2019天津中考数学题型分析
- 格式:doc
- 大小:37.00 KB
- 文档页数:2
2019年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(★)计算(-3)×9 的结果等于()A.-27B.-6C.27D.62.(★)2sin60°的值等于()A.1B.C.D.23.(★)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.0.423×107B.4.23×106C.42.3×105D.423×1044.(★)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(★)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(★)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(★)计算+ 的结果是()A.2B.2a+2C.1D.8.(★★★)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()A.B.4C.4D.209.(★)方程组的解是()A.B.C.D.10.(★)若点A(-3,y 1),B(-2,y 2),C(1,y 3)都在反比例函数y=- 的图象上,则y 1,y 2,y 3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y111.(★★★)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC12.(★★)二次函数y=ax 2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y 的部分对应值如下表:且当x=- 时,与其对应的函数值y>0.有下列结论:①abc>0;②-2和3是关于x的方程ax 2+bx+c=t的两个根;③0<m+n<.其中,正确结论的个数是()x…-2-1012…y=ax2+bx+c…t m-2-2n…A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18)13.(★)计算x 5•x的结果等于 x 6.14.(★★★)计算(+1)(-1)的结果等于 2 .15.(★)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.16.(★★)直线y=2x-1与x轴的交点坐标为(,0).17.(★★★)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为.18.(★★★★★)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A在格点上,B是小正方形边的中点,∠ABC=50°,∠BAC=30°,经过点A,B的圆的圆心在边AC上.(Ⅰ)线段AB的长等于;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足∠PAC=∠PBC=∠PCB,并简要说明点P的位置是如何找到的(不要求证明)取圆与网格的交点E,F,连接EF与AC交于一点,则这一点是圆心O,AB与网格线相交于D,连接DO并延长交⊙O于点Q,连接QC并延长,与B,O的连线相交于点P,连接AP,则点P满足∠PAC=∠PBC=∠PCB .三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程)19.(★★★)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得 x≥-2 ;(Ⅱ)解不等式②,得 x≤1 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为 -2≤x≤1 .20.(★★)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为 40 ,图①中m的值为 25 ;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.21.(★★)已知PA,PB分别与⊙O相切于点A,B,∠APB=80°,C为⊙O上一点.(Ⅰ)如图①,求∠ACB的大小;(Ⅱ)如图②,AE为⊙O的直径,AE与BC相交于点D.若AB=AD,求∠EAC的大小.22.(★★)如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45°,根据测得的数据,计算这座灯塔的高度CD(结果取整数).参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60.23.(★★)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg.在乙批发店,一次购买数量不超过50kg时,价格为7元/kg;一次购买数量超过50kg时,其中有50kg的价格仍为7元/kg,超过50kg部分的价格为5元/kg.设小王在同一个批发店一次购买苹果的数量为xkg(x>0).(Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费y 1元,在乙批发店花费y 2元,分别求y 1,y 2关于x的函数解析式;(Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 100 kg;②若小王在同一个批发店一次购买苹果的数量为120kg,则他在甲、乙两个批发店中的乙批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的甲批发店购买数量多.一次购买数量/kg3050150…甲批发店花费/元 180 300 900 …乙批发店花费/元 210 350 850 …24.(★★★★)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(Ⅰ)如图①,求点E的坐标;(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;②当≤S≤5 时,求t的取值范围(直接写出结果即可).25.(★★★★★)已知抛物线y=x 2-bx+c(b,c为常数,b>0)经过点A(-1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+ ,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.。
解直角三角形一.选择题1. (2019•广东省广州市•3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.2. (2019•广西北部湾经济区•3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A. 米B. 米C. 米D. 米【答案】C【解析】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=xtan65°,∴BD=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.二.填空题1. (2019•江苏宿迁•3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是<BC <.【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,构造特殊情况下,即直角三角形时的BC的值.【解答】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=2,∠A=60°∴∠ABC1=30°∴AC1=AB=1,由勾股定理得:BC1=,在Rt△ABC2中,AB=2,∠A=60°∴∠AC2B=30°∴AC2=4,由勾股定理得:BC2=2,当△ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.【点评】本题考查解直角三角形,构造直角三角形,利用特殊直角三角形的边角关系或利用勾股定理求解.考察直角三角形中30°的角所对的直角边等于斜边的一半,勾股定理等知识点.2. (2 019·江苏盐城·3分)如图,在△ABC 中,BC =26+,∠C =45°,AB =2AC ,则AC 的长为________.【答案】2【解析】过A 作AD ⊥BC 于D 点,设AC =x 2,则AB =x 2,因为∠C =45°,所以AD =AC =x ,则由勾股定理得BD =x AD AB 322=-,因为AB =26+,所以AB =263+=+x x ,则x =2.则AC =2.3. (2 019·江苏盐城·3分)如图,在平面直角坐标系中,一次函数y =2x -1的图像分别交x 、y 轴于点A 、B ,将直线AB 绕点B 按顺时针方向旋转45°,交x 轴于点C ,则直线BC 的函数表达式是__________.【答案】131-=x y 【解析】因为一次函数y =2x -1的图像分别交x 、y 轴于点A 、B ,则A (21,0),B (0,-1),则AB =25. 过A 作AD ⊥BC 于点D ,因为∠ABC =45°,所以由勾股定理得AD =410,设BC =x ,则AC =OC -OA =2112--x ,根据等面积可得:AC ×OB =BC ×AD ,即2112--x =410x ,解得x =10.则AC =3,即C (3,0),所以直线BC 的函数表达式是131-=x y .4. (2019•浙江湖州•4分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD =α.若AO =85cm ,BO =DO =65cm .问:当α=74°时,较长支撑杆的端点A 离地面的高度h 约为 120 cm .(参考数据:sin 37°≈0.6,cos 37°≈0.8,sin 53°≈0.8,cos 53°≈0.6.)【分析】过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF ,利用等腰三角形的三线合一得到OE 为角平分线,进而求出同位角的度数,在直角三角形AFB 中,利用锐角三角函数定义求出h 即可.【解答】解:过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF , ∵BO =DO , ∴OE 平分∠BOD ,∴∠BOE =∠BOD =×74°=37°, ∴∠F AB =∠BOE =37°,在Rt △ABF 中,AB =85+65=150cm , ∴h =AF =AB •cos ∠F AB =150×0.8=120cm , 故答案为:120【点评】此题考查了解直角三角形的应用,弄清题中的数据是解本题的关键.三.解答题1. (2019•江苏宿迁•10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)【分析】(1)作EM⊥CD于点M,由EM=ECsin∠BCM=75sin46°可得答案;(2)作E′H⊥CD于点H,先根据E′C=求得E′C的长度,再根据EE′=CE﹣CE′可得答案【解答】解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=ECsin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C==≈71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).【点评】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.2. (2019•江西•8分)图1是一台实物投影仪,图2是它的示意图,折线B-A-O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到0.1)(1)如图2,∠ABC=70°,BC∥OE。
尺规作图一.选择题1.(2019•贵阳•3分)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A.2 B.3 C.D.【分析】利用基本作图得到CE⊥AB,再根据等腰三角形的性质得到AC=3,然后利用勾股定理计算CE的长.【解答】解:由作法得CE⊥AB,则∠AEC=90°,AC=AB=BE+AE=2+1=3,在Rt△ACE中,CE==.故选:D.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).2. (2019•河北•3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.3. (2019•河南•3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF =FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD 的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠F AO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.二.填空题1.2.3.4.三.解答题1. (2019•江苏无锡•10分)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.【分析】(1)连结AE并延长交圆E于点C,作AC的中垂线交圆于点B,D,四边形ABCD 即为所求.(2)①连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB于点F,点F即为所求;②结合网格特点和三角形高的概念作图可得.【解答】解:(1)如图1,连结AO并延长交圆O于点C,作AC的中垂线交圆于点B,D,四边形ABCD即为所求.(2)①如图2,连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB 于点F,F即为所求②如图3所示,AH即为所求.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握圆的有关性质和平行四边形的性质及三角形垂心的性质.2. (2019•江苏宿迁•10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【分析】(1)连接OF,可证得OF∥BC,结合平行线的性质和圆的特性可求得∠1=∠OFB =∠2,可得出结论;(2)由(1)可知切点是∠ABC的角平分线和AC的交点,圆心在BF的垂直平分线上,由此即可作出⊙M.【解答】解:(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.【点评】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,3. (2019•江西•6分)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹).(1)在图1中作弦EF,使EF//BC;(2)在图2中以BC为边作一个45°的圆周角.F(1)EF就是所求作的弦;(2)角BCQ或角CBQ就是所求作的角。
2019年天津中考数学主要考点提示今年复习应突出立足学生的发展,强调学生对数学学科核心内容、基本数学思想方法的理解与简单应用。
近几年来中考数学试卷基本稳定,数学试卷满分120分,题型没变化,还是三种题型(一、选择题:本大题共10小题,每小题3分,共30分;二、填空题:本大题共8小题,每小题3分,共24分;三、解答题:本大题共8小题,共66分)。
试卷稳中有变,变中求新,细节处略有变化,大的考点基本不变,保持了基本稳定。
这一点可以从天津市数学中考近四年考点列表看出。
2019年来中考数学试卷题型与考点1.重点考查是数与式、方程与不等式、函数的相关知识,不等式的基本解法。
从函数的解析式、列表、图象三种表示方法出发,涉及到运用函数的概念、函数的图象特征以及函数与方程、不等式的关系等问题,考查了对函数概念本质属性的理解;2.另外考查对平面图形的形状、大小、位置关系及其图形变换的认识。
主要借助于基本图形:三角形、四边形和圆,考查了学生对重要的几何基本事实的理解与运用的水平并涉及到轴对称、旋转、平移等基本概念,考查了学生在图形的运动变化过程中,对几何基本要素及其位置关系的认识;3.还重点考查了依据统计图表获取信息,通过简单的统计与概率问题的计算,感受统计与概率在实际生活中的应用,考查了关于统计量的意义与概率的基本计算的统计思想。
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观察过程中指导。
我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。
