基于二叉树模型的期权定价
- 格式:docx
- 大小:133.83 KB
- 文档页数:27
二叉树期权定价法摘要上世纪七十年代以来金融衍生品得到了蓬勃的发展,在这之中,期权的地位尤为受到重视,居于核心地位,很多的新创的衍生品,都包含了期权的成分。
所以一直以来,期权的定价问题受到了大量经济学家的探索。
实物期权的定价模式的种类较多,理论界和实务界尚未形成通用的定价模型,主要估值方式有两种:一是B l a c k-S c h o l e s期权定价模型;二是二叉树期权定价模型。
1973年,布莱克和斯科尔斯(B l a c k a n d C s c h o l e s)提出了B l a c k-S c h o l e s期权定价公式,对标的资产的价格服从正态分布的期权进行定价。
随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。
1976年,约翰·考克斯(J o h nC a r r i n g t o n C o x)、斯蒂芬·罗斯(S t e p h e n A.R o s s)在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。
1979年,约翰·考克斯(J o h n C a r r i n g t o n C o x)、斯蒂芬·罗斯(S t e p h e n A.R o s s)、马克·鲁宾斯坦(M a r k R u b i n s t e i n)在《金融经济学杂志》上发表论文“期权定价:一种简单的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为C o x-R o s s-R u b i n s t e i n二项式期权定价模型。
关键词B l a c k-S c h o l e s期权定价模型虽然有许多优点,但是它的推导过程却是难以为人们所接受;二叉树期权定价模型假设股价波动只有向上和向下两个方向,且假设在整个考察期内,股价每次向上(或向下)波动的概率和幅度不变。
模型将考察的存续期分为若干阶段,根据股价的历史波动率模拟出正股在整个存续期内所有可能的发展路径,并对每一路径上的每一节点计算权证行权收益和用贴现法计算出的权证价格。
第10章二叉树法期权定价及其Python应用本章精粹蒙特卡罗模拟法便于处理报酬函数复杂、标的变量多等问题,但是在处理提前行权问题时却表现出明显的不足。
本章将要介绍的二叉树法可以弥补蒙特卡罗模拟法的这种不足。
二叉树的基本原理是:假设变量运动只有向上和向下两个方向,且假设在整个考察期内,标的变量每次向上或向下的概率和幅度不变。
将考察期分为若干阶段,根据标的变量的历史波动率模拟标的变量在整个考察期内所有可能的发展路径,并由后向前以倒推的形式走过所有结点,同时用贴现法得到在0时刻的价格。
如果存在提前行权的问题,必须在二叉树的每个结点处检查在这一点行权是否比下一个结点上更有利,然后重复上述过程。
10.1 二叉树法的单期欧式看涨期权定价假设:(1) 市场为无摩擦的完美市场,即市场投资没有交易成本。
这意味着不支付税负,没有买卖价差(Bid-Ask Spread)、没有经纪商佣金(Brokerage Commission)、信息对称等。
(2) 投资者是价格的接受者,投资者的交易行为不能显著地影响价格。
(3) 允许以无风险利率借入和贷出资金。
(4) 允许完全使用卖空所得款项。
(5) 未来股票的价格将是两种可能值中的一种。
为了建立好二叉树期权定价模型,我们先假定存在一个时期,在此期间股票价格能够从现行价格上升或下降。
下面用实例来说明二叉树期权定价模型的定价方法。
1. 单一时期内的买权定价假设股票今天(t =0)的价格是100美元,一年后(t =1)将分别以120美元或90美元出售,就是1年后股价上升20%或下降10%。
期权的执行价格为110美元。
年无风险利率为8%,投资者可以这个利率放款(购买这些利率8%的债券)或借款(卖空这些债券)。
如图10-1所示。
今天 1年后t =0 t =1u S 0=120 上升20% 1000=Sd S 0=90 下降10%u 0max(u ,0)max(120110,0)10C S X =-=-=?0=Cd 0max(d ,0)max(90110,0)0C S X =-=-=图10-1 买权价格图10-1表示股票买权的二叉树期权定价模型。
期权定价公式的二叉树推导与分析期权作为金融衍生品的重要组成部分,对于投资者和风险管理师来说具有重要意义。
期权的价值取决于多种因素,包括标的资产的价格、行权价格、剩余到期时间、无风险利率、波动率等。
期权的定价是金融领域的一个重要问题,准确的期权定价可以帮助投资者更好地进行投资决策和风险管理。
本文将介绍期权的定价公式,并通过二叉树的方法推导期权的价格,最后对各种情况下期权定价的计算方法与特点进行分析。
