,打印进程执行状态和就绪队列。
四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。
第三章处理机调度与死锁一.选择题1.下列算法中,操作系统用于作业调度的算法是。
A.先来先服务算法B.先进先出算法C.最先适应算法D.时间片轮转算法2.在批处理系统中,周转时间是指。
A.作业运行时间B.作业等待时间和运行时间之和C.作业的相对等待时间D.作业被调度进入内存到运行完毕的时间3.在作业调度中,排队等待时间最长的作业被优先调度,这是指调度算法。
A.先来先服务B.短作业优先C.响应比高优先D.优先级4.下列算法中,用于进程调度的算法是。
A.最先适应B.最高响应比优先C.均衡资源调度D.优先数调度5.两个进程争夺同一个资源。
A.一定死锁B.不一定死锁C.只要互斥就不会死锁D.以上说法都不对6.下列各项中,不是进程调度时机的是。
A.现运行的进程正常结束或异常结束B.现运行的进程从运行态进入就绪态C.现运行的进程从运行态进入等待态D.有一进程从等待态进入就绪态7.进程调度算法有多种,不是进程调度算法。
A.先来先服务调度算法B.最短查找时间优先调度算法C.静态优先数调度算法D.时间片轮转调度算法8.作业调度程序从状态的队列中选取适当的作业投入运行。
A.就绪B.提交C.等待D.后备9.在实时操作系统中,经常采用调度算法来分配处理器。
A.先来先服务B.时间片轮转C.最高优先级D.可抢占的优先级10.采用时间片轮转调度算法主要是为了。
A.多个终端都能得到系统的及时响应B.先来先服务C.优先权高的进程及时得到调度D.需要CPU时间最短的进程先做11.下面关于优先权大小的论述中,不正确的论述是。
A.计算型作业的优先权,应低于I/O型作业的优先权B.系统进程的优先权应高于用户进程的优先权C.资源要求多的作业,其优先权应高于资源要求少的作业D.在动态优先权时,随着进程运行时间的增加,其优先权降低12.产生死锁的原因是有关。
A.与多个进程竞争CPUB.与多个进程释放资源C.仅由于并发进程的执行速度不当D.除资源分配策略不当外,也与并发进程执行速度不当13.有关产生死锁的叙述中,正确的是。
第一章操作系统概论1、有一台计算机,具有 IMB 内存,操作系统占用 200KB ,每个用户进程各占200KB 。
如果用户进程等待 I/O 的时间为 80 % ,若增加 1MB 内存,则 CPU 的利用率提高多少?答:设每个进程等待 I/O 的百分比为 P ,则 n 个进程同时等待刀 O 的概率是Pn ,当 n 个进程同时等待 I/O 期间 CPU 是空闲的,故 CPU 的利用率为 1-Pn。
由题意可知,除去操作系统,内存还能容纳 4 个用户进程,由于每个用户进程等待I/O 的时间为 80 % , 故:CPU 利用率=l-(80%)4 = 0.59若再增加 1MB 内存,系统中可同时运行 9 个用户进程,此时:cPu 利用率=l- (1-80%)9 = 0.87故增加 IMB 内存使 CPU 的利用率提高了 47 % :87 %/59 %=147 %147 %-100 % = 47 %2一个计算机系统,有一台输入机和一台打印机,现有两道程序投入运行,且程序A 先开始做,程序 B 后开始运行。
程序 A 的运行轨迹为:计算 50ms 、打印100ms 、再计算 50ms 、打印 100ms ,结束。
程序 B 的运行轨迹为:计算 50ms 、输入 80ms 、再计算 100ms ,结束。
试说明(1 )两道程序运行时,CPU 有无空闲等待?若有,在哪段时间内等待?为什么会等待?( 2 )程序 A 、B 有无等待CPU 的情况?若有,指出发生等待的时刻。
答:画出两道程序并发执行图如下:(1)两道程序运行期间,CPU 存在空闲等待,时间为 100 至150ms 之间(见图中有色部分)(2)程序A 无等待现象,但程序B 有等待。
程序B 有等待时间段为180rns 至200ms 间(见图中有色部分)3设有三道程序,按 A 、B 、C 优先次序运行,其内部计算和 UO 操作时间由图给出。
试画出按多道运行的时间关系图(忽略调度执行时间)。
(完整版)操作系统第五版费祥林_课后习题答案解析参考(可编辑修改word版)第⼀章操作系统概论1、有⼀台计算机,具有 IMB 内存,操作系统占⽤ 200KB ,每个⽤户进程各占200KB 。
如果⽤户进程等待 I/O 的时间为 80 %,若增加 1MB 内存,则 CPU 的利⽤率提⾼多少?答:设每个进程等待 I/O 的百分⽐为 P ,则 n 个进程同时等待⼑ O 的概率是Pn ,当 n 个进程同时等待 I/O 期间 CPU 是空闲的,故 CPU 的利⽤率为 1-Pn。