2019中考数学专题复习二次函数与线段最值问题含解析二次函数与线段最值问题一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 .二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.10.如图,抛物线y=﹣x2+bx+c的图象交x轴于A(﹣2,0),B(1,0)两点.(1)求抛物线的解析式;(2)点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与抛物线交于点P,过点P作PC∥AB交抛物线于点C,过点C作CD⊥x轴于点D.若点P在点C的左边,当矩形PCDM的周长最大时,求点M的坐标;(3)在(2)的条件下,当矩形PCDM的周长最大时,连接AC,我们把一条抛物线与直线AC的交点称为该抛物线的“恒定点”,将(1)中的抛物线平移,使其平移后的顶点为(n,2n),若平移后的抛物线总有“恒定点”,请直接写出n的取值范围.11.如图,在平面直角坐标系中,抛物线y x2x+2与x轴交于B、C两点(点B 在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为( , ),点B的坐标为( , ),点C的坐标为( , ),点D的坐标为( , );(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.12.如图,抛物线与直线相交于A,B两点,若点A在x轴上,点B的坐标是(2,4),抛物线与x轴另一交点为D,并且△ABD的面积为6,直线AB与y轴的交点的坐标为(0,2).点P是线段AB(不与A,B重合)上的一个动点,过点P作x轴的垂线,交抛物线与点Q.(1)分别求出抛物线与直线的解析式;(2)求线段PQ长度的最大值;(3)当PQ取得最大值时,在抛物线上是否存在M、N两点(点M的横坐标小于N的横坐标),使得P、D、M、N为顶点的四边形是平行四边形?若存在,求出MN的坐标;若不存在,请说明理由.13.如图,抛物线y x2x﹣4与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD于点M,求线段MQ长度的最大值.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.(4)当点P在线段EB上运动时,直线l与菱形BDEC的某一边交于点S,是否存在m 值,使得点C、Q、S、D为顶点的四边形是平行四边形?如果存在,请直接写出m值,不存在,说明理由.14.如图,已知二次函数y=﹣x2﹣2x+3的图象交x轴于A、B两点(A在B左边),交y 轴于C点.(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作x轴平行线交直线AC于M点,求线段PM的最大值.15.(1)如图,已知二次函数y=﹣x2+2x+3的图象交x轴于A,B两点(A在B左边),直线y=x+1过点A,与抛物线交于点C,点P是直线AC上方抛物线上一动点(不与A,C重合),过点P作y轴平行线交直线AC于Q点,求线段PQ的最大值.(2)在(1)条件下,过点P作y轴垂线交直线AC于Q点,求线段PQ的最大值.16.如图1,抛物线y=﹣x2﹣4x+5与x轴交于点A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求直线AC的解析式及顶点D的坐标;(2)连接CD,点P是直线AC上方抛物线上一动点(不与点A、C重合),过P作PE∥x轴交直线AC于点E,作PF∥CD交直线AC于点F,当线段PE+PF取最大值时,在抛物线对称轴上找一点L,在y轴上找一点K,连接OL,LK,PK,求线段OL+LK+PK的最小值,并求出此时点L的坐标.(3)如图2,点M(﹣2,﹣1)为抛物线对称轴上一点,点N(2,7)为直线AC上一点,点G为直线AC与抛物线对称轴的交点,连接MN,AM.点H是线段MN上的一个动点,连接GH,将△MGH沿GH翻折得到△M′GH(点M的对称点为M′),问是否存在点H,使得△M′GH与△NGH重合部分的图形为直角三角形,若存在,请求出NH的长,若不存在,请说明理由.17.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)当D在线段AC上运动时,求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.18.如图,在平面直角坐标系xOy中,直线y x交x轴于点A,交y轴于点B,经过点A的抛物线y x2+bx+c交直线AB另一点D,且点D到y轴的距离为8.(1)求抛物线解析式;(2)点P是直线AD上方的抛物线上一动点,(不与点A、D重合),过点P作PE⊥AD于E,过点P作PF∥y轴交AD于F,设△PEF的周长为L,点P的横坐标为m,求L与m的函数关系式,并直接写出自变量m的取值范围;(3)在图(2)的条件下,当L最大时,连接PD.将△PED沿射线PE方向平移,点P、E、F的对应点分别为Q、M、N,当△QMN的顶点M在抛物线上时,求M点的横坐标,并判断此时点N是否在直线PF上.(参考公式:二次函数y=ax2+bx+c(c≠0).当x时,y最大(小)值)19.如图,已知抛物线y=ax2+bx+c(a≠0)过点A(3,0),B(1,0),且与y轴交于点C(0,﹣3),点P是抛物线AC间上一动点,从点C沿抛物线向点A运动(点P 与A、C不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,直接写出点P的坐标;(3)求线段PD的最大值,并求最大值时P点的坐标;(4)在问题(3)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.20.已知二次函数y=ax2+bx+c与x轴只有一个交点,且系数a、b满足条件:.(1)求y=ax2+bx+c解析式;(2)将y=ax2+bx+c向右平移一个单位,再向下平移一个单位得到函数y=mx2+nx+k,该函数交y轴于点C,交x轴于A、B(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.当△ADP是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.21.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P 作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.22.如图1,抛物线y=﹣x2+bx+c经过点A(2,0),B(0,2),与x轴交于另一点C.(1)求抛物线的解析式及点C的坐标;(2)点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P分别向x轴、y轴作垂线,垂足分别为D,E,求四边形ODPE的周长的最大值;(3)如图2,点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P作PN⊥x轴,垂足为N,交AB于M,连接PB,PA.设点P的横坐标为t,当△ABP的面积等于△ABC面积的时,求t的值.23.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,与y轴交于点C,三个交点的坐标分别为A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式及顶点D的坐标;(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC面积的最大值和此时P点的坐标;(3)若点P是抛物线在第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为 时,四边形PQAC是平行四边形;(直接写出结果,不写求解过程).24.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线1与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,设P点的横坐标为m.①求线段PE长度的最大值;②点P将线段AC分割成长、短两条线段PA、PC,如果较长线段与AC之比等于,则称P为线段AC的“黄金分割点”,请直接写出使得P为线段AC黄金分割点的m的值.25.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.26.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值.27.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,(不与A、C重合),过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值,并直接写出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.28.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,当点P运动到什么位置时,△ACE的面积最大?求出此时P点的坐标和S△ACE的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使以A、C、F、G为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.29.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点.求线段PE 长度的最大值;(3)若点G是抛物线上的动点,点F是x轴上的动点,判断有几个位置能使以点A、C、F、G为顶点的四边形为平行四边形,直接写出相应的点F的坐标.30.如图,抛物线y=﹣x2﹣2x+3与x轴交A、B两点(A点在B点右侧),直线l与抛物线交于A、C两点,其中C点的横坐标为﹣2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)若点P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求当点P坐标为多少时,线段PE长度有最大值,最大值是多少?(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.二次函数与线段最值问题参考答案与试题解析一.填空题1.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为 6 .【考点】H5:二次函数图象上点的坐标特征.【分析】设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=﹣2(x﹣1)2+6.根据二次函数的性质来求最值即可.【解答】解:∵y=﹣x2+x+2,∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,解得x=2或x=﹣1故设P(x,y)(2>x>0,y>0),∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+6.∴当x=1时,C最大值=6,.即四边形OAPB周长的最大值为6.故答案是:6.【点评】本题考查了二次函数的最值,二次函数图象上点的坐标特征.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题采用了配方法.二.解答题2.已知函数y=(m+2)x2+kx+n.(1)若此函数为一次函数;①m,k,n的取值范围;②当﹣2≤x≤1时,0≤y≤3,求此函数关系式;③当﹣2≤x≤3时,求此函数的最大值和最小值(用含k,n的代数式表示);(2)若m=﹣1,n=2,当﹣2≤x≤2时,此函数有最小值﹣4,求实数k的值.【考点】F5:一次函数的性质;H7:二次函数的最值.【分析】(1)①根据二次项系数为0,一次项系数不为0,常数项为任意实数解答即可;②根据k>0,k<0时x、y的对应关系确定直线经过的点的坐标,求出解析式;③根据一次函数的性质即增减性解答即可;(2)把m=﹣1,n=2代入关系式,得到二次函数解析式,确定对称轴,顶点坐标,分情况讨论求出k的值.【解答】解:(1)①m=﹣2,k≠0,n为任意实数;②当k>0时,直线经过(﹣2,0)(1,3),函数关系式为:y=x+2当k<0时,直线经过(﹣2,3)(1,0),函数关系式为:y=﹣x+1③当k>0时,x=﹣2,y有最小值为﹣2k+nx=3时,y有最大值为3k+n当k<0时,x=﹣2,y有最大值为﹣2k+nx=3时,y有最小值为3k+n(2)若m=﹣1,n=2时,二次函数为y=x2+kx+2对称轴为x,当2,即k≥4时,把x=﹣2,y=﹣4代入关系式得:k=5当﹣22,即﹣4<k<4时,把x,y=﹣4代入关系式得:k=±2(不合题意)当2,即k≤﹣4时,把x=2,y=﹣4代入关系式得:k=﹣5.所以实数k的值为±5.【点评】本题考查了一次函数的概念、一次函数的性质、一次函数最值的应用以及二次函数的性质,综合性较强,需要学生灵活运用性质,把握一次函数的增减性和二次函数的增减性,解答题目.3.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)当a≤x≤b时,函数y的最小值为,最大值为4,求a,b应满足的条件;(3)在y轴右侧的抛物线上是否存在点P,使得三角形PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得到关于m的方程,解方程求出m的值,再利用配方法将二次函数写成顶点式,即可求出顶点D的坐标;(2)先把y=1代入y=﹣x2+2x+3,得到方程1x2+2x+3,解方程求出x1,x2,再利用二次函数的性质结合图象即可得出a,b应满足的条件;(3)先求出二次函数与y轴交点C的坐标,当三角形PDC是等腰三角形时,分三种情况进行讨论:①当DC=DP时,易求点P坐标为(2,3);②当PC=PD时,过点D 作x轴的平行线,交y轴于点H,过点P作PM⊥y轴于点M,PN⊥DH于点N.由HD=HC,PC=PD,根据线段垂直平分线的判定与等腰三角形的性质得出HP平分∠MHN,再由线段垂直平分线的性质得出PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解方程求出m的值,得出点P的坐标为或;③当CD=CP时,不符合题意.【解答】解:(1)把A(3,0)代入y=﹣x2+2(m﹣2)x+3,得﹣9+6(m﹣2)+3=0,解得m=3.则二次函数为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4);(2)把y=1代入y=﹣x2+2x+3,得1x2+2x+3,解得x1,x2,结合图象知a≤1.当a时,1≤b,当a≤1时,b;(3)x=0时,y=3,所以点C坐标为(0,3).当三角形PDC是等腰三角形时,分三种情况:①如图1,当DC=DP时,∵点P与点C关于抛物线的对称轴x=1对称,∴点P坐标为(2,3);②如图2,当PC=PD时,过点D作x轴的平行线,交y轴于点H,过点P作PM⊥y 轴于点M,PN⊥DH于点N.∵HD=HC=1,PC=PD,∴HP是线段CD的垂直平分线.∵HD=HC,HP⊥CD,∴HP平分∠MHN,∵PM⊥y轴于点M,PN⊥DH于点N,∴PM=PN.设P(m,﹣m2+2m+3),则m=4﹣(﹣m2+2m+3),解得m,∴P的坐标为或;③如图3,当CD=CP时,点P在y轴左侧,不符合题意.综上所述,所求点P的坐标为(2,3)或或.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,抛物线顶点坐标的求法,二次函数的性质,线段垂直平分线的判定与性质,等腰三角形的性质,综合性较强,难度适中.利用数形结合、分类讨论及方程思想是解题的关键.4.已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.(1)求t;(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;(3)若1≤a≤2,设当x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.【考点】H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)把A(t,1)代入y=x即可得到结论;(2)根据题意得方程组,解方程组即可得到结论;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,得到y=ax2﹣(a+3)x+4的对称轴为直线x,根据1≤a≤2,得到对称轴的取值范围x≤2,当x时,得到m,当x=2时,得到n,即可得到结论.【解答】解:(1)把A(t,1)代入y=x得t=1;(2)∵y=ax2+bx+4的图象与x轴只有一个交点,∴,∴或;(3)把A(1,1)代入y=ax2+bx+4得,b=﹣3﹣a,∴y=ax2﹣(a+3)x+4=a(x)2,∴对称轴为直线x,∵1≤a≤2,∴x2,∵x≤2,∴当x时,y=ax2+bx+4的最大值为m,当x=2时,n,∴m﹣n,∵1≤a≤2,∴当a=2时,m﹣n的值最小,即m﹣n的最小值.【点评】本题考查了抛物线与x轴的交点,二次函数的最值,正确的理解题意是解题的关键.5.已知y关于x的函数y=nx2﹣2(m+1)x+m+3(1)若m=n=﹣1时,当﹣1≤x≤3时,求函数的最大值和最小值;(2)若n=1,当m取何值时,抛物线顶点最高?(3)若n=2m>0,对于任意m的值,当x<k时,y随x的增大而减小,求k的最大整数;(4)若m=2n≠0,求抛物线与x轴两个交点之间的最短距离.【考点】H3:二次函数的性质;H7:二次函数的最值;HA:抛物线与x轴的交点.【分析】(1)利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;(3)抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,因为对于任意m的值,当x<k时,y随x的增大而减小,所以k,由此即可解决问题;(4)构建二次函数,利用二次函数的性质,解决最值问题;【解答】解:(1)当m=n=﹣1时,函数解析式为y=﹣x2+2,顶点坐标为(0,2),函数最大值为2,∵﹣1≤x≤3,x=﹣1时,y=1,x=3时,y=﹣7.∴函数的最大值为2和最小值为﹣7.(2)n=1时,函数解析式为y=x2﹣2(m+1)x+m+3,∵顶点的纵坐标m2﹣m+2,∵﹣1<0,∴m时,抛物线顶点的纵坐标最大,顶点最高.(3)∵n=2m,∴抛物线的解析式为y=2mx2﹣2(m+1)x+m+3,对称轴x,∵对于任意m的值,当x<k时,y随x的增大而减小,∴k,∴k的最大整数为0.(4)∵m=2n,∴抛物线的解析式为y=nx2﹣2(2n+1)x+2n+3,设抛物线与x轴的交点为(x1,0)和(x2,0),则|x1﹣x2|,∴当时,抛物线与x轴两个交点之间的距离最短,最小值为.【点评】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数解决最值问题,所以中考常考题型.6.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标.(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;(3)当x≤n时,函数y所取得的最大值为4,最小值为1,求n的取值范围.【考点】HF:二次函数综合题.【分析】(1)把A点坐标代入可求得m的值,可求得二次函数解析式,化为顶点式可求得D的坐标;(2)利用两点间的距离公式可求得AC、CD、AD,可知△ACD为直角三角形,AD为斜边,可知E为AC的中点,可求得E的坐标及半径;(3)当x时,可求得y=1,且当x=1时y=4,根据二次函数的对称性可求得n的范围.【解答】解:(1)∵抛物线过A点,∴代入二次函数解析式可得﹣9+6(m﹣2)+3=0,解得m=3,∴二次函数为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D为(1,4);(2)由(1)可求得C坐标为(0,3),∴AC3,CD,AD2,∴AC2+CD2=AD2,∴△ACD为直角三角形,∴E为AD的中点,∴E点坐标为(2,2),外接圆的半径r AD;(3)当x时,y=1,当x=1时,y=4,∴当x≤1时,1y≤4,根据二次函数的对称性可知当1≤x时,1y≤4,∴1≤n.【点评】本题主要考查待定系数法求函数解析式及二次函数的顶点坐标、增减性、及直角三角形的判定等知识的综合应用.在(1)中掌握点的坐标满足函数的解析式是解题的关键,在(2)中判定出△ACD为直角三角形是解题的关键,在(3)中利用二次函数的对称性,结合二次函数在对称轴两侧的增减性可确定出n的范围.本题难度不大,注重基础知识的综合,较易得分.7.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线.点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)若,求PC的长;(3)过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,若点P在Q左侧,矩形PMNQ的周长记为d,求d的最大值.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,PC m2m+3.由PM,得到m2m+2,即m2=3m+1,m,进而求出PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,矩形PMNQ的周长d=﹣m2﹣m+10,将﹣m2﹣m+10配方,根据二次函数的性质,即可得出矩形PMNQ的周长的最大值.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PM m2m+2,PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PM,∴m2m+2,整理,得m2﹣3m﹣1=0,∴m2=3m+1,m,∴PC m2m+3(3m+1)m+3=m,∴当m时,PC;(3)设M点横坐标为m,则PM m2m+2,MN=2(m)=3﹣2m,∴矩形PMNQ的周长d=2(PM+MN)=2(m2m+2+3﹣2m)=﹣m2﹣m+10.∵﹣m2﹣m+10=﹣(m)2,∴当m时,d有最大值.【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,矩形的性质,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.8.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,点A的坐标为(﹣1,0),抛物线的对称轴为直线x=1.5,点M为线段AB上一点,过M作x轴的垂线交抛物线于P,交过点A的直线y=﹣x+n于点C.(1)求直线AC及抛物线的解析式;(2)M位于线段AB的什么位置时,PC最长,并求出此时P点的坐标;(3)若在(2)的条件下,在x轴上方的抛物线上是否存在点Q,使,求点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)将A(﹣1,0)代入y=﹣x+n,运用待定系数法求出直线AC的解析式;根据抛物线的对称轴为x,把点A的坐标代入y=ax2+bx+2,组成关于a、b的二元一次方程组,求解即可得到抛物线的解析式;(2)设M点横坐标为m,则P(m,m2m+2),C(m,﹣m﹣1),得出PMm2m+2,化成顶点式即可;(3)根据抛物线的对称轴和A的坐标,求得B的坐标,求得AB,从而求得三角形APB的面积,进而求得三角形ABQ的面积,得出Q的纵坐标,把纵坐标代入抛物线的解析式即可求得横坐标,从而求得Q的坐标.【解答】解:(1)∵直线y=﹣x+n过点A(﹣1,0),∴0=1+n,解得n=﹣1,∴直线AC的解析式为y=﹣x﹣1;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴,解得.∴抛物线的解析式是:y x2x+2;(2)如图,设M点横坐标为m,则P点坐标为(m,m2m+2),C点坐标为(m,﹣m﹣1).∵点M为线段AB上一点,∴﹣1<m<4.∴PC=(m2m+2)﹣(﹣m﹣1)m2m+3.∵PC m2m+3(m)2,所以,当m时,PC最长,此时P(,),AM;(3)存在;∵抛物线y=ax2+bx+2的对称轴为直线x,经过点A(﹣1,0),∴B(4,0)∴AB=5,∵S△APB AB•PM5,∵,∴S△ABQ,设Q点纵坐标为n,∵S△ABQ AB•n,∴n,(或n这样计算比较方便),∴x2x+2,解得:x或x,∴Q(,)或(,)【点评】本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,平行于坐标轴上的两点之间的距离,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.9.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F 作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16:压轴题.。