期权的定价公式是由费雪·布莱克、迈伦·斯科尔斯和罗伯特·默顿提出的布莱克-斯科尔斯模型。
该模型基于一些假设,例如无摩擦市场、无套利机会等,通过 Black-Scholes方程求解期权的定价。
具体公式如下:C = SₐN(d1) - XₐN(d2)其中, C为期权的公允价值; Sₐ为标的资产当前的价格; Xₐ为期权的行权价格; N(d1)和 N(d2)分别为正态分布变量的累积分布函数;d1和 d2分别为: d1 = (ln(Sₐ/Xₐ) + (r + σ²/2)T) / (σ√T) d2 = d1 - σ√T T为期权的剩余到期时间,以年为单位; r为无风险利率;σ为标的资产的年波动率。
二叉树方法是一种常用的期权定价模型,它可以用来推导期权的预期价格。
二叉树方法的思路是将期权的到期时间划分为若干个时间段,并假设标的资产在每个时间段内只有两种可能的价格,即上涨或下跌。
基于这个假设,我们可以构建一个二叉树来描述标的资产的价格变动情况。
假设初始时刻为 t0,标的资产的价格为 S0,行权价格为 X。
在每个时间段Δt内,标的资产的价格有两种可能的变化:上涨到 Su = S0 × u,或者下跌到 Sd = S0 × d,其中 u > 1,d < 1,u和 d分别为标的资产的上涨和下跌因子。
假设该期权的剩余到期时间为 T,共分为 n个时间段。
那么在 t0时,该期权的预期价格为:C0 = ∑CN(d1, d2, u, d) × (u × S0 - X)^+ ×Δt其中, N(d1, d2, u, d)为风险中性概率; (u × S0 - X)^+表示当标的资产价格上涨时,取 u × S0 - X,否则取 0;Δt为每个时间段的时间长度。
期权定价的二叉树模型Cox、Ross和Rubinstein提出了期权定价的另一种常用方法二叉树(binomial tree)模型,它假设标的资产在下一个时间点的价格只有上升和下降两种可能结果,然后通过分叉的树枝来形象描述标的资产和期权价格的演进历程。
本章只讨论股票期权定价的二叉树模型,基于其它标的资产如债券、货币、股票指数和期货的期权定价的二叉树方法,请参考有关的书籍和资料。
8.1 一步二叉树模型我们首先通过一个简单的例子介绍二叉树模型。
例8.1 假设一只股票的当前价格是$20,三个月后该股票价格有可能上升到$22,也有可能下降到$18. 股票价格的这种变动过程可通过图8.1直观表示出来。
在上述二叉树中,从左至右的节点(实圆点)表示离散的时间点,由节点产生的分枝(路径)表示可能出现的不同股价。
由于从开始至期权到期日只考虑了一个时间步长,图8.1表示的二叉树称为一步(one-step)二叉树。
这是最简单的二叉树模型。
一般地,假设一只股票的当前价格是,基于该股票的欧式期权价格为。
经过一个时间步(至到期日T)后该股票价格有可能上升到相应的期权价格为;也有可能下降到相应的期权价格为. 这种过程可通过一步(one-step)二叉树表示出来,如图8.2所示。
我们的问题是根据这个二叉树对该欧式股票期权定价。
为了对该欧式股票期权定价,我们采用无套利(no arbitrage)假设,即市场上无套利机会存在。
构造一个该股票和期权的组合(portfolio),组合中有股的多头股票和1股空头期权。
如果该股票价格上升到,则该组合在期权到期日的价值为;如果该股票价格下降到,则该组合在期权到期日的价值为。
根据无套利假设,该组合在股票上升和下降两种状态下的价值应该相等,即有由此可得(8.1)上式意味着是两个节点之间的期权价格增量与股价增量之比率。
在这种情况下,该组合是无风险的。
以表示无风险利率,则该组合的现值(the present value)为,又注意到该组合的当前价值是,故有即将(8.1)代入上式,可得基于一步二叉树模型的期权定价公式为(8.2)(8.3)需要指出的是,由于我们是在无套利(no arbitrage)假设下讨论欧式股票期权的定价,因此无风险利率应该满足: .现在回到前面的例子中,假设相应的期权是一个敲定价为$21,到期日为三个月的欧式看涨权,无风险的年利率为12%,求该期权的当前价值。
介绍⼀下⼆叉树期权定价原理本⽂中的案例及⼤部分内容来⾃于佛吉尼亚⼤学Darden商学院教授Robert M. Conroy的⽂章《BINOMIAL OPTION PRICING》。
在各种期权定价理论中,⼆叉树期权定价模型称得上是既简单⼜有效。
其他的定价模型如BLACK-SCHOLES模型等都需要晦涩难懂的计算,⽽⼆叉树期权定价模型的计算过程就容易得多。
⼆叉树模型的理论基础是假设在⾦融市场上没有任何套利空间,也就是任何⽆风险的资产带来的都是⽆风险的回报率,⼀分钱也不花却想获得正回报的可能性是不存在的。
⼆叉树期权定价模型假设我们持仓1股的某只股票,单位股价为100美元,⼀个⽉过后,股价有两种⾛法:上涨的情况下涨到110,或下跌的情况下跌到90,没有其他的可能性。
假设以该股票为标的物的看涨期权的⾏权价@100美元,期限为1个⽉。