由题意可知,除去操作系统,内存还能容纳 4 个⽤户进程,由于每个⽤户进程等待I/O 的时间为 80 % , 故:CPU 利⽤率=l-(80%)4 = 0.59若再增加 1MB 内存,系统中可同时运⾏ 9 个⽤户进程,此时:cPu 利⽤率=l- (1-80%)9 = 0.87故增加 IMB 内存使 CPU 的利⽤率提⾼了 47 % :87 %/59 %=147 %147 %-100 % = 47 %2⼀个计算机系统,有⼀台输⼊机和⼀台打印机,现有两道程序投⼊运⾏,且程序A 先开始做,程序 B 后开始运⾏。
程序 A 的运⾏轨迹为:计算 50ms 、打印100ms 、再计算 50ms 、打印 100ms ,结束。
程序 B 的运⾏轨迹为:计算 50ms 、输⼊ 80ms 、再计算 100ms ,结束。
试说明(1 )两道程序运⾏时,CPU 有⽆空闲等待?若有,在哪段时间内等待?为什么会等待?( 2 )程序 A 、B 有⽆等待CPU 的情况?若有,指出发⽣等待的时刻。
答:画出两道程序并发执⾏图如下:(1)两道程序运⾏期间,CPU 存在空闲等待,时间为 100 ⾄150ms 之间(见图中有⾊部分)(2)程序A ⽆等待现象,但程序B 有等待。
程序B 有等待时间段为180rns ⾄200ms 间(见图中有⾊部分)3设有三道程序,按 A 、B 、C 优先次序运⾏,其内部计算和 UO 操作时间由图给出。
第三章处理机调度与死锁``030110011020101进程调度是从选择一个进程投入运行。
A.就绪队列B.等待队列C.作业后备队列D.提交队列``030110011020100A``030110022020101支持多道程序设计的操作系统在运行过程中,不断地选择新进程运行来实现CPU的共享,下列选项中,不是引起操作系统选择新进程的直接原因。
A.运行进程的时间片用完B.运行进程出错C.运行进程要等待某一时件发生D.有新进程进入就绪状态``030110022020100D``030110032020101下列因素中,不一定是引起进程调度的因素。
A.一个进程运行完毕B.运行进程被阻塞C.一个高优先级进程被创建D.实时调度中,一个紧迫的任务到来``030110032020100C``030110042020101若进程P一旦被唤醒就能投入运行,则系统可能是。
A.非抢占式调度方式,进程P的优先级最高B.抢占式调度方式,就绪队列上的所有进程的优先级皆比P低C.就绪队列为空队列D.抢占式调度方式,P的优先级高于当前运行的进程``030110042020100D``030110051020101在批处理系统中,周转时间是指。
A.作业运行时间B.作业等待时间和运行时间之和C.作业的相对等待时间D.作业被调度进入内存到运行完毕的时间``030110051020100B``030110062020101下列各项中,不是进程调度时机的是。
A.现运行的进程正常结束或异常结束B.现运行的进程从运行态进入就绪态C.现运行的进程从运行态进入等待态D.有一进程从等待态进入就绪态``030110062020100D``030210012020201现有3个同时到达的作业J1、J2、J3,它们的执行时间分别为T1、T2和T3,且T1<T2<T3。
系统按单道方式运行且采用短作业优先算法,则平均周转时间为。
A.T1+T2+T3 B.(T1+T2+T3)/3 C.(3T1+2T2+T3)/3D.(T1+2T2+3T3)/3``030210012020200C``030210022020101下列算法中,操作系统用于作业调度的算法是。
1 处理机调度
实验内容及要求
实验内容:按优先数调度算法实现处理器调度。
实验要求:能接受键盘输入的进程数、进程标识、进程优先数及要求运行时间,能显示每次进程调度的情况:运行进程、就绪进程和就绪进程的排列情况。
实验目的
本实验模拟在单处理器环境下的处理器调度,加深了解处理器调度工作。
实验环境
本实验的设计基于Windows7操作系统DevC++环境,用C语言实现编程。
实验思路
(1) 每个进程用一个PCB来代表。
PCB的结构为:
进程名——作为进程标识。
优先数——赋予进程的优先数,调度时总是选取优先数大的进程先执行。
要求运行时间——假设进程需要运行的单位时间数。
状态——假设两种状态:就绪和结束,用R表示就绪,用E表示结束。
初始状态都为就绪状态。
指针——按优先数的大小把5个进程连成队列,用指针指出下一个进程PCB的首地址。
(2) 开始运行之前,为每个进程确定它的“优先数”和“要求运行时间”。
通过键盘输入这些参数。
(3) 处理器总是选择队首进程运行。
采用动态改变优先数的办法,进程每运
行1次,优先数减1,要求运行时间减1。
(4) 进程运行一次后,若要求运行时间不等于0,则将它加入就绪队列,否则,将状态改为“结束”,退出就绪队列。
(5) 若就绪队列为空,结束,否则转到(3)重复。
数据结构与全局变量