2019中考数学各题型拿分方法,丢分九个关键点及加分对策!当我第一遍读一本好书的时候,我仿佛觉得找到了一个朋友;当我再一次读这本书的时候,仿佛又和老朋友重逢。
我们要把读书当作一种乐趣,并自觉把读书和学习结合起来,做到博览、精思、熟读,更好地指导自己的学习,让自己不断成长。
让我们一起到店铺一起学习吧!中考数学试卷各题型拿分方法中考数学学科的考试,注重考查学生对数学基础知识、基本技能以及基本思想方法的掌握情况,考查运算能力、思维能力、空间观念和数学创新意识,加强试题与社会实际和学生生活的联系,特别考查在具体情境中运用所学知识分析和解决问题的能力,搜集和处理信息的能力,以及使用数学语言表达问题、形成用数学的意识。
今天博师老师给孩子们准备了中考中孩子们常用到的几个方法。
排除法排除法是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。
排除法是解选择题的间接方法,也是选择题的常用方法。
特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。
在解决时可将问题提供的条件特殊化。
使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。
利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。
通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、总结、归纳等过程使问题得解。
填空题1.直接法:根据题干所给条件,直接经过计算、推理或证明,得出正确答案。
2.图解法:根据题干提供信息,绘出图形,从而得出正确的答案。
二元一次方程(组)及其应用一.选择题1. (2019•天津•3分)方程组⎩⎨⎧=-=+1126723y x y x ,的解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【答案】D【解析】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x 代入2=x 到①中,726=+y 则21=y ,故选D.2. (2019•广西贺州•3分)已知方程组,则2x +6y 的值是( ) A .﹣2B .2C .﹣4D .4【分析】两式相减,得x +3y =﹣2,所以2(x +3y )=﹣4,即2x +6y =﹣4. 【解答】解:两式相减,得x +3y =﹣2, ∴2(x +3y )=﹣4, 即2x +6y =﹣4, 故选:C .【点评】本题考查了二元一次方程组,对原方程组进行变形是解题的关键.二.填空题1. (2019•河北•4分)勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:km ).笔直铁路经过A ,B 两地. (1)A ,B 间的距离为 km ;(2)计划修一条从C 到铁路AB 的最短公路l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为 km .【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;2. (2019•江苏宿迁•3分)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为10.【分析】设“△”的质量为x,“□”的质量为y,由题意列出方程:,解得:,得出第三个天平右盘中砝码的质量=2x+y=10.【解答】解:设“△”的质量为x,“□”的质量为y,由题意得:,解得:,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;设出未知数,根据题意列出方程组是解题的关键.3. (2019•四川自贡•4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.【分析】根据题意可得等量关系:①4个篮球的花费+5个足球的花费=466元,②篮球的单价﹣足球的单价=4元,根据等量关系列出方程组即可.【解答】解:设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:,【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.三.解答题1. (2019•贵阳•10分)某文具店最近有A,B两款毕业纪念册比较畅销,近两周的销售情况是:第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A 款销售数量是20本,B款销售数量是10本,销售总价是280元.(1)求A,B两款毕业纪念册的销售单价;(2)若某班准备用不超过529元购买这两种款式的毕业纪念册共60本,求最多能够买多少本A款毕业纪念册.【分析】(1)直接利用第一周A款销售数量是15本,B款销售数量是10本,销售总价是230元;第二周A款销售数量是20本,B款销售数量是10本,销售总价是280元,分别得出方程求出答案;(2)利用不超过529元购买这两种款式的毕业纪念册共60本,得出不等式求出答案.【解答】解:(1)设A款毕业纪念册的销售为x元,B款毕业纪念册的销售为y元,根据题意可得:,解得:,答:A款毕业纪念册的销售为10元,B款毕业纪念册的销售为8元;(2)设能够买a本A款毕业纪念册,则购买B款毕业纪念册(60﹣a)本,根据题意可得:10a+8(60﹣a)≤529,解得:a≤24.5,则最多能够买24本A款毕业纪念册.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出等量关系是解题关键.2. (2019•海南•10分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?【分析】设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意列出方程组,解方程组即可.【解答】解:设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意得:,解得:;答:“红土”百香果每千克25元,“黄金”百香果每千克30元.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.3. (2019•河南•9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.【分析】(1)设A的单价为x元,B的单价为y元,根据题意列出方程组,即可求解;(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,根据题意得到由题意可知,z≥(30﹣z),W=30z+15(30﹣z)=450+15z,根据一次函数的性质,即可求解;【解答】解:(1)设A的单价为x元,B的单价为y元,根据题意,得,∴,∴A的单价30元,B的单价15元;(2)设购买A奖品z个,则购买B奖品为(30﹣z)个,购买奖品的花费为W元,由题意可知,z≥(30﹣z),∴z≥,W=30z+15(30﹣z)=450+15z,当z=8时,W有最小值为570元,即购买A奖品8个,购买B奖品22个,花费最少;【点评】本题考查二元一次方程组的应用,一次函数的应用;能够根据条件列出方程组,将最优方案转化为一次函数性质解题是关键.4. (2 019·江苏盐城·10分)体育器材室有A、B两种型号的实心球,1只A型球与1只B 型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?5. (2019•广东省广州市•9分)解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=2,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6. (2019•甘肃省庆阳市•6分)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?【分析】根据对话分别利用总钱数得出等式求出答案.【解答】解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意可得:,解得:,答:中性笔和笔记本的单价分别是2元、6元.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.7.(2019•天津•10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg 。
专题22 图形的旋转考点总结【思维导图】【知识要点】知识点一旋转的基础旋转的概念:把一个平面图形绕着平面内某一点O转动一个角度,叫作图形的旋转.点O叫作旋转中心,转动的角叫作旋转角.如图形上的点P经过旋转变化点P',那么这两个点叫作这个旋转的对应点.如图所示,A OB''∆绕定点O逆时针旋转45︒得到的,其中点A与点A'叫作对应点,线段OB与∆是AOB线段OB'叫作对应线段,OAB∠与OA B'∠)的度数叫∠叫作对应角,点O叫作旋转中心,AOA'∠(或BOB'作旋转的角度. 【注意】1.图形的旋转由旋转中心、旋转方向与旋转的角度所决定.2.旋转中心可以是图形内,也可以是图形外。
【图形旋转的三要素】旋转中心、旋转方向和旋转角. 旋转的特征:➢ 对应点到旋转中心的距离相等;➢ 对应点与旋转中心所连线段的夹角等于旋转角; ➢ 旋转前、后的图形全等. 旋转作图的步骤方法:➢ 确定旋转中心、旋转方向、旋转角; ➢ 找出图形上的关键点;➢ 连接图形上的关键点与旋转中心,然后按旋转方向分别将它们旋转一定的角度,得到关键点的对应点; ➢ 按原图的顺序连接这些对应点,即得旋转后的图形. 平移、旋转、轴对称之间的联系:变化后不改变图形的大小和形状,对应线段相等、对应角相等。
平移、旋转、轴对称之间的区别: 1) 变化方式不同:平移:将一个图形沿某个方向移动一定距离。
旋转:将一个图形绕一个顶点沿某个方向转一定角度。
轴对称:将一个图形沿一条直线对折。
2) 对应线段、对应角之间的关系不同平移: 变化前后对应线段平行(或在一条直线上),对应点连线平行(或在一条直线上),对应角的两边平行(或在一条直线上)、方向一致。
旋转: 变化前后任意一对对应点与旋转中心的连线所称的角都是旋转角。
轴对称:对应线段或延长线如果相交,那么交点在对称轴上。
3)确定条件不同A平移:距离与方向旋转:旋转的三要素。
2019年天津市初中毕业生学生考试试卷数学试卷满分120分,考试时间100分钟。
第I 卷一、选择题(本大题12小题,每小题3分,共36分) 1.计算(-3)×9的结果等于A. -27B. -6C. 27D. 6 2. 60sin 2的值等于A. 1B. 2C. 3D. 23.据2019年3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为A. 0.423×107B.4.23×106C.42.3×105D.423×1044.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是5.右图是一个由6个相同的正方体组成的立体图形,它的主视图是6.估计33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间 7.计算1212+++a a a 的结果是 A. 2 B. 22+a C. 1 D.14+a a8.如图,四边形ABCD 为菱形,A 、B 两点的坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则菱形ABCD 的周长等于A.5B.34C.54D. 209.方程组⎩⎨⎧=-=+1126723y x y x ,的解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x10.若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数xy 12-=的图象上,则321,,y y y 的关系A. 312y y y <<B.213y y y <<C.321y y y <<D.123y y y << 11.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是A.AC=ADB.AB ⊥EBC. BC=DED.∠A=∠EBC12.二次函数c b a c bx ax y ,,(2++=是常数,0≠a )的自变量x 与函数值y 的部分对应值如下表:且当x=21-时,与其对应的函数值0>y ,有下列结论:①0>abc ;② - 2和3是关于x 的方程t c bx ax =++2的两个根;③3200<+<n m 。
2019年天津市第十一中学中考数学二模试卷一.选择题(共12小题,满分36分,每小题3分)1.计算﹣22的结果等于()A.﹣2 B.﹣4 C.2 D.42.3tan60°的值为()A.B.C.D.33.下列图形中,中心对称图形有()A.1个B.2个C.3个D.4个4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.如图所示的立体图形,其主视图是()A.B.C.D.6.已知m、n为两个连续整数,且m<﹣2<n,则n+m=()A.1 B.2 C.3 D.47.计算的结果为()A.1 B.0 C.D.﹣18.有理数a、b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.|b|<|a| C.ab>0 D.b<a9.如图,在等腰△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A.60°B.55°C.50°D.45°10.已知一次函数y1=kx+b与反比例函数y2=在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或x>3C.﹣1<x<0 D.x>311.正方形具有而菱形不具有的性质是()A.四边相等B.四角相等C.对角线互相平分D.对角线互相垂直12.已知抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,有下列结论:①a+b >0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正确结论的个数是()A.0 B.1 C.2 D.3二.填空题(共6小题,满分18分,每小题3分)13.化简(﹣a2)•a5所得的结果是.14.﹣=.15.“九(1)”班为了选拔两名学生参加学校举行的“中华优秀传统文化知识竞赛”活动,在班级内先举行了预选赛,在预选赛中有两女、一男3位学生获得了一等奖,从获得等奖的3位学生中随机抽取2名学生参加学校的比赛,则选出的2名学生恰好为一男一女的概率为16.已知一次函数y=kx+b的图象经过第一象限,且它的截距为﹣5,那么函数值y随自变量x值的增大而.17.平面上的两条相交直线有条对称轴.18.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上(Ⅰ)线段AB的长度=.(Ⅱ)请在如图所示的网格中,用无刻度的直尺,在∠ABC的平分线上找一点P,在BC上找一点Q,使CP+PQ的值最小,并简要说明点P,Q的位置是如何找到的(不要求证明).三.解答题(共7小题,满分66分)19.(8分)解不等式组:并在数轴上表示出它的解集.20.(8分)植树节期间,某校360名学生参加植树活动,要求每人植树3~6棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵,根据各类型对应的人数绘制了扇形统计图(如图1)和尚未完成的条形统计图(如图2),请解答下列问题:(1)将条形统计图补充完整;(2)这20名学生每人植树量的众数为棵,中位数为棵;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是=第二步:此问题中n=4,x1=3,x2=4,x3=5,x4=6;第三步:==4.5(棵).①小宇的分析是不正确的,他错在第几步?②请你帮他计算出正确的平均数,并估计这360名学生共植树多少棵?21.(10分)已知AB是⊙O的直径,AB=2,点C,点D在⊙O上,CD=1,直线AD,BC交于点E.(Ⅰ)如图1,若点E在⊙O外,求∠AEB的度数.(Ⅱ)如图2,若点E在⊙O内,求∠AEB的度数.22.(10分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻事故,立即出发了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以50海里每小时的速度前往救援,求海警船到达事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)23.(10分)《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表累进计算:(纳税款=应纳税所得额×对应税率)(1)设某甲的月工资、薪金所得为x元(1300<x<2800),需缴交的所得税款为y元,试写出y与x的函数关系式;(2)若某乙一月份应缴所得税款95元,那么他一月份的工资、薪金是多少元?24.(10分)已知直线l经过A(6,0)和B(0,12)两点,且与直线y=x交于点C,点P(m,0)在x轴上运动.