1个⽉后期权到期⽇当天,如果股价升⾄110美元,那么看涨期权的期权费将等于10美元;如果股价跌⾄90美元,那么期权费将归于0。
该看涨期权⼀个⽉后的损益情况见下图:问题来了:今天,这个看涨期权的期权费应该值多少钱?假设我们今天做⼀笔组合交易,1)买⼊0.5股该股票,股价为100,股票投资0.5*100=50美元2)同时卖出以该股票为标的物的看涨期权,⾏权价@100,标的股票的数量为1股,期权的到期期限为1个⽉。
由于卖出看涨期权可以赚取期权费,因此这笔投资的初始⾦额=50美元-看涨期权当前的期权费1个⽉后期权到期,投资组合的损益状况有两种:1)股价升⾄110美元,此时0.5股的股价=0.5*110=55美元,但是卖出看涨期权将带来10美元的损失(因看涨期权的买家届时会因为有利可图⽽要求⾏权,⽽110的市场价与100的⾏权价之间的10美元差价就是期权买家的利润,⽽期权的卖家由于必须从市场上按照110的价格买进⼀股股票并按照100的价格交割给期权的买家⽽实质性的遭受了10美元的损失),投资组合的总收益=55-10=45美元;2)股价跌⾄90美元,持仓的0.5股此时价值=0.5*90=45美元,但是空仓的看涨期权此时的价值归于0,投资组合的总收益=45-0=45美元。
基于偏微分方程框架分析下期权定价中BlackScholes模型与二叉树模型理论探讨摘要:近年来,期权定价理论和衍生的产品越来越广泛。
期权的定价原理基本上可以分为蒙特卡罗模拟法、偏微分方程方法、动态规划法,有限差分方法等。
关于期权定价,其中最著名和适用最广泛的方法有两种,一种是动态规划法中的二叉树期权定价模型,另一种是偏微分方程法中的Black-Scholes 期权定价模型,两种方法在实际中都得到了大量应用。
本文通过对两个数学模型的整合和分析,做优缺点对比,整理总结两个模型各自的适用范围。
关键词:期权定价;二叉树模型;Black-Scholes模型一、期权理论在国内外的发展最早期权定价的研究大概是上世纪60年代,Bachelor?在其博士论文中提出了股票价格的布朗运动假设,并运用其对欧式期权进行定价,然而模型中有几点假设与实际市场不符:股票没有回报、买进价格可能大于股票实际价格、股票价格可能为负。
自从1965年F.Black 从事认股权证定价研究,与传统方法不同他希望一些简单的假设:1.忽略交易费用;2.借贷利率相同且为常数;3.股票价格是常数波动率下的几何布朗运动。
他通过无风险对冲技巧,建立了认股权众偏微分方程,即Black-Scholes方程。
1970年,M.Scholes 与R.Merton及F.Black为最后一段公式进行了补充说明认识到只有在不存在套利情况下,期权价值才可以在此公式下进行定价。
事实上,若假设股票的期望收益率是无风险利率,则相应期权的期望收益率也是无风险利率。
这个公式使Scholes?与?Merton?于1997?年获得诺贝尔经济学奖。
对如今比较流行的定价方法比如Black-Scholes偏微分方程解、二叉树方法、蒙特卡洛模拟、有限差分方法和解析近似方法等。
但由于Black-Scholes模型假设条件比较苛刻,涉及的数学知识很深,而且适用条件十分有限,因此在1979年,Cox,Ross,Rubinstein 提出了期权定价的二叉树模型。
期权定价的二叉树模型学习笔记(I)编者按:二叉树模型是金融衍生产品期权定价的离散模型.人们可以借助二叉树模型分别对欧式看涨看跌期权、美式看涨看跌期权进行期权金定价.抛开金融意义不谈,单从数学角度出发,这部分运用的数学知识仅是微积分的基本知识点.额外需要注意的是,在二叉树章节中反向归纳法(倒向归纳法)是特别重要的一种方法,其在涉及到有关期权问题的证明中显得尤为重要.之所以运用反向归纳法,是因为期权定价中我们已知未来某一时刻的期权状态,由此出发逐步倒向递推在时刻的价格.本系列是笔者学习二叉树模型所做的课堂笔记一部分,仅供参考!Hedging Concept(套期保值概念)Firstly,we should learn the definition of One-Period & Two-State.Definition1.1(One-Period): Assets are traded at & only, hence the term one period.Definition1.2(Two-State): At the risky asset has two possible values(states):& ,with their probabilities satisfying Question:If risky asset and risk free asset ,known ,when two possibilities,.