typedef struct pcb{
int pname;
.\n", >pname);
printf("%s ends after %d slice(s).", >pname, >runTime);
}
else
while!=NULL)
{
sortProcess();
printProcessInfo();
printProcessLink();
runProcess();
}
return 0;
}
void createProcess()
{
PCB *p, *prior;
printf("How many process do you want to run:");
scanf("%d", &num);
while(num<=0)
{
printf("Number is invalid. Input again:\n");
scanf("%d", &num);
}
p = (PCB*)malloc(sizeof(PCB));
prior = &readyHead;
prior->next=p;
for (int i = 0; i < num; i++)
{
printf("Input NO.%2d process name:", i+1);
scanf("%s", p->pname);
printf(" priority:");
scanf("%d", &(p->priority));
printf(" runTime:");
scanf("%d", &(p->runTime));
p->state = 'R';
p->next = (PCB*)malloc(sizeof(PCB));
prior=p;
p=p->next;
}
free(p);
p = NULL;
prior->next=NULL;
readyEnd=prior;
printf("\n");
}
void sortProcess()
{
char name[N];
int i,j, priorityNum, timeNum;
PCB *p, *rear;
for(p=; p!=NULL; p=p->next)
for(rear=p->next; rear!=NULL; rear=rear->next) if(p->priority<rear->priority)
{
strcpy(name, p->pname);
priorityNum=p->priority;
timeNum=p->runTime;
strcpy(p->pname, rear->pname);
p->priority=rear->priority;
p->runTime=rear->runTime;
strcpy(rear->pname, name);
rear->priority=priorityNum;
rear->runTime=timeNum;
}
}
void printProcessLink()
{
PCB *p=;
printf("process link: \n");
while(p!=NULL)
{
printf("%s",p->pname);
p=p->next;
if(p!=NULL) printf("->");
}
printf("\n");
}
void printProcessInfo()
{
PCB *p=;
printf("process information before running:\n");
printf("=================================================\n");
printf("NAME PRIORITY RUNTIME STATUS NEXT\n");
printf("=================================================\n");
while(p!=NULL)
{
printf("%-16s %-8d %-8d %-8s %s\n",p->pname, p->priority, p->runTime, (p->state=='R')"ready":"end", p->next->pname);
p=p->next;
}
}
void runProcess()
{
PCB *p=;
printf("process run:\n");
printf("%s\n",p->pname);
p->priority--;
p->runTime--;
=p->next;
if(p->runTime==0)
{
p->state='E';
printf("%s is terminated\n", p->pname);
free(p);
}
else
{
readyEnd->next=p;
p->next=NULL;
readyEnd=p;
}
printf("\n");
}。