(1)求直线l的解析式;(2)过点P作l的平行线交直线y=x于点D,当m=3时,求△PCD的面积;(3)是否存在点P,使得△PCA成为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.25.(10分)已知抛物线y=﹣x2﹣x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.(1)求直线AC的解析式;(2)如图2,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP面积最大时,求|PM﹣OM|的值.(3)如图3,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.2019年天津市第十一中学中考数学二模试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】根据乘方的定义及其运算法则计算可得.【解答】解:﹣22=﹣2×2=﹣4,故选:B.【点评】本题主要考查有理数的乘方,解题的关键是掌握乘方的定义与运算法则,并区别﹣a n与(﹣a)n.2.【分析】把tan60的数值代入即可求解.【解答】解:3tan60°=3×=3.故选:D.【点评】本题考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是关键.3.【分析】根据中心对称图形的概念求解.【解答】解:第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形.故共2个中心对称图形.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.【分析】找出几何体的主视图即可.【解答】解:如图所示的立体图形,其主视图是,故选:B.【点评】此题考查了简单组合体的三视图,熟练掌握三视图的画法是解本题的关键.6.【分析】直接利用的取值范围进而分析得出1<﹣2<2,即可得出答案.【解答】解:∵3<<4,∴1<﹣2<2,∵m<﹣2<n,∴m=1,n=2,∴n+m=3.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.7.【分析】首先进行通分运算,进而计算得出答案.【解答】解:原式=﹣==﹣1.故选:D.【点评】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.8.【分析】先根据数轴确定a,b的范围,再进行逐一分析各选项,即可解答.【解答】解:由数轴可得:a<0<b,|a|>|b|,A、a+b<0,故选项错误;B、|b|<|a|,故选项正确;C、ab<0,故选项错误;D、a<b,故选项错误.故选:B.【点评】此题主要考查了绝对值与数轴,解答此题的关键是根据数轴确定a,b的范围.9.【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【解答】解:如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC﹣∠ABO=65°﹣25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣40°﹣40°=100°,∴∠CEF=∠CEO=50°.故选:C.【点评】该题主要考查了等腰三角形的性质以及翻折变换及其应用,解题的关键是根据翻折变换的性质,找出图中隐含的等量关系,灵活运用有关定理来分析、判断.10.【分析】根据图象知,两个函数的图象的交点是(﹣1,3),(3,﹣1).由图象可以直接写出当y1<y2时所对应的x的取值范围.【解答】解:根据图象知,一次函数y1=kx+b与反比例函数y2=的交点是(﹣1,3),(3,﹣1),∴当y1<y2时,﹣1<x<0或x>3;故选:B.【点评】本题主要考查了反比例函数与一次函数的交点问题.解答此题时,采用了“数形结合”的数学思想.11.【分析】根据正方形的性质以及菱形的性质,即可作出判断.【解答】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选:B.【点评】本题主要考查了正方形与菱形的性质,正确对特殊四边形的各种性质的理解记忆是解题的关键.12.【分析】利用题意画出二次函数的大致图象,利用对称轴的位置得到﹣>,则可对①进行判断;利用a<0,b>0,c>0可对②进行判断;由a﹣b+c=0,即b=a+c,则4a+2(b+c)+c >0,所以2a+c>0,变形b2﹣2ac﹣5a2=﹣(2a+c)(2a﹣c),则可对③进行判断.【解答】解:如图,∵抛物线过点(﹣1,0),且满足4a+2b+c>0,∴抛物线的对称轴x=﹣>,∴b>﹣a,即a+b>0,所以①正确;∵a<0,b>0,c>0,∴﹣a+b+c>0,所以②正确;∵a﹣b+c=0,即b=a+c,∴4a+2(b+c)+c>0,∴2a+c>0,∴b2﹣2ac﹣5a2=(a+c)2﹣2ac﹣5a2=﹣(2a+c)(2a﹣c),而2a+c>0,2a﹣c<0,∴∴b2﹣2ac﹣5a2>0,即b2﹣2ac>5a2.所以③正确.故选:D.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二.填空题(共6小题,满分18分,每小题3分)13.【分析】根据同底数幂的乘法计算即可.【解答】解:(﹣a2)•a5=﹣a7,故答案为:﹣a7.【点评】此题考查同底数幂的乘法,关键是根据同底数幂的乘法的法则解答.14.【分析】先化简二次根式,再合并同类二次根式即可得.【解答】解:原式=3﹣2=,故答案为:.【点评】本题主要考查二次根式的加减,解题的关键是掌握二次根式的加减运算顺序和法则.15.【分析】根据题意画出树状图,得出抽中一男一女的情况,再根据概率公式,即可得出答案.【解答】解:根据题意画树状图如下:共有6种情况,恰好抽中一男一女的有4种情况,则恰好抽中一男一女的概率是,故答案为:.【点评】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.16.【分析】直接根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵一次函数y=kx+b的图象经过第一象限,且它的截距为﹣5,∴一次函数y=kx+b的图象经过第一、三、四象限,即一次函数y=kx+b的图象不经过第二象限,∴k>0,b<0.所以函数值y随自变量x的值增大而增大,故答案为:增大;【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k >0,b<0时,函数的图象在第一、三、四象限是解答此题的关键.17.【分析】分两种情况:①如果两条相交直线不垂直,②如果两条相交直线垂直,根据轴对称图形的性质即可得到结论.【解答】解:①如果两条相交直线不垂直,则有2条对称轴,②如果两条相交直线垂直,则有4条对称轴,综上所述,平面上的两条相交直线有2条或4条对称轴,故答案为:2或4.【点评】本题考查了轴对称的性质,根据轴对称的性质画出图形是解题的关键.18.【分析】(Ⅰ)根据勾股定理计算即可;(Ⅱ)构造边长为5的菱形ABKD,连接BD,射线BD为∠ABC的平分线,构造△CEF≌△CAB,作直线CF交BD于P,交AB于Q′,作PQ⊥BC于Q,点P、Q即为所求;【解答】解:(Ⅰ)AB==5,故答案为5.(Ⅱ)构造边长为5的菱形ABKD,连接BD,射线BD为∠ABC的平分线,构造△CEF≌△CAB,作直线CF交BD于P,交AB于Q′,再作点P关于直线BC的对称点J,连接PJ交BC于点Q,点P、Q即为所求;故答案为构造边长为5的菱形ABKD,连接BD,射线BD为∠ABC的平分线,构造△CEF≌△CAB,作直线CF交BD于P,交AB于Q′,再作点P关于直线BC的对称点J,连接PJ交BC于点Q,点P、Q即为所求;【点评】本题考查作图﹣应用与设计,勾股定理、菱形的判定和性质、全等三角形的判定和性质、轴对称、垂线段最短等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.三.解答题(共7小题,满分66分)19.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:解不等式①,得:x<2,解不等式②,得:x≥﹣1,则不等式组的解集为﹣1≤x<2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【分析】(1)总人数乘以D类型的百分比求得其人数,据此补全条形图可得;(2)根据众数和中位数的定义求解可得;(3)①利用平均数的定义解答;②求出样本的平均数,再乘以数据的总数量可得答案.【解答】解:(1)D类型的人数为20×10%=2人,完整的条形统计图如图所示:(2)这20名学生每人植树量的众数为4棵,中位数为第10、11个数据的平均数,而第10、11个数据均落在B类型中,即中位数为4棵;故答案为:4、4;(3)①小宇错在第二步;②(棵).估计360名学生共植树360×4.3=1548(棵).【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.21.【分析】(Ⅰ)如图1,连接OC、OD,先证明△OCD为等边三角形得到∠COD=60°,利用圆周角定理得到∠CBD=30°,∠ADB=90°,然后利用互余计算出∠AEB的度数;(Ⅱ)如图2,连接OC、OD,同理可得∠CBD=30°,∠ADB=90°,然后根据三角形外角性质计算∠AEB的度数.【解答】解:(Ⅰ)如图1,连接OC、OD,∵CD=1,OC=OD=1,∴△OCD为等边三角形,∴∠COD=60°,∴∠CBD=∠COD=30°,∵AB为直径,∴∠ADB=90°,∴∠AEB=90°﹣∠DBE=90°﹣30°=60°;(Ⅱ)如图2,连接OC、OD,同理可得∠CBD=30°,∠ADB=90°,∴∠AEB=90°+∠DBE=90°+30°=120°.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了圆周角定理.22.【分析】作CH⊥AB于H,如图,根据题意得∠BAC=30°,∠HBC=53°,先在Rt△ACH中,利用正弦的定义求出CH=40,再在Rt△BCH中利用正弦的定义求出BC,然后利用速度公式求出海警船到达事故船C处所需时间.【解答】解:作CH⊥AB于H,如图,根据题意得∠BAC=30°,∠HBC=90°﹣37°=53°,AC=80,在Rt△ACH中,∵sin A=,∴CH=AC tan A=80•sin30°=40,在Rt△BCH中,∵sin∠CBH=,∴CB==≈50,∴海警船到达事故船C处所需为=1(小时).答:海警船到达事故船C处所需的大约为1小时.【点评】本题考查了解直角三角形的应用:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.【分析】(1)由题意,甲得到的月工资、薪金所得为x元(1300<x<2800),则对应的纳税区间为:1300﹣800=500;2800﹣800=2000,即对应的纳税款区间为:超过500元至2000元的部分,即可得出y与x的函数关系式(2)将税款95元代入(1)中求解函数关系式中即可得出一月份的工资、薪金.【解答】解:由题意(1)∵甲得到的月工资、薪金所得为1300~2800元,则对应的纳税范围为:1300﹣800=500;2800﹣800=2000,即对应的纳税款区间为:超过500元至2000元的部分∴y=500×5%+(x﹣1300)×10%=0.1x﹣105故y与x的函数关系式为:y=0.1x+105(2)某乙一月份应缴所得税款95元,由(1)关系式可知,令y=95.得95=0.1x+105,解得x =2000,满足所对应的纳税区间.即他一月份的工资、薪金是2000元.【点评】此题考查的一次函数的应用,在此类题型中要懂得判断最后计算出来的工资、薪金是否在对应的纳税区间中.24.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得直线l的解析式;(2)联立直线l和直线y=x,可求得C点坐标,由条件可求得直线PD的解析式,同理可求得D 点坐标,则可分别求得△POD和△POC的面积,则可求得△PCD的面积;(3)由P、A、C的坐标,可分别表示出PA、PC和AC的长,由等腰三角形的性质可得到关于m 的方程,则可求得m的值,则可求得P的坐标.【解答】解:(1)设直线l解析式为y=kx+b,把A、B两点坐标代入可得,解得,∴直线l解析式为y=﹣2x+12;(2)解方程组,可得,∴C点坐标为(4,4),设PD解析式为y=﹣2x+n,把P(3,0)代入可得0=﹣6+n,解得n=6,∴直线PD解析式为y=﹣2x+6,解方程组,可得,∴D点坐标为(2,2),∴S△POD=×3×2=3,S△POC=×3×4=6,∴S△PCD=S△POC﹣S△POD=6﹣3=3;(3)∵A(6,0),C(4,4),P(m,0),∴PA2=(m﹣6)2=m2﹣12m+36,PC2=(m﹣4)2+42=m2﹣8m+32,AC2=(6﹣4)2+42=20,当△PAC为等腰三角形时,则有PA=PC、PA=AC或PC=AC三种情况,①当PA=PC时,则PA2=PC2,即m2﹣12m+36=m2﹣8m+32,解得m=1,此时P点坐标为(1,0);②当PA=AC时,则PA2=AC2,即m2﹣12m+36=20,解得m=6+2或m=6﹣2,此时P点坐标为(6+2,0)或(6﹣2,0);③当PC=AC时,则PC2=AC2,即m2﹣8m+32=20,解得m=2或m=6,当m=6时,P与A重合,舍去,此时P点坐标为(2,0);综上可知存在满足条件的点P,其坐标为(1,0)或(6+2,0)或(6﹣2,0)或(2,0).【点评】本题为一次函数的综合应用,涉及待定系数法、函数图象的交点、三角形的面积、等腰三角形的性质、勾股定理、分类讨论思想及方程思想等知识.在(1)中注意待定系数法的应用,在(2)中求得C、D的坐标是解题的关键,在(3)中用P点坐标分别表示出PA、PC的长是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,难度适中.25.【分析】(1)令x=0,则y=2,令y=0,则x=2或﹣6,求出点A、B、C坐标,即可求解;(2)连接OP′交对称轴于点M,此时,|PM﹣OM|有最大值,即可求解;(3)存在;分A′D′⊥A′E、A′D′⊥ED′、ED′⊥A′E,三种情况求解即可.【解答】解:(1)令x=0,则y=2,令y=0,则x=2或﹣6,则:点A、B、C坐标分别为(﹣6,0)、(2,0)、(0,2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,),C点坐标为(0,2),则过点C的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k=,则:直线AC的表达式为:y=x+2;(2)如图,过点P作x轴的垂线交AC于点H,四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP的面积最大即可,设:点P坐标为(m,﹣ m2﹣m+2),则点G坐标为(m, m+2),S△ACP=PG•OA=•(﹣m2﹣m+2﹣m﹣2)•6=﹣m2﹣3m,当m=﹣3时,上式取得最大值,则点P坐标为(﹣3,),在抛物线上取点P关于对称轴的对称点P′(﹣1,),连接OP′交对称轴于点M,此时,|PM ﹣OM|有最大值,直线OP′的表达式为:y=﹣x,当x=﹣2时,y=5,即:点M坐标为(﹣2,5),∴|PM﹣OM|=OP′=;(3)存在;∵AE=CD,∠AEC=∠ADC=90°,∠EMA=∠DMC,∴△EAM≌△DCM(AAS),∴EM=DM,AM=MC,设:EM=a,则:MC=6﹣a,在Rt△DCM中,由勾股定理得:MC2=DC2+MD2,即:(6﹣a)2=22+a2,解得:a=,则:MC=,过点D作x轴的垂线交x轴于点N,交EC于点P,在Rt△DMC中, DP•MC=MD•DC,即:DP×=×2,则:DP=,HC==,即:点D的坐标为(﹣,);设:△ACD沿着直线AC平移了m个单位,则:点A′坐标(﹣6+,),点D′坐标为(﹣+, +),而点E坐标为(﹣6,2),则:直线A′D′表达式的k值为:,则:直线A′E表达式的k值为:,则:直线E′D表达式的k值为:,根据两条直线垂直,其表达式中k值的乘值为﹣1,可知:当A′D′⊥A′E时,=﹣,解得:m=,D'坐标为:(0,4),当A′D′⊥ED′时,=﹣,解得:m=﹣,D'坐标为:(﹣,)同理,当ED′⊥A′E时,点D的坐标为:(﹣0.6,3.8),则:D'标为:(0,4)或(﹣,)或(﹣0.6,3.8).【点评】本题考查的是二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中(3)中图形是本题难点,其核心是确定平移后A′、D′的坐标,本题难度较大.。
2019年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(3)9-⨯的结果等于()A.27-B.6-C.27D.62.(3分)2sin60︒的值等于()A B.2C.1D3.(3分)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.70.42310⨯B.64.2310⨯C.542.310⨯D.442310⨯4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3()A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(3分)计算2211aa a+++的结果是()A.2B.22a+C.1D.41 a a+8.(3分)如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D 在坐标轴上,则菱形ABCD的周长等于()AB.C.D .209.(3分)方程组3276211x y x y +=⎧⎨-=⎩的解是( )A .15x y =-⎧⎨=⎩B .12x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .212x y =⎧⎪⎨=⎪⎩10.(3分)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<11.(3分)如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠12.(3分)二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( )A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18)13.(3分)计算5x x的结果等于.14.(3分)计算1)的结果等于.15.(3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是.16.(3分)对于直线21y x=-与x轴的交点坐标是.17.(3分)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若5DE=,则GE的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,ABC∆的顶点A在格点上,B是小正方形边的中点,50ABC∠=︒,30BAC∠=︒,经过点A,B的圆的圆心在边AC上.(Ⅰ)线段AB的长等于;(Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足PAC PBC PCB∠=∠=∠,并简要说明点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程)19.