(for strike price ,expired time .) If known at ,how to find out whenDefinition1.3(Hedging Definition):For a given option ,trade shares of the underlying asset in the opposite direction so that the portfoliois risk-free.We can solve Meanwhile,we can getDefine a new Probability MeasureNotice that期权价的期望表示和风险中性测度Notice that denotes that the expectation of the random variable under the probability measure .Let be a certain risky asset, and is a risk-free asset, then iscalled the discounted price(also known as the relative price) of the risky asset at time .Theorem2.1:Under the probability measure ,an option's discounted price is its expectation on the expiration date.i.e Remark:In order to examine the meaning of the probability measure ,consider is an underlying risky asset.It is easy to calculateRisk-Neutral World(风险中性世界)Definition3.1(Risk-Neutral World):Under the probability measure ,the expected return of a risky asset at is the same as the return of a risk-free bond.A financial market possessing this property is called a Risk-Neutral World.Definition3.2(Risk-neutral measure):The probability measure defined byis called by risk-neutral measure.Definiton3.3(The risk-neutral price):The option price given under the risk-neutral measure is called the risk-neural price. Replication(复制),等价性定理In a market consisted of a risky asset and a risk-free asset ,if there exists a portfoliosuch that the value of the portfolio is equal to the value of the option at ,then is called a replicating portfolio of the option ,then option priceTheorem4.1:In a market consisted of•a risky asset ;•a risk-free asset .Then is true if and only if the market is arbitrage-free.In fact, if the market is arbitrage-free, then there exists a risk-neutral measure defined bysuch that二叉树的构造This means that if at the initial time the price of the underlying asset is , then at , will have possible values Denote未完待续......。
20XX年注会考试《财务成本管理》知识点:二叉树期权定价模型知识点:二叉树期权定价模型
一、单期二叉树模型
关于单期二叉树模型,其计算结果与前面介绍的复制组合原理和风险中性原理是一样的。
以风险中性原理为例:
上行概率×上行时到期日价值Cu+下行概率×下行时到期日价值Cd
根据前面推导的结果:
代入(1)式有:
二、两期二叉树模型
如果把单期二叉树模型的到期时间分割成两部分,就形成了两期二叉树模型。
由单期模型向两期模型的扩展,不过是单期模型的两次应用。
三、多期二叉树模型。
期权定价的二叉树模型学习笔记(II)编者按:二叉树模型的第二部分学习笔记中涉及到欧式看涨看跌期权的定价公式和所谓的平价公式,从形式上来看,该公式还不算特别复杂的.由于欧式期权是在到期日时实施期权,因此它相比美式期权(在到期日之前皆可实施)来说还是较为简单的.关于欧式看涨和看跌期权的平价公式,其刻画了两个期权之间的等量关系,往后所要学习到的美式期权则没有类似的平价公式.因此可以说,平价公式是欧式期权所独有的,这也是欧式期权相比美式期权多的一个差异点.笔记后半部分涉及到的鞍和鞍测度等概念,严格来说其实涉及到测度论的知识,因此首先需要了解的是测度的基本概念.引进鞍的一大目的是为了阐述这样一个核心结论:在二叉树模型下,市场的无套利性质与鞍测度之间具有等价性(if and noly if).尽管我们假设市场是无套利的(动态的无套利),然而要想从数学这个视角精细地刻画这点就不得不寻找等价条件.毫无疑问的是,资产定价基本定理为我们揭示了鞍测度与市场无套利之间的微妙联系.二叉树模型的期权价计算Denote .,We consider possible values of option at :.Question:If are given, how can we determineIn particular,Answer:We can determine by us-ing backward induction in the one period and two-state model.Notice that.Meanwhile, we can calculateThen we want to find二叉树模型欧式期权定价公式Define a risk-neural measure :Then,we will getSo that for any ,When ,=0.折现价二叉树模型的平价公式Denote Then the European call option valuation formula isEspecially,when ,,For the binomial tree method,the call-put parity(in discrete form) becomes鞅(Martingale)的概念the bet at game,the next bet.If under the condition that complete information of all previous game are available,the expectation of equals the previous stake i.e.then we say the gamble is fair.In Mathematics, is called -algebra in stochastic theory.Definition1(Martingale):The best sequence that satisfies conditionas a discrete random process,is called a Martingale.Remark:Martingle is often used to refer to a fair gamble.Then,we give mathematical definition of Martingale.Definition1'(Martingale ):A sequence is a Martingale with respect to sequence if for all :••鞅测度Under the risk-neutral measure ,the discount prices of an underlying asset ,as a discrete random process,satisfy the equation:Remark:Hence the discount price sequence of an underlying asset is a martingale.Definition2(Martingale measure):The risk-neutral measure is called the martingale measure.概率测度等价定义Definition3(Equivvalent measure):Probability measure and Probability measure are said to be equivalent if and only if for any probability event (set) there isi.e. the Probability measure and have the same null set.The European option valuation formula under the sense of equivalent Martingale measure ,can be written