(8分)解不等式组11 211 xx+-⎧⎨-⎩请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)某校为了解初中学生每天在校体育活动的时间(单位:)h,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为,图①中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.21.(10分)已知PA,PB分别与O相切于点A,B,80∠=︒,C为O上一点.APB(Ⅰ)如图①,求ACB∠的大小;(Ⅱ)如图②,AE为O的直径,AE与BC相交于点D.若AB AD=,求EAC∠的大小.22.(10分)如图,海面上一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31︒,再向东继续航行30m到达B处,测得该灯塔的最高点C的仰角为45︒,根据测得的数据,计算这座灯塔的高度CD(结果取整数).参考数据:sin310.52︒≈.︒≈,tan310.60︒≈,cos310.8623.(10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为(0)xkg x >. (Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.24.(10分)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =.(Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO ∆重叠部分的面积为S . ①如图②,当矩形C O D E ''''与ABO ∆重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②353S 时,求t 的取值范围(直接写出结果即可).25.(10分)已知抛物线2(y x bx c b =-+,c 为常数,0)b >经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(2Q b +,)Q y 2QM +时,求b 的值.2019年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(3)9-⨯的结果等于()A.27-B.6-C.27D.6【解答】解:(3)927-⨯=-;故选:A.2.(3分)2sin60︒的值等于()A B.2C.1D【解答】解:2sin602︒==故选:A.3.(3分)据2019年3月21日《天津日报》报道,“伟大的变革--庆祝改革开放40周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次.将4230000用科学记数法表示应为()A.7⨯B.60.4231042310⨯⨯D.442.3104.2310⨯C.5【解答】解:6=⨯.4230000 4.2310故选:B.4.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.5.(3分)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A .B .C .D .【解答】解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、2. 故选:B .6.(3( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间【解答】解:253336<<,∴,56∴<.故选:D . 7.(3分)计算2211a a a +++的结果是( ) A .2B .22a +C .1D .41aa + 【解答】解:原式221a a +=+ 2(1)1a a +=+ 2=.故选:A .8.(3分)如图,四边形ABCD 为菱形,A ,B 两点的坐标分别是(2,0),(0,1),点C ,D 在坐标轴上,则菱形ABCD 的周长等于( )AB .C .D .20【解答】解:A ,B 两点的坐标分别是(2,0),(0,1),AB ∴=, 四边形ABCD 是菱形,∴菱形的周长为故选:C .9.(3分)方程组3276211x y x y +=⎧⎨-=⎩的解是( )A .15x y =-⎧⎨=⎩B .12x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .212x y =⎧⎪⎨=⎪⎩【解答】解:3276211x y x y +=⎧⎨-=⎩①②,①+②得,2x =,把2x =代入①得,627y +=,解得12y =, 故原方程组的解为:212x y =⎧⎪⎨=⎪⎩.故选:D .10.(3分)若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<【解答】解:当3x =-,11243y =-=-; 当2x =-,21262y =-=-; 当1x =,312121y =-=-, 所以312y y y <<. 故选:B .11.(3分)如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是( )A .AC AD =B .AB EB ⊥C .BC DE =D .A EBC ∠=∠【解答】解:将ABC ∆绕点C 顺时针旋转得到DEC ∆, AC CD ∴=,BC CE =,AB DE =,故A 错误,C 错误; ACD BCE ∴∠=∠,1802ACD A ADC ︒-∠∴∠=∠=,1802BCECBE ︒-∠∠=,A EBC ∴∠=∠,故D 正确; A ABC ∠+∠不一定等于90︒,ABC CBE ∴∠+∠不一定等于90︒,故B 错误故选:D .12.(3分)二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③2003m n <+<. 其中,正确结论的个数是( ) A .0B .1C .2D .3【解答】解:当0x =时,2c =-, 当1x =时,22a b +-=-, 0a b ∴+=,22y ax ax ∴=--, 0abc ∴>,①正确; 12x =是对称轴, 2x =-时y t =,则3x =时,y t =,2∴-和3是关于x 的方程2ax bx c t ++=的两个根;②正确;2m a a =+-,422n a a =--, 22m n a ∴==-, 44m n a ∴+=-,当12x =-时,0y >,803a ∴<<, 203m n ∴+<, ③错误; 故选:C .二、填空题(本大题共6小题,每小题3分,共18) 13.(3分)计算5x x 的结果等于 6x . 【解答】解:56x x x =. 故答案为:6x14.(3分)计算1)的结果等于 2 . 【解答】解:原式31=-2=.故答案为2.15.(3分)不透明袋子中装有7个球,其中有2个红球、3个绿球和2个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率是 37. 【解答】解:从袋子中随机取出1个球,则它是绿球的概率37=. 故答案为37. 16.(3分)对于直线21y x =-与x 轴的交点坐标是 1(2,0) .【解答】解:根据题意,知,当直线21y x =-与x 轴相交时,0y =, 210x ∴-=,解得,12x =; ∴直线21y x =+与x 轴的交点坐标是1(2,0);故答案是:1(2,0).17.(3分)如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若5DE =,则GE 的长为4913.【解答】解:四边形ABCD 为正方形,12AB AD ∴==,90BAD D ∠=∠=︒,由折叠及轴对称的性质可知,ABF GBF ∆≅∆,BF 垂直平分AG ,BF AE ∴⊥,AH GH =,90FAH AFH ∴∠+∠=︒,又90FAH BAH ∠+∠=︒,AFH BAH ∴∠=∠,()ABF DAE AAS ∴∆≅∆, 5AF DE ∴==,在Rt ADF ∆中,13BF =, 1122ABF S AB AF BF AH ∆==, 12513AH ∴⨯=,6013AH ∴=, 120213AG AH ∴==,13AE BF ==,12049131313GE AE AG ∴=-=-=, 故答案为:4913.18.(3分)如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A 在格点上,B 是小正方形边的中点,50ABC ∠=︒,30BAC ∠=︒,经过点A ,B 的圆的圆心在边AC 上.(Ⅰ)线段AB 的长等于; (Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P ,使其满足PAC PBC PCB ∠=∠=∠,并简要说明点P 的位置是如何找到的(不要求证明) .【解答】解:(Ⅰ)AB ,(Ⅱ)如图,取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足PAC PBC PCB ∠=∠=∠,故答案为:取圆与网格的交点E ,F ,连接EF 与AC 交于一点,则这一点是圆心O ,AB 与网格线相交于D ,连接DO 并延长交O 于点Q ,连接QC 并延长,与B ,O 的连线相交于点P ,连接AP ,则点P 满足PAC PBC PCB ∠=∠=∠.三、解答题(本大题共7小题,共66分,解答度写出文字说明、演算步骤或推理过程) 19.(8分)解不等式组11211x x +-⎧⎨-⎩请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得 2x - ; (Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来; (Ⅳ)原不等式组的解集为 .【解答】解:(Ⅰ)解不等式①,得2x -; (Ⅱ)解不等式②,得1x ;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为21x -. 故答案为:2x -,1x ,21x -.20.(8分)某校为了解初中学生每天在校体育活动的时间(单位:)h ,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为40,图①中m的值为;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.【解答】解:(Ⅰ)本次接受调查的初中学生人数为:410%40÷=,10%100%25%40m=⨯=,故答案为:40,25;(Ⅱ)平均数是:0.94 1.28 1.515 1.810 2.131.540⨯+⨯+⨯+⨯+⨯=,众数是1.5,中位数是1.5;(Ⅲ)40480072040-⨯=(人),答:该校每天在校体育活动时间大于1h的学生有720人.21.(10分)已知PA,PB分别与O相切于点A,B,80APB∠=︒,C为O上一点.(Ⅰ)如图①,求ACB∠的大小;(Ⅱ)如图②,AE为O的直径,AE与BC相交于点D.若AB AD=,求EAC∠的大小.【解答】解:(Ⅰ)连接OA、OB,PA,PB是O的切线,90OAP OBP∴∠=∠=︒,360909080100AOB ∴∠=︒-︒-︒-︒=︒,由圆周角定理得,1502ACB AOB ∠=∠=︒;(Ⅱ)连接CE ,AE 为O 的直径,90ACE ∴∠=︒, 50ACB ∠=︒,905040BCE ∴∠=︒-︒=︒, 40BAE BCE ∴=∠=︒,AB AD =,70ABD ADB ∴∠=∠=︒, 20EAC ADB ACB ∴∠=∠-∠=︒.22.(10分)如图,海面上一艘船由西向东航行,在A 处测得正东方向上一座灯塔的最高点C 的仰角为31︒,再向东继续航行30m 到达B 处,测得该灯塔的最高点C 的仰角为45︒,根据测得的数据,计算这座灯塔的高度CD (结果取整数). 参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈.【解答】解:在Rt CAD ∆中,tan CDCAD AD∠=, 则5tan313CD AD CD =≈︒,在Rt CBD ∆中,45CBD ∠=︒, BD CD ∴=,AD AB BD =+,∴5303CD CD =+, 解得,45CD =,答:这座灯塔的高度CD 约为45m .23.(10分)甲、乙两个批发店销售同一种苹果,在甲批发店,不论一次购买数量是多少,价格均为6元/kg .在乙批发店,一次购买数量不超过50kg 时,价格为7元/kg ;一次购买数量超过50kg 时,其中有50kg 的价格仍为7元/kg ,超过50kg 部分的价格为5元/kg .设小王在同一个批发店一次购买苹果的数量为(0)xkg x >. (Ⅰ)根据题意填表:(Ⅱ)设在甲批发店花费1y 元,在乙批发店花费2y 元,分别求1y ,2y 关于x 的函数解析式; (Ⅲ)根据题意填空:①若小王在甲批发店和在乙批发店一次购买苹果的数量相同,且花费相同,则他在同一个批发店一次购买苹果的数量为 kg ;②若小王在同一个批发店一次购买苹果的数量为120kg ,则他在甲、乙两个批发店中的 批发店购买花费少;③若小王在同一个批发店一次购买苹果花费了360元,则他在甲、乙两个批发店中的 批发店购买数量多.【解答】解:(Ⅰ)甲批发店:630180⨯=元,6150900⨯=元;乙批发店:730210⨯⨯=元,7505(15050)850⨯+-=元.故依次填写:180 900 210 850. (Ⅱ)16y x = (0)x >当050x <时,27y x = (050)x <当50x >时,27505(50)5100y x x =⨯+-=+ (50)x >因此1y ,2y 与x 的函数解析式为:16y x = (0)x >;27y x = 2(050)5100x y x <=+ (50)x >(Ⅲ)①当12y y =时,有:67x x =,解得0x =,不和题意舍去; 当12y y =时,也有:65100x x =+,解得100x =, 故他在同一个批发店一次购买苹果的数量为100千克. ②当120x =时,16120720y =⨯=元,25120100700y =⨯+=元, 720700>∴乙批发店花费少.故乙批发店花费少.③当360y =时,即:6360x =和5100360x +=;解得60x =和52x =, 6052>∴甲批发店购买数量多.故甲批发店购买的数量多.24.(10分)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在OA ,AB ,OB 上,2OD =.(Ⅰ)如图①,求点E 的坐标;(Ⅱ)将矩形CODE 沿x 轴向右平移,得到矩形C O D E '''',点C ,O ,D ,E 的对应点分别为C ',O ',D ',E '.设OO t '=,矩形C O D E ''''与ABO ∆重叠部分的面积为S . ①如图②,当矩形C O D E ''''与ABO ∆重叠部分为五边形时,C E '',E D ''分别与AB 相交于点M ,F ,试用含有t 的式子表示S ,并直接写出t 的取值范围;②353S 时,求t 的取值范围(直接写出结果即可).【解答】解:(Ⅰ)点(6,0)A , 6OA ∴=, 2OD =,624AD OA OD ∴=-=-=,四边形CODE 是矩形, //DE OC ∴,30AED ABO ∴∠=∠=︒,在Rt AED ∆中,28AE AD ==,ED == 2OD =,∴点E 的坐标为(2,;(Ⅱ)①由平移的性质得:2O D ''=,E D ''=ME OO t '='=,////D E O C OB '''', 30E FM ABO ∴∠'=∠=︒,∴在Rt MFE ∆'中,22MF ME t ='=,FE ',1122MFE S ME FE t ∆'∴=''=⨯=,2C O D E S O D E D ''''=''⋅''=⨯矩形,MFE C O D E S S S ∆'''''∴=-=矩形2S ∴=+,其中t 的取值范围是:02t <<;②当S ③所示: 6O A OA OO t ''=-=-,90AO F '∠=︒,30AFO ABO '∠=∠=︒,)O F A t ''∴==-1(6))2S t t ∴=--=解得:6t =6t =,6t ∴=S =④所示:6O A t '=-,624D A t t '=--=-,)O G t '∴=-,)D F t '=-,1))]22S t t ∴=--⨯=,解得:52t =, ∴353S 时,t 的取值范围为5622t -.25.(10分)已知抛物线2(y x bx c b =-+,c 为常数,0)b >经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(2Q b +,)Q y 2QM +时,求b 的值.【解答】解:(Ⅰ)抛物线2y x bx c =-+经过点(1,0)A -, 10b c ∴++=,即1c b =--,当2b =时,2223(1)4y x x x =--=--,∴抛物线的顶点坐标为(1,4)-;(Ⅱ)由(Ⅰ)知,抛物线的解析式为21y x bx b =---, 点(,)D D b y 在抛物线21y x bx b =---上,211D y b b b b b ∴=---=--, 由0b >,得02bb >>,10b --<, ∴点(,1)D b b --在第四象限,且在抛物线对称轴2bx =的右侧, 如图1,过点D 作DE x ⊥轴,垂足为E ,则点(,0)E b , 1AE b ∴=+,1DE b =+,得AE DE =,∴在Rt ADE ∆中,45ADE DAE ∠=∠=︒,AD ∴=,由已知AM AD =,5m =,5(1)1)b ∴--=+,1b ∴=;(Ⅲ)点1(2Q b +,)Q y 在抛物线21y x bx b =---上, 2113()()12224Q b y b b b b ∴=+-+--=--,可知点1(2Q b +,3)24b --在第四象限,且在直线x b =的右侧,22()2QM AM QM +=+, ∴可取点(0,1)N ,如图2,过点Q 作直线AN 的垂线,垂足为G ,QG 与x 轴相交于点M ,由45GAM ∠=︒,得2AM GM =, 则此时点M 满足题意,过点Q 作QH x ⊥轴于点H ,则点1(2H b +,0), 在Rt MQH ∆中,可知45QMH MQH ∠=∠=︒,QH MH ∴=,QM =,点(,0)M m ,310()()242b b m ∴---=+-,解得,124b m =-,24QM +=,∴1112[()(1)])()]24224b b b ---++--=4b ∴=.2018年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
1 一、选择题:本大题共12个小题,每小题3分,共36分. 1.计算(﹣2)﹣5的结果等于( )A.﹣7 B.﹣3 C.3 D.7
2.sin60°的值等于( )A.21 B.22 C.23 D.3 3.下列图形中,可以看作是中心对称图形的是( )
A. B. C. D. 4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为( ) A.0.612×107 B.6.12×106 C.61.2×105 D.612×104 5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )
A. B. C. D.6.估计19的值在( ) A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间 7.计算xxx11的结果为( )
A.1 B.x C. D. 8.方程x2+x﹣12=0的两个根为( ) A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3 9.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是( )
A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a 2
10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是( )