asEspecially,鞅测度和无套利等价性;用倒向归纳法证明期权不等式Theorem1(The fundamental theorem of asset pricing):If an underlying asset price moves as a binomial tree, there exists an equivalent Martingale measure if and only if the market is arbitrage-free.Dividend-Paying(股息支付):An underlying asset pays dividends in t-wo ways:•Pay dividends discretely at certain times in a year;•Pay dividends continuously at a certain rate.We only consider the continuous model. For studying the continuous Model, there are two reasons.Meanwhile,we meet the example:A company needs to buy Euro at time to pay a German company. To avoid any loss if Euro goes up, the company buys a call option of Euro with Expiration date at rate .How much premium should the company pay?[上文链接]: 期权定价的二叉树模型学习笔记(I)预知后事如何,请听下回分解......。
1.求期权到期日的期望价值
需要计算各种情况的概率
各种情况下期权的到期日价值可以根据股价和执行价格确定
2.将到期日的期望价值折现,折现率是无风险利率
【问题】目前股价50元,看涨期权的执行价格52.08元,到期时间6个月。
6个月后股价可能上升33.33%或者下降25%,半年期的无风险利率2%。
求期权价值。
【解析】
1.求上行下行概率
2.求期权到期日的期望价值
3.利用无风险利率进行折现
【答案】假设股价的上行和下行概率分别为P u和P d
2%=股票的期望报酬率=33.33%×P u+(-25%)×P d
P u+P d=1,求解二元一次方程组得到P u=0.4629,P d=0.5371
上行时股价=50×(1+33.33%)=66.66(元)
执行净收入=66.66-52.08=14.58(元)
下行时股价=50×(1-25%)=37.5(元),执行净收入=0
期权6个月后的期望价值=0.4629×14.58+0.5371×0=6.75(元)
期权价值=6.75/1.02=6.62(元)
(三)小结:两次运用期望的概念
1.第一次:求上行下行概率
股票的期望报酬率
=上行概率×上行时的报酬率+下行概率×下行时的报酬率
2.第二次:求期权到期日的期望价值。
第三节Black-Scholes期权定价模型一与期权定价有关的基本假设:(一).关于金融市场的基本假设假设一:市场不存在摩擦.这就是说金融市场没有交易成本(包括佣金费用,买卖价差,税赋,市场冲击等),没有保证金要求,也没有买空的限制.提出市场无摩擦的假设在于简化金融资产定价的分析过程,其主要理由有以下两点:第一,对于大的金融机构来说,这一假设是一个较好的近似,因为他们的交易成本很低,他们在保证金要求和卖空方面受的约束很少,他们能够以买卖差的中间价进行交易等.由于金融机构是市场价格的制定者,所以从描述性角度出发,上述假设是一个较为现实的假设.第二,对于小的市场参与者来说,他们首先需要了解的是无摩擦条件下金融市场将如何运作.在此基础上,才能对复杂场合下的市场规律进行进一步深入分析.因此,从规范性角度出发,上述假设也是绝对必要的.假设二:市场参与者不承担对家风险.这就是说,对于市场参与者所涉及的任何一个金融合同交易,合同对家不存在违约的可能.假设三:市场是完全竞争的这就是说,金融市场上任何一位参与者都是价格的承受者,而不是价格的制定者.此假设被现代财务金融学普遍采纳,相当于一条标准的公理.任何参与者都可以根据自己的愿望买入和卖出任何数量的证券,而不至于影响该证券的市场价格.显然市场规模越大,竞争性市场假设就越接近于现实.假设四:市场参与者厌恶风险,而且希望财富越多越好.假设五:市场不存在套利机会.如果市场上存在套利的机会,价格会迅速准确的进行调整,使得这种套利机会很快消失.(二).关于股利的假设股利是影响期权价值的一个重要因素.不过,在研究期权定价问题时,股利是一个广义概念.首先,这一概念包含了通常意义上的股利,即发行标的股票公司向其股东定期支付的现金股利,我们称之为离散股利对于标的资产为股票的合同其大小一般用D 表示.一般来说,离散股利的支付发生在期权有效期内某些特定的时刻,它们往往是可以预先知道的.例如,公司将在每个季度末或每隔半年发放一定的股利.另一方面,对于标的资产为货币,股票指数,期货等的非股票期权来讲,所谓的的股利是指标的资产所有者在一段时间内,按一定的收益率所得到的报酬,如利息收入,因此它是一种连续的支付,我们称之为连续股利,其大小通常用股利支付率二 模型假设与概述(一)模型假设Black 和Scholes 在推导B-S 模型时做了以下假设:(1)无风险利率r 已知,且为一个常数,不随时间变化.(2)标的资产为股票,其价格t s 的变化为一几何布朗运动,即t t t t ds s dt s dz μσ=+或者说, t s 服从正态分布21/20exp{(0.5)},0t t s s t t e t T μσσ=-+<<……… 由(18)式容易得到其中t e 为标准正态分布N(0,1),且不同时刻的t e 相互独立.(3)标的股票不支付股利.(4)期权为欧式期权(5)对于股票市场,期权市场和资金借贷市场来说,不存在交易费用,且没有印花税.(6)投资者可以自由借入或贷出资金,借入利率与贷出的利率相等,均为无风险利率.而且,所有证券交易可以无限制细分,即投资者可以购买任意数量的标的股票.(7)对卖空没有任何限制(如不设保证金),卖空所得资金可由投资者自由使用.(二)模型的概述在上述假设下,若记t s 为定价日标的股票的价格,X 为看涨期权合同的执行价格,r 是按连续复利计算的无风险利率,T 为到期日,t 为当前定价日,T t -是定价日距到期日的时间(单位为年),σ是标的股票价格的波动率,则可得到B-S 模型如下:(1) 在定价日t (t T <),欧式看涨期权的价值t c 为()12()()r T t t t c s N d Xe N d --=- (22)式中:21/21[ln(/)(/2)()]/[()]t d s X r T t T t σσ=++-- (23)1/221()d d T t σ=-- (24)而()N x 是标准正态变量的累积分布函数,即()N x {}p X x =<其中X 服从(0,1)N .(2) 由看涨期权-看跌期权平价公式:()r T t t t t p c s Xe --=-+,且注意到()N x 的性质()N x +()N x -1=,欧式看跌期权在定价日t 的价值t p 为t p ()12()()r T t t s N d Xe N d --=--+- (25)三 模型的推导与推广(一) Black 和Scholes 的推导假设期权当前时刻的价值为t F ,显然t F 是标的股票当前市场价格t s 的函数. Black 和Scholes 首先构造了如下套期组合:即在当前t 时刻,以t s 买入标的股票/t t F s ∂∂股,同时以t F 卖空一份期权.显然,该组合的构造成本(/)t t t t t A F s s F =∂∂-.当时间变化一个微小区间t (即从t 到t t + ),/t t F s ∂∂可近似看成是一个常数,则该组合价值t A 的变动t dA 为:t t t tF dA ds dF s ∂=-∂…………………………(26) 注意到,由B-S 模型的假设t t t t ds s dt s dz μσ=+又由伊藤引理(11)式,期权价值t F 作为t s 的函数,应满足以下公式2222(0.5)t t t t t t t t t t t tF F F F dF s s dt s dz t s s s μσσ∂∂∂∂=+++∂∂∂∂ 将上述两式代入(26)式得2222[0.5]t t t t tF F dA s dt t s σ∂∂=-+∂∂ (27)在(27)式中随机项t dz 已经不存在,这说明在[,]t t t + 这段时间上,该套期组合价值的变动是确定的,不存在风险.因此,根据无套利定价原则,不考虑交易成本等因素,在该时间段组合的收益应当是无风险利率r ,即()t t t t t tF dA rA dt r s F dt s ∂==-∂…………………(28) 将(27),(28)结合化简得:22220.5t t t t t t t tF F F rs s rF t s s σ∂∂∂++=∂∂∂………………(29) 此式就是著名的B-S 微分方程,它构成的包括期权在内的任何一种衍生工定价模型的基础.这就是说,B-S 方程可以用于任何一种衍生工具的定价,只要该衍生工具的标的资产价格变化服从几何布朗运动.对于不同类型的衍生工具来说,其价值t F 有不同的边界条件.给定这些特定的边界条件,就可以通过求解上述偏微分方程,得到该衍生工具的定价模型.对于欧式看涨期权来说,其价值t F t c =在到期日T 的边界条件为: max(0,)T T T F c s X ==-而对于欧式看跌期权来说,其价值max(0,)T T T F p X s ==-根据上述边界条件,Black 和Scholes 得到了B-S 方程的解,它们就是B-S 期权定价模型。