A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD C.AD=AE D.AE=CE 11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=x3的图象上,则y1,y2,y3的大小关系是( )A.y1<y3<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y3 12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为( ) A.1或﹣5 B.﹣1或5 C. 1或﹣3 D.1或3 二、填空题:本大题共6小题,每小题3分,共18分 13.计算(2a)3的结果等于 . 14.计算(5+3)(5﹣3)的结果等于 . 15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是 . 16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是 (写出一个即可).17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,
2019年天津市南开区中考数学三模试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(2019•南开区三模)cos60°的值等于()A.B.1C.D.考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入即可.解答:解:原式=×=.故选A.点评:本题考查了特殊角的三角函数值,解答本题的关键是熟练记忆一些特殊角的三角函数值.2.(2019•南开区三模)下列“表情”中属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合选项即可作出判断.解答:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选D.点评:此题考查了轴对称的定义,属于基础题,注意掌握轴对称的定义是关键.3.“天上星星有几颗,7后跟上22个0”这是国际天文学联合会上宣布的消息,用科学记数法表示宇宙空间星星颗数为()颗.A.700×1020B.7×1023C.0.7×1023D.7×1022考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法表示为a×10n(1≤|a|<10,n是整数).解答:解:7后跟上22个0就是7×1022.故选D.点评:此题主要考查科学记数法.4.(2019•南开区三模)如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB 上一点,则∠ACB=()A.80° B.90° C.100°D.无法确定考点:圆周角定理;坐标与图形性质.分析:由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB=90°.解答:解:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.故选B.点评:此题考查了圆周角定理.此题比较简单,解题的关键是观察图形,得到∠AOB与∠ACB是优弧AB所对的圆周角.5.(2019•南开区三模)北京市环保检测中心网站公布的2019年3月31日的PM2.5研究性检测部分数据如下表:时间0:00 4:00 8:00 12:00 16:00 20:00PM2.5(mg/m3)0.027 0.035 0.032 0.014 0.016 0.032则该日这6个时刻的PM2.5的众数和中位数分别是()A.0.032,0.0295 B.0.026,0.0295 C.0.026,0.032 D.0.032,0.027考点:众数;中位数.分析:根据中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)和众数的定义求解即可.解答:解:∵该日6个时刻的PM2.5中0.032出现了两次,次数最多,∴众数是0.032,把这六个数从小到大排列为:0.014,0.016,0.027,0.032,0.032,0.035,所以中位数是(0.027+0.032)÷2=0.0295,故选A.点评:本题考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错,众数是一组数据中出现次数最多的数.6.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.菱形D.正方形考点:旋转对称图形.分析:根据旋转对称图形的性质,可得出四边形需要满足的条件,结合选项即可得出答案.解答:解:由题意可得,此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形.故选D.点评:本题主要考查了旋转对称图形旋转的最小的度数的计算方法,把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.7.下面四个立体图形中,主视图是三角形的是()A.B.C.D.考点:简单几何体的三视图.分析:找到立体图形从正面看所得到的图形为三角形即可.解答:解:A、主视图为长方形,不符合题意;B、主视图为中间有一条竖线的长方形,不符合题意;C、主视图为三角形,符合题意;D、主视图为长方形,不符合题意;故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.估算+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间考点:估算无理数的大小.专题:计算题.分析:利用夹逼法可得,3<<4,从而可判断出答案.解答:解:∵3<<4,∴4<+1<5,即在4和5之间.故选C.点评:此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握“夹逼法”的运用.9.小刚用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm2考点:扇形面积的计算.专题:压轴题.分析:从图中可以看出小帽的底面圆周长就扇形的弧长,根据此求出扇形的面积.解答:解:根据圆的周长公式得:圆的底面周长=20π.圆的底面周长即是扇形的弧长,∴扇形面积===240πcm2.故选B.点评:本题主要考查了扇形的面积公式.即S=.10.若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>﹣;③二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是()A.0 B.1C.2D.3考点:抛物线与x轴的交点;一元二次方程的解;根的判别式;根与系数的关系.专题:计算题;压轴题.分析:将已知的一元二次方程整理为一般形式,根据方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集即可对选项②进行判断;再利用根与系数的关系求出两根之积为6﹣m,这只有在m=0时才能成立,故选项①错误;将选项③中的二次函数解析式整理后,利用根与系数关系得出的两根之和与两根之积代入,整理得到确定出二次函数解析式,令y=0,得到关于x的方程,求出方程的解得到x的值,确定出二次函数图象与x轴的交点坐标,即可对选项③进行判断.解答:解:一元二次方程(x﹣2)(x﹣3)=m化为一般形式得:x2﹣5x+6﹣m=0,∵方程有两个不相等的实数根x1、x2,∴b2﹣4ac=(﹣5)2﹣4(6﹣m)=4m+1>0,解得:m>﹣,故选项②正确;∵一元二次方程实数根分别为x1、x2,∴x1+x2=5,x1x2=6﹣m,而选项①中x1=2,x2=3,只有在m=0时才能成立,故选项①错误;二次函数y=(x﹣x1)(x﹣x2)+m=x2﹣(x1+x2)x+x1x2+m=x2﹣5x+(6﹣m)+m=x2﹣5x+6=(x﹣2)(x﹣3),令y=0,可得(x﹣2)(x﹣3)=0,解得:x=2或3,∴抛物线与x轴的交点为(2,0)或(3,0),故选项③正确.综上所述,正确的结论有2个:②③.故选C.点评:此题考查了抛物线与x轴的交点,一元二次方程的解,根与系数的关系,以及根的判别式的运用,是中考中常考的综合题.11.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题;动点型.分析:当点N在AD上时,易得S△AMN的关系式;当点N在CD上时,高不变,但底边在增大,所以S△AMN的面积关系式为一个一次函数;当N在BC上时,表示出S△AMN的关系式,根据开口方向判断出相应的图象即可.解答:解:当点N在AD上时,即0≤x≤1,S△AMN=×x×3x=x2,点N在CD上时,即1≤x≤2,S△AMN=×x×3=x,y随x的增大而增大,所以排除A、D;当N在BC上时,即2≤x≤3,S△AMN=×x×(9﹣3x)=﹣x2+x,开口方向向下.故选B.点评:考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.12.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.B.C.D.考点:由实际问题抽象出分式方程.分析:题中等量关系:甲车行驶30千米与乙车行驶40千米所用时间相同,据此列出关系式.解答:解:设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,根据题意,得=.故选C.点评:本题考查了由实际问题抽象出分式方程,理解题意,找到等量关系是解决问题的关键.本题用到的等量关系为:时间=路程÷速度.二、填空题(每小题3分,共18分)13.分解因式:x3﹣4x=x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.专题:因式分解.分析:应先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.14.(2019•南开区三模)小明的书包里只放了A4大小的试卷共5张,其中语文3张,数学2张.若随机地从书包中抽出2张,抽出的试卷恰好都是数学试卷的概率是.考点:概率公式.分析:分别用语1、语2、语3、数1、数2表示这5页试卷,然后列举出所有可能的情况,共有10种等可能的结果,而抽出的试卷恰好都是数学试卷占一种,根据概率的定义计算即可.解答:解:分别用语1、语2、语3、数1、数2表示这5页试卷.从中任意摸出2页试卷,可能出现的结果有:(数1,数2),(数1,语1),(数1,语2),(数1,语3),(数2,语1),(数2,语2),(数2,语3),(语1,语2),(语1,语3),(语2,语3),共有10种,它们出现的可能性相同.所有的结果中,满足摸到的2页试卷都是数学试卷(记为事件A)的结果有1种,即(数1,数2),所以P(A)=,即摸到的2页试卷都是数学试卷的概率为.故答案为:.点评:本题考查了利用列举法求事件概率的方法:先利用树状图展示所有等可能的结果数n,再找出某事件所占的结果数m,然后根据P=计算即可.15.(2019•南开区三模)若反比例函数y=(2k﹣1)的图象位于二、四象限,则k=0.考点:反比例函数的定义;解一元二次方程-因式分解法.分析:首先根据反比例函数定义可得3k2﹣2k﹣1=﹣1,解出k的值,再根据反比例函数所在象限可得2k﹣1<0,求出k的取值范围,然后在确定k的值即可.解答:解:∵函数y=(2k﹣1)是反比例函数,∴3k2﹣2k﹣1=﹣1,解得:k=0或,∵图象位于二、四象限,∴2k﹣1<0,解得:k<,∴k=0,故答案为:0.点评:此题主要考查了反比例函数的定义与性质,关键是掌握反比例函数的定义,一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.16.(2019•南开区三模)如果将抛物线y=x2﹣3向左平移2个单位,再向上平移3个单位,那么平移后的抛物线表达式是y=(x+2)2.考点:二次函数图象与几何变换.专题:探究型.分析:分别根据“上加下减,左加右减”的原则进行解答即可.解答:解:由“左加右减”的原则可知,将抛物线y=x2﹣3向左平移2个单位所得直线的解析式为:y=(x+2)2﹣3;由“上加下减”的原则可知,将抛物线y=(x+2)2﹣3向上平移3个单位所得抛物线的解析式为:y=(x+2)2.故答案为:y=(x+2)2.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.17.若一个正六边形的周长为24,则该六边形的面积为.考点:正多边形和圆.分析:首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为24,即可求得BC的长,继而求得△OBC的面积,则可求得该六边形的面积.解答:解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为24,∴BC=24÷6=4,∴OB=BC=4,∴BM=BC=2,∴OM==2,∴S△OBC=×BC×OM=×4×2=4,∴该六边形的面积为:4×6=24.故答案为:24.点评:此题考查了圆的内接六边形的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.18.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、BC边的中点,则A′N=;若M、N分别是AD、BC边的上距DC最近的n等分点(n≥2,且n为整数),则A′N=(n≥2,且n为整数)(用含有n的式子表示).考点:翻折变换(折叠问题);勾股定理.专题:压轴题.分析:先根据勾股定理求出A′N的长,根据轴对称图形分析.解答:解:由题意得BN=,A′B=1,由勾股定理求得,当M,N分别是AD,BC边的上距DC最近的n等分点(n≥2,且n为整数),即把BC分成n等份,BN占n﹣1份,∴BN=,CN=,在Rt△A′BN中,根据勾股定理,(n≥2,且n为整数).点评:本题综合考查了运用轴对称和勾股定理的知识进行计算的能力.解答这类题学生往往不明确A´B=AB的关系,不会借助解Rt△A´BN求解而出错.考查知识点:折叠问题、勾股定理.三、解答题(共7小题,共66分)19.(8分)(2019•南开区三模)求不等式组的解集.考点:解一元一次不等式组.专题:计算题.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.解答:解:,解不等式①,得x≥1.解不等式②,得x<5.所以,不等式组的解集是1≤x<5.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.20.(8分)(2019•南开区三模)为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动.对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.捐款户数分组统计表组别捐款额(x)元户数A 1≤x<100 aB 100≤x<200 10C 200≤x<300D 300≤x<400E x≥400请结合以上信息解答下列问题.(1)a=2,本次调查样本的容量是50;(2)先求出C组的户数,再补全“捐款户数分组统计图1”;(3)若该社区有500户住户,请根据以上信息估计,全社区捐款不少于300元的户数是多少?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.分析:(1)根据B组的户数和所占的份数,计算每一份有2户,A组的频数是2,样本的容量=A、B两组捐款户数÷A、B两组捐款户数所占的百分比;(2)C组的频数=样本的容量×C组所占的百分比;(3)捐款不少于300元的有D、E两组,捐款不少于300元的户数=500×D、E两组捐款户数所占的百分比;解答:解:(1)A组的频数是:(10÷5)×1=2;调查样本的容量是:(10+2)÷(1﹣40%﹣28%﹣8%)=50故答案为:2,50;(2)C组的频数是:50×40%=20,如图.(3)∵500×(28%+8%)=180,∴全社区捐款不少于300元的户数是180户;答:全社区捐款不少于300元的户数是180户.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10分)(2019•南开区三模)△ABC中,CA=CB,点O在高CH上,OD⊥CA于点D,OE⊥CB 于点E,以O为圆心,OD为半径作⊙O.(1)如图1,求证:CB是⊙O的切线;(2)如图2,若⊙O过点H,且AC=5,AB=6,连接EH,求⊙O的直径.考点:切线的判定;相似三角形的判定与性质.分析:(1)由CA=CB,且CH垂直于AB,利用三线合一得到CH为角平分线,再由OD垂直于AC,OE垂直于CB,利用角平分线定理得到OE=OD,利用切线的判定方法即可得证;(2)根据CA=CB,CH是高,得到AH=BH=AB=3,从而利用勾股定理得到CH==4,连接OE,然后证得△COE∽△CBH,利用相似三角形的对应边的比相等得到=,从而求得OE,然后根据直径2OE计算即可.解答:(1)证明:∵CA=CB,点O在高CH上,∴∠ACH=∠BCH,∵OD⊥CA,OE⊥CB,∴OE=OD,∴圆O与CB相切于点E;(2)解:∵CA=CB,CH是高,∴AH=BH=AB=3,∴CH==4,如图2,连接OE,∵∠OCE=∠BCH,∠COE=∠CHB=90°,∴△COE∽△CBH,∴=,即=,解得OE=,所以,直径=2OE=2×=3.点评:此题考查了切线的判定与性质,相似三角形的判定与性质,勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)考点:解直角三角形的应用-仰角俯角问题.分析:设CF=x,在Rt△ACF和Rt△BCF中,分别用CF表示AC、BC的长度,然后根据AC﹣BC=1200,求得x的值,用h﹣x即可求得最高海拔.解答:解:设CF=x,在Rt△ACF和Rt△BCF中,∵∠BAF=30°,∠CBF=45°,∴BC=CF=x,=tan30°,即AC=x,∵AC﹣BC=1200米,∴x﹣x=1200,解得:x=600(+1),则DF=h﹣x=2001﹣600(+1)≈362(米).答:钓鱼岛的最高海拔高度约362米.点评:本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形求出AC、BC 的长度,难度一般.23.(10分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?考点:一次函数的应用.分析:(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可;(2)根据每天获取利润为14400元,则y=14400,求出即可;(3)根据每天获取利润不低于15600元即y≥15600,求出即可.解答:解:(1)根据题意得出:y=12x×100+10(10﹣x)×180=﹣600x+18000;(2)当y=14400时,有14400=﹣600x+18000,解得:x=6,故要派6名工人去生产甲种产品;(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,则10﹣x≥6,故至少要派6名工人去生产乙种产品才合适.点评:此题主要考查了一次函数的应用以及一元一次不等式的应用等知识,根据已知得出y与x之间的函数关系是解题关键.24.(10分)(2019•南开区三模)如图,直线l1与x轴、y轴分别交于A、B两点,直线l2与直线l1关于x轴对称,已知直线l1的解析式为y=x+3,(1)求直线l2的解析式;(2)过A点在△ABC的外部作一条直线l3,过点B作BE⊥l3于E,过点C作CF⊥l3于F,请画出图形并求证:BE+CF=EF;(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交于点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.考点:轴对称的性质;全等三角形的判定与性质.分析:(1)根据题意先求直线l1与x轴、y轴的交点A、B的坐标,再根据轴对称的性质求直线l2的上点C的坐标,用待定系数法求直线l2的解析式;(2)根据题意结合轴对称的性质,先证明△BEA≌△AFC,再根据全等三角形的性质,结合图形证明BE+CF=EF;(3)首先过Q点作QH⊥y轴于H,证明△QCH≌△PBO,然后根据全等三角形的性质和△QHM≌△POM,从而得HM=OM,根据线段的和差进行计算OM的值.解答:解:(1)∵直线l1与x轴、y轴分别交于A、B两点,∴A(﹣3,0),B(0,3),∵直线l2与直线l1关于x轴对称,∴C(0,﹣3)∴直线l2的解析式为:y=﹣x﹣3;(2)如图.答:BE+CF=EF.∵直线l2与直线l1关于x轴对称,∴AB=AC,∵l1与l2为象限平分线的平行线,∴△OAC与△OAB为等腰直角三角形,∴∠EBA=∠FAC,∵BE⊥l3,CF⊥l3∴∠BEA=∠AFC=90°∴△BEA≌△AFC∴BE=AF,EA=FC,∴BE+CF=AF+EA=EF;(3)①对,OM=3过Q点作QH⊥y轴于H,直线l2与直线l1关于x轴对称∵∠POB=∠QHC=90°,BP=CQ,又∵AB=AC,∴∠ABO=∠ACB=∠HCQ,则△QCH≌△PBO(AAS),∴QH=PO=OB=CH∴△QHM≌△POM∴HM=OM∴OM=BC﹣(OB+CM)=BC﹣(CH+CM)=BC﹣OM∴OM=BC=3.点评:轴对称的性质:对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.25.(10分如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.考点:二次函数综合题.专题:压轴题.分析:(1)首先解方程得出A,B两点的坐标,进而利用待定系数法求出二次函数解析式即可;(2)①首先求出AB的直线解析式,以及BO解析式,再利用等腰三角形的性质得出当OC=OP时,当OP=PC时,点P在线段OC的中垂线上,当OC=PC时分别求出x的值即可;②利用S△BOD=S△ODQ+S△BDQ得出关于x的二次函数,进而得出最值即可.解答:解(1)解方程x2﹣2x﹣3=0,得x1=3,x2=﹣1.∵m<n,∴m=﹣1,n=3…(1分)∴A(﹣1,﹣1),B(3,﹣3).∵抛物线过原点,设抛物线的解析式为y=ax2+bx(a≠0).∴解得:,∴抛物线的解析式为.…(4分)(2)①设直线AB的解析式为y=kx+b.∴解得:,∴直线AB的解析式为.∴C点坐标为(0,).…(6分)∵直线OB过点O(0,0),B(3,﹣3),∴直线OB的解析式为y=﹣x.∵△OPC为等腰三角形,∴OC=OP或OP=PC或OC=PC.设P(x,﹣x),(i)当OC=OP时,.解得,(舍去).∴P1(,).(ii)当OP=PC时,点P在线段OC的中垂线上,∴P2(,﹣).(iii)当OC=PC时,由,解得,x2=0(舍去).∴P3(,﹣).∴P点坐标为P1(,)或P2(,﹣)或P3(,﹣).…(9分)②过点D作DG⊥x轴,垂足为G,交OB于Q,过B作BH⊥x轴,垂足为H.设Q(x,﹣x),D(x,).S△BOD=S△ODQ+S△BDQ=DQ•OG+DQ•GH,=DQ(OG+GH),=,=,∵0<x<3,∴当时,S取得最大值为,此时D(,﹣).…(13分)点评:此题主要考查了二次函数的综合应用以及等腰三角形的性质和三角形面积求法等知识,求面积最值经常利用二次函数的最值求法得出.。
2019年天津市和平区中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合题目要求)1.(3分)计算﹣15+35的结果等于( )A.20 B.﹣50 C.﹣20 D.502.(3分)sin60°的值等于( )A.B.C.D.13.(3分)下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( )A.B.C.D.4.(3分)将6120 000用科学记数法表示应为( )A.0.612×107B.6.12×106C.61.2×105D.612×1045.(3分)如图是一个由5个相同的正方体组成的立体图形,它的左视图是( )A.B.C.D.6.(3分)估计的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.(3分)计算的结果为( )A.0 B.1 C.D.8.(3分)《九章算术》中己载:“今有甲乙二人持钱不知其数甲得乙半面钱五十,乙得甲太半面亦钱五十.问甲乙持钱各几何?“其大意是:今有甲、乙两人各带了若干钱如果甲得到乙所有钱的一半,那么甲共有钱50:如果乙得到甲所有钱的三分之二,那么乙也共有钱50问甲、乙两人共带了多少钱?设甲带钱为x,乙带钱为y,根据题意,可列方程组为( )A.B.C.D.9.(3分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为( )A.66° B.104° C.114° D.124°10.(3分)已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是( )A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y1 11.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=1,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为多少?( )A.1 B.C.2 D.12.(3分)如图抛物线y=ax2+bx+c交x轴于A(﹣2.0)和点B,交y轴负半轴于点C,且OB=OC,有下列结论:①2b﹣c=2 ②a=③,其中,正确结论的个数是( )A.0 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分13.(3分)计算(2x2)3的结果等于 .14.(3分)计算(+)(﹣)的结果等于 .15.(3分)不透明袋子中装有8个球,其中有2个红球,3个绿球和3个黑球,这些球除颜色外无其它差别从袋子中随机取出1个球,则它是绿球的概率是 .16.(3分)如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为 .17.(3分)如图,正方形ABCD的边长为2,正方形AEFG的边长为2,点B在线段DG 上,则BE的长为 .18.(3分)如图,在每个小正方形边长为1的网格中,△OAB的顶点O,A,B均在格点上(1)的值为 ;(2)是以O为圆心,2为半径的一段圆弧在如图所示的网格中,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A,E′B,当E′A+E′B的值最小时,请用无刻度的直尺画出点E′,并简要说明点E′的位置是如何找到的(不要求证明) .三、解答题(共7小题,满分66分)19.(8分)解不等式组请结合题意填空,完成本题的解答(Ⅰ)解不等式①,得 (Ⅱ)解不等式②,得 (Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .20.(8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为 ,图①中m的值为 (Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.21.(10分)已知AB是⊙O的直径,点C,D是⊙O上的点,∠A=50°,∠B=70°,连接DO,CO,DC(1)如图①,求∠OCD的大小:(2)如图②,分别过点C,D作OC,OD的垂线,相交于点P,连接OP,交CD于点M已知⊙O的半径为2,求OM及OP的长.22.(10分)如图,某学校甲楼的高度AB是18.6m,在甲楼楼底A处测得乙楼楼顶D处的仰角为40°,在甲楼楼顶B处测得乙楼楼顶D的仰角为19°,求乙楼的高度DC及甲乙两楼之间的距离AC(结果取整数)参考数据:cos19°≈0.95,tan19°=0.34,cos40°=0.77,tan40°=0.8423.(10分)某市居民用水实宁以户为单位的三级阶梯收费办法:第一级:居民每户每月用水18吨以内含18吨,每吨收费a元,第二级:居民每户每月用水超过18吨但不超过25吨,未超过18吨的部分按照第一级标准收费,超过部分每吨收水费b元.第三级:居民每户每月用水超过25吨,未超过25吨的部分按照第一二级标准收费,超过部分每吨收水费c元设一户居民月用水x吨,应缴水费y元,y与x之间的函数关系如图所示(Ⅰ)根据图象直接作答:a= ,b= ,c= .(Ⅱ)求当x≥25时,y与x之间的函数关系式;(Ⅲ)把上述水费阶梯收费方法称为方案①,假设还存在方案②:居民每户月用水一律按照每吨4元的标准缴费当居民每户月用水超过25吨时,请你根据居民每户月用水量的大小设计出对居民缴费最实惠的方案.24.(10分)如图,将一个直角三角形纸片AOB,放置在平面直角坐标系中,点A(3,3),点B(3,0),点O(0,0),将△AOB沿OA翻折得到△AOD(点D为点B的对应点).(Ⅰ)求OA的长及点D的坐标:(Ⅱ)点P是线段OD上的点,点Q是线段AD上的点.①已知OP=1,AQ=,R是x轴上的动点,当PR+QR取最小值时,求出点R的坐标及点D到直线RQ的距离;②连接BP,BQ,且∠PBQ=45°,现将△OAB沿AB翻折得到△EAB(点E为点O的对应点),再将∠PBQ绕点B顺时针旋转,旋转过程中,射线BP,BQ交直线AE分别为点M,N,最后将△BMN沿BN翻折得到△BGN(点G为点M的对应点),连接EG,若,求点M的坐标(直接写出结果即可).25.(10分)已知抛物线y=ax2+bx+3(a,b是常数,且a≠0),经过点A(﹣1,0),B (3,0),与y轴交于点C(1)求抛物线的解析式;(2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为点H,交抛物线于点Q.设P点的横坐标为t,线段PQ的长为d.求出d与t之间的函数关系式,写出相应的自变量t的取值范围;(3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以z为未知数的一元二次方程z2﹣(m+3)z+(5m2﹣2m+13)=0(m为常数)的两个实数根,点M在抛物线上,连接MQ,MH,PM.且MP平分∠QMH,求出t值及点M的坐标.2019年天津市和平区中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项是符合题目要求)1.(3分)计算﹣15+35的结果等于( )A.20 B.﹣50 C.﹣20 D.50【分析】绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,据此求出算式的值是多少即可.【解答】解:﹣15+35=20故选:A.【点评】此题主要考查了有理数加法的运算方法,要熟练掌握,解答此题的关键是要明确有理数加法法则.2.(3分)sin60°的值等于( )A.B.C.D.1【分析】根据特殊角的三角函数值直接解答即可.【解答】解:根据特殊角的三角函数值可知:sin60°=.故选:C.【点评】此题比较简单,只要熟记特殊角的三角函数值即可解答.3.(3分)下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( )A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解.【解答】解:A、是轴对称图形,不是中心对称图形,故A选项不符合题意;B、是轴对称图形,也是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不符合题意;D、是轴对称图形,不是中心对称图形,故D选项不符合题意.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.(3分)将6120 000用科学记数法表示应为( )A.0.612×107B.6.12×106C.61.2×105D.612×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:6120000=6.12×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的左视图是( )A.B.C.D.【分析】分别判断每个选项的视图是从哪个方向看到的即可求解;【解答】解:A选项是从上面看到的,是俯视图;D选项是从正面看到的,是主视图;故选:B.【点评】本题考查三视图;熟练掌握三视图的观察方法是解题的关键.6.(3分)估计的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】直接利用接近的有理数进而分析得出答案.【解答】解:∵<<,即4<<5,∴的值在4和5之间.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出接近无理数的整数是解题关键.7.(3分)计算的结果为( )A.0 B.1 C.D.【分析】根据同分母分式加减法法则法则计算即可.【解答】解:=,故选:D.【点评】本题考查的是分式的加减法,同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.8.(3分)《九章算术》中己载:“今有甲乙二人持钱不知其数甲得乙半面钱五十,乙得甲太半面亦钱五十.问甲乙持钱各几何?“其大意是:今有甲、乙两人各带了若干钱如果甲得到乙所有钱的一半,那么甲共有钱50:如果乙得到甲所有钱的三分之二,那么乙也共有钱50问甲、乙两人共带了多少钱?设甲带钱为x,乙带钱为y,根据题意,可列方程组为( )A.B.C.D.【分析】设甲需带钱x,乙带钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.【解答】解:设甲需带钱x,乙带钱y,根据题意,得,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.9.(3分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为( )A.66° B.104° C.114° D.124°【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.10.(3分)已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是( )A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y1【分析】分别把各点代入反比例函数y=求出y1、y2、,y3的值,再比较出其大小即可.【解答】解:∵点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,∴y1==6;y2==3;y3==﹣2,∵6>3>﹣2,∴y1>y2>y3.故选:D.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=1,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为多少?( )A.1 B.C.2 D.【分析】分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD的最小值,即可判断.【解答】解:在菱形ABCD中,∵∠ABC=60°,AB=1,∴△ABC,△ACD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,最小值为1;②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD 最小,最小值为﹣1;③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为﹣1.故选:D.【点评】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.12.(3分)如图抛物线y=ax2+bx+c交x轴于A(﹣2.0)和点B,交y轴负半轴于点C,且OB=OC,有下列结论:①2b﹣c=2 ②a=③,其中,正确结论的个数是( )A.0 B.1 C.2 D.3【分析】根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a、b、c的符号以及它们之间的数量关系,即可得出结论.【解答】解:据图象可知a>0,c<0,b>0,∴<0,故③错误;∵OB=OC,∴OB=﹣c,∴点B坐标为(﹣c,0),∴ac2﹣bc+c=0,∴ac﹣b+1=0,∴ac=b﹣1,∵A(﹣2,0),B(﹣c,0),抛物线线y=ax2+bx+c与x轴交于A(﹣2,0)和B(﹣c,0)两点,∴2c=,∴a=,故②正确;∵ac﹣b+1=0,∴b=ac+1,∴b=c+1,∴2b﹣c=2,故①正确;故选:C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共6小题,每小题3分,共18分13.(3分)计算(2x2)3的结果等于 8x6 .【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘,进而得出答案.【解答】解:(2x2)3=8x6.故答案为:8x6.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.14.(3分)计算(+)(﹣)的结果等于 2 .【分析】先套用平方差公式,再根据二次根式的性质计算可得.【解答】解:原式=()2﹣()2=5﹣3=2,故答案为:2.【点评】本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15.(3分)不透明袋子中装有8个球,其中有2个红球,3个绿球和3个黑球,这些球除颜色外无其它差别从袋子中随机取出1个球,则它是绿球的概率是 .【分析】利用取出绿球概率=口袋中绿球的个数÷所有球的个数,即可求出结论.【解答】解:取出绿球的概率为.故答案为:.【点评】本题考查了概率公式,牢记随机事件的概率公式是解题的关键.16.(3分)如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为 2 .【分析】由图可得到点B的纵坐标是如何变化的,让A的纵坐标也做相应变化即可得到b 的值;看点A的横坐标是如何变化的,让B的横坐标也做相应变化即可得到a的值,相加即可得到所求.【解答】解:由题意可知:a=0+(3﹣2)=1;b=0+(2﹣1)=1;∴a+b=2.【点评】解决本题的关键是得到各点的平移规律.17.(3分)如图,正方形ABCD的边长为2,正方形AEFG的边长为2,点B在线段DG 上,则BE的长为 + .【分析】先证明△DAG≌△BAE,得到BE=DG,连接GE,在Rt△BGE中利用勾股定理可求BE长.【解答】解:连接EG.在△DAG和△BAE中∴△DAG≌△BAE(SAS).∴DG=BE,∠DGA=∠BEA.∵∠AEO+∠AOE=90°,∠BOG=∠AOE,∴∠BGO+∠GOB=90°,即∠GBE=90°.设BE=x,则BG=x﹣2,EG=4,在Rt△BGE中,利用勾股定理可得x2+(x﹣2)2=42,解得x=+.故答案为+.【点评】本题主要考查了正方形的性质、全等三角形的判定和性质、勾股定理,求线段的长度一般是转化到直角三角形中利用勾股定理求解.18.(3分)如图,在每个小正方形边长为1的网格中,△OAB的顶点O,A,B均在格点上(1)的值为 ;(2)是以O为圆心,2为半径的一段圆弧在如图所示的网格中,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A,E′B,当E′A+E′B 的值最小时,请用无刻度的直尺画出点E′,并简要说明点E′的位置是如何找到的(不要求证明) 构造相似三角形把E′B转化为E′H,利用两点之间线段最短即可解决问题. .【分析】(1)求出OE,OB即可解决问题.(2)构造相似三角形把E′B转化为E′H,利用两点之间线段最短即可解决问题.【解答】解:(1)由题意OE=2,OB=3,∴=,故答案为.(2)如图,取格点K,T,连接KT交OB于H,连接AH交于E′,连接BE′,点E′即为所求.故答案为:构造相似三角形把E′B转化为E′H,利用两点之间线段最短即可解决问题.【点评】本题考查了作图﹣旋转变换,解题的关键是学会构造相似三角形解决问题,学会利用数形结合的思想思考问题,属于中考常考题型.三、解答题(共7小题,满分66分)19.(8分)解不等式组请结合题意填空,完成本题的解答(Ⅰ)解不等式①,得 x≤4 (Ⅱ)解不等式②,得 x≥2 (Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 2≤x≤4 .【分析】(Ⅰ)根据不等式的性质求出即可;(Ⅱ)根据不等式的性质求出即可;(Ⅲ)把不等式的解集在数轴上表示出来即可;(Ⅳ)根据数轴求出不等式组的解集即可.【解答】解:(Ⅰ)解不等式①,得x≤4,(Ⅱ)解不等式②,得x≥2,(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为2≤x≤4.故答案为:x≤4;x≥2;2≤x≤4.【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.20.(8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为 25 ,图①中m的值为 28 (Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.【分析】(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;(2)利用平均数、中位数、众数的定义分别求出即可;【解答】解:(1)根据条形图2+5+7+8+3=25(人),m=100﹣20﹣32﹣12﹣8=28;故答案为:25,28.(2)观察条形统计图,∵=18.6,∴这组数据的平均数是18.6,∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21,∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18.【点评】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.21.(10分)已知AB是⊙O的直径,点C,D是⊙O上的点,∠A=50°,∠B=70°,连接DO,CO,DC(1)如图①,求∠OCD的大小:(2)如图②,分别过点C,D作OC,OD的垂线,相交于点P,连接OP,交CD于点M已知⊙O的半径为2,求OM及OP的长.【分析】(1)根据等腰三角形的性质得到∠A=∠ODA=50°,∠B=∠OCB=70°,求得∠COD=180°﹣∠AOD﹣∠BOC=60°,推出△COD是等边三角形,根据等边三角形的性质即可得到结论;(2)根据垂直的定义得到∠PDO=∠PCO=90°,求得∠PDC=∠PCD=30°,推出PD=PC,得到OP垂直平分CD,求得∠DOP=30°,解直角三角形即可得到结论.【解答】解:(1)∵OA=OD,OB=OC,∴∠A=∠ODA=50°,∠B=∠OCB=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=180°﹣∠AOD﹣∠BOC=60°,∵OD=OC,∴△COD是等边三角形,∴∠OCD=60°;(2)∵PD⊥OD,PC⊥OC,∴∠PDO=∠PCO=90°,∴∠PDC=∠PCD=30°,∴PD=PC,∵OD=OC,∴OP垂直平分CD,∴∠DOP=30°,∵OD=2,∴OM=OD=,OP=.【点评】本题考查了圆周角定理,等腰三角形的性质,等边三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.22.(10分)如图,某学校甲楼的高度AB是18.6m,在甲楼楼底A处测得乙楼楼顶D处的仰角为40°,在甲楼楼顶B处测得乙楼楼顶D的仰角为19°,求乙楼的高度DC及甲乙两楼之间的距离AC(结果取整数)参考数据:cos19°≈0.95,tan19°=0.34,cos40°=0.77,tan40°=0.84【分析】过BE作CD的垂线,与CD交于点E;在Rt△BDE中,tan19°=,在Rt△ACD 中,tan40°=,BE=AC代入已知条件即可求解;【解答】解:过BE作CD的垂线,与CD交于点E;在Rt△BDE中,tan19°=,在Rt△ACD中,tan40°=,∵BE=AC,∴0.34AC=DE,0.84AC=CD,∵AB=CE=18米,∴AC=36米,ED=12.24米,∴CD=30.24米;【点评】本题考查直角三角形的应用;掌握仰角的定义,在直角三角形中利用三角函数值求边是解题关键.23.(10分)某市居民用水实宁以户为单位的三级阶梯收费办法:第一级:居民每户每月用水18吨以内含18吨,每吨收费a元,第二级:居民每户每月用水超过18吨但不超过25吨,未超过18吨的部分按照第一级标准收费,超过部分每吨收水费b元.第三级:居民每户每月用水超过25吨,未超过25吨的部分按照第一二级标准收费,超过部分每吨收水费c元设一户居民月用水x吨,应缴水费y元,y与x之间的函数关系如图所示(Ⅰ)根据图象直接作答:a= 3 ,b= 4 ,c= 6 .(Ⅱ)求当x≥25时,y与x之间的函数关系式;(Ⅲ)把上述水费阶梯收费方法称为方案①,假设还存在方案②:居民每户月用水一律按照每吨4元的标准缴费当居民每户月用水超过25吨时,请你根据居民每户月用水量的大小设计出对居民缴费最实惠的方案.【分析】(Ⅰ)分别用每一级水费除以相应的用水的吨数,即可求出a,b,c;(Ⅱ)当x≥25时,y与x的图象为直线,设出函数解析式,代入相应的点,即可求出一次函数的解析式;(Ⅲ)先写出方案②的解析式,然后令方案①=方案②,即可求出水分相等时,水的吨数,最后根据题目条件,即可求出相应的方案.【解答】解:(Ⅰ)a=54÷18=3;b=(82﹣54)÷(25﹣18)=4;c═(142﹣82)÷(35﹣25)=6.故答案为:3,4,6(Ⅱ)当x≥25时,设y=kx+b(k≠0),把(25,82),(35,142)代入,得,解得,当x≥25时,y与x之间的函数关系式y=6x﹣68.(Ⅲ)方案②:y=4x,当方案①和方案②水费相等时,即4x=6x﹣68,解得x=34故当用水量25≤x≤34时,方案①合算;当用水量x≥34时,方案②合算.【点评】本题主要考差一次函数的实际应用,熟练一次函数与实际问题的联系,是解答此题的关键.24.(10分)如图,将一个直角三角形纸片AOB,放置在平面直角坐标系中,点A(3,3),点B(3,0),点O(0,0),将△AOB沿OA翻折得到△AOD(点D为点B的对应点).(Ⅰ)求OA的长及点D的坐标:(Ⅱ)点P是线段OD上的点,点Q是线段AD上的点.①已知OP=1,AQ=,R是x轴上的动点,当PR+QR取最小值时,求出点R的坐标及点D到直线RQ的距离;②连接BP,BQ,且∠PBQ=45°,现将△OAB沿AB翻折得到△EAB(点E为点O的对应点),再将∠PBQ绕点B顺时针旋转,旋转过程中,射线BP,BQ交直线AE分别为点M,N,最后将△BMN沿BN翻折得到△BGN(点G为点M的对应点),连接EG,若,求点M的坐标(直接写出结果即可).【分析】(Ⅰ)易知△AOB是等腰直角三角形,点D在y轴的正半轴上,由此即可解决问题.(Ⅱ)①如图1中,作点P关于点O的对称点K,连接KQ交OB于R′,此时PR′+QR′的值最小.作DH⊥QK于H.求出直线KQ,DH的解析式,构建方程组求出点H坐标即可解决问题.②易证△ABM≌△EBG(SAS),推出∠BAM=∠BEC=45°,推出∠GEN=90°,由,可以假设EN=12k,EG=5k,则NG=MN=13k,构建方程求出k即可解决问题.【解答】解:(Ⅰ)如图1中,∵A(3,3),B(3,0),∴AB=OB=3,∠ABO=90°,∴∠BOA=45°,∵将△AOB沿OA翻折得到△AOD,∴∠AOD=∠AOB=45°,∴∠BOD=90°,∴点D在y轴的正半轴上,∴D(0,3).(Ⅱ)①如图1中,作点P关于点O的对称点K,连接KQ交OB于R′,此时PR′+QR′的值最小.作DH⊥QK于H.由题意:K(0,﹣1),Q(,3).∴直线KQ的解析式为y=x﹣1,令y=0,得到x=,∴R′(,0),∵DH⊥KQ,∴直线KQ的解析式为y=﹣x+3,由,解得,∴H(,),∴DH==∴R′(,0),点D到直线KQ的距离为.②如图2中,易证△ABM≌△EBG(SAS),∴∠BAM=∠BEC=45°,∵∠AEB=45°,∴∠GEN=90°,∵,∴可以假设EN=12k,EG=5k,则NG=MN=13k,∵AM=EG=5k,∴5k+13k+12k=3,∴k=,∴AM=,作MH⊥AB于H,∵∠MAH=45°,AM=,∴AH=MH=,可得M(,).【点评】本题属于几何变换综合题,考查了正方形的性质,等腰直角三角形的判定和性质,全等三角形点评判定和性质,勾股定理,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,学会构建一次函数解决交点坐标问题,属于中考压轴题.25.(10分)已知抛物线y=ax2+bx+3(a,b是常数,且a≠0),经过点A(﹣1,0),B (3,0),与y轴交于点C(1)求抛物线的解析式;(2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为点H,交抛物线于点Q.设P 点的横坐标为t,线段PQ的长为d.求出d与t之间的函数关系式,写出相应的自变量t 的取值范围;(3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以z为未知数的一元二次方程z2﹣(m+3)z+(5m2﹣2m+13)=0(m为常数)的两个实数根,点M在抛物线上,连接MQ,MH,PM.且MP平分∠QMH,求出t值及点M的坐标.【分析】(1)将点A(﹣1,0)点B(3,0)代入抛物线y=ax2+bx+3(a,b是常数,且a≠0),即可求解(2)分两种情况讨论,当点P在线段CB上时,和如图3点P在射线BN上时,就有P点的坐标为(t,﹣t+3),Q的坐标为(t,﹣t2+2t+3),就可以得出d与t之间的函数关系式而得出结论(3)根据根的判别式就可以求出,m的值,就可以求出方程的解而求得PQ和PH的值,延长MP至L,使LP=MP,连接LQ、LH,如图2,就可以得出四边形LQMH是平行四边形,进而得出四边形LQMH是菱形,由菱形的性质就可以求出结论【解答】解:(1)将点A(﹣1,0)点B(3,0)代入抛物线y=ax2+bx+3,得,解得,则抛物线的解析式为:y=﹣x2+2x+3(2)如图1,当点P在线段CB上时,∵P点的横坐标为t且PQ垂直于x轴∴点P的坐标为(t,﹣t+3)Q点的坐标为(t,﹣t2+2t+3)∴PQ=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t如图2,当点P在射线BN上时∵P点的横坐标为t且PQ垂直于x轴∴点P的坐标为(t,﹣t+3)Q点的坐标为(t,﹣t2+2t+3)∴PQ=﹣t+3﹣(﹣t2+2t+3)=t2﹣3t∵BO=3∴d=﹣t2+3t(0<t<3),d=t2﹣3t(t>3)故当0<t<3时,d与t之间的函数关系式为:d=﹣t2+3t当t>3时,d与t之间的函数关系式为:d=t2﹣3t(3)∵d,e是z2﹣(m+3)z+(5m2﹣2m+13)=0的两个实数根,∴△≥0,即△=(m+3)2﹣4×(5m2﹣2m+13)≥0整理得△=﹣4(m﹣1)2≥0∵△=﹣4(m﹣1)2≤0∴△=0∴m=1∴z2﹣4z+4=0∵PH与PQ是z2﹣4z+4=0的两个实数根,解得z1=z2=2∴PH=PQ=2∴﹣t+3=2∴t=1∵y=﹣x2+2x+3∴y=﹣(x﹣1)2+4∴抛物线的顶点坐标为(1,4)此时Q是抛物线的顶点延长MP至L,使MP=LP,连接LQ,LH,如图3∵LP=MP,PQ=PH∴四边形LQMH是平行四边形∴LH∥QM∴∠QML=∠MLH∵∠QML=∠LMH∴∠MLH=∠LMH∴LH=MH∴平行四边形LQMH是菱形,∴PM⊥QH∴点M的纵坐标与P点纵坐标相同,都是2∴在y=﹣x2+2x+3中,当y=2时,有x2﹣2x﹣1=0解得x1=1+,x2=1﹣综上所述,t的值为1,M点的坐标为(1+,2)或(1﹣,2)【点评】此题主要考查二次函数性质和坐标表示以及菱形的性质,二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系。
第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根(3—10分)1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
±”。
正数a的平方根记做“a2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a(a≥0)0≥aa2;注意a的双重非负性:==a-a(a<0)a≥03、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a-,这说明三次根号内的负号可以移到根号外面。
一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算12÷(﹣4)的结果等于( )A .﹣8B .﹣3C .3D .82.cos45°的值等于( )A .B .C .D .13.下列图形中既不是中心对称图形又不是轴对称图形的是( )A .B .C .D .4.据国家统计局统计,2018年全国居民人均可支配收入28228元,比上年名义增长8.7%,扣除价格因素,实际增长6.5%.将28228用科学记数法表示为( )A .28228×105B .2822.8×102C .2.8228×104D .0.28228×1055.如图是由5个相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D . 6.估计的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 7.计算的结果为( )A .x+1B .x ﹣1C .D .8.分式方程=1的解是( ) A .x =1 B .x =﹣1C .x =3D .x =﹣39.规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为()A.30° B.36° C.45° D.60°10.如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.111.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.1812.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个二、填空题:本大题共6小题,每小题3分,共18分13.计算(a+3)(a﹣4)的结果等于.14.分解因式:x3﹣x=.15.不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣5,﹣1,0,3.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是.16.若关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根,则k的取值范围是.17.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠CPD 的度数是°.18.如图,在每个小正方形的边长为1的网格中,点A,B均在格点上.l1,l2是一条小河平行的两岸.(Ⅰ)AB的距离等于;(Ⅱ)现要在小河上修一座垂直于两岸的桥MN(点M在l1上,点N在l2上,桥的宽度忽略),使AM+MN+NB 最短,请在如图所示的网格中,用无刻度的直尺,画出MN,并简要说明点M,N的位置是如何找到的(不要求证明).三、解答题:本大题共7小题,共66分,解答应写出文字说明,演算步骤或证明过程.19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的觯集为.20.(8分)为了解居民的环保意识,社区工作人员在某小区随机抽取了若干名居民开展有奖问卷调查活动,并用得到的数据绘制了如下条形统计图.请根据图中信息,解答下列问题:(Ⅰ)本次调查一共抽取了名居民;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)如果对该小区的800名居民全面开展这项有奖问答活动,得10分者设为一等奖,请你根据调查结果,帮社区工作人员估计需准备多少份一等奖奖品.21.(10分)已知,⊙O的半径为1,直线CD经过圆心O,交⊙O与C、D两点,直径AB⊥CD,点M 是直线CD上异于C、D、O的一个动点,直线AM交⊙O于点N,点P是直线CD上另一点,且PM=PN.(Ⅰ)如图1,点M在⊙O的内部,求证:PN是⊙O的切线;(Ⅱ)如图2,点M在⊙O的外部,且∠AMO=30°,求OP的长.22.(10分)2016年2月1日,我国在西昌卫星发射中心,用长征三号丙运载火箭成功将第5颗新一代北斗星送入预定轨道,如图,火箭从地面L处发射,当火箭达到A点时,从位于地面R处雷达站测得AR 的距离是6km,仰角为42.4°;1秒后火箭到达B点,此时测得仰角为45.5°(1)求发射台与雷达站之间的距离LR;(2)求这枚火箭从A到B的平均速度是多少(结果精确到0.01)?(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02 )23.(10分)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.商场用50000元共购进A型号手机10部,B型号手机20部.(1)求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?24.(10分)如图,在平面直角坐标系xOy中有矩形OABC,A(4,0),C(0,2),将矩形OABC绕原点O逆时针旋转得到矩形OA′B′C′.(Ⅰ)如图1,当点A′首次落在BC上时,求旋转角;(Ⅱ)在(Ⅰ)的条件下,求点B′的坐标;(Ⅲ)如图2,当点B′首次落在x轴上时,直接写出此时点A′的坐标.25.(10分)如图,抛物线y=ax2+6x+c交x轴于A、B两点,交y轴于点C.直线y=x﹣5经过点B、C.(Ⅰ)求抛物线的解析式;(Ⅱ)过点A作AM⊥BC于点M,过抛物线上一动点P(不与点B、C重合),作直线AM的平行线交直线BC于点Q,若以点A、M、P、Q为顶点的四边形是平行四边形,求点P的横坐标.2019年天津市河北区中考数学二模试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】根据有理数的除法法则,即可解答.【解答】解:原式=﹣3,故选:B.【点评】本题考查了有理数的除法,解决本题的关键是熟记有理数的除法法则.2.【分析】根据特殊角的三角函数值直接解答即可.【解答】解:cos45°=.故选:B.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要熟练掌握.3.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项正确;C、是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:28228=2.8228×104.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.5.【分析】左视图是从组合体的左面看到的,应该是两列,个数分别是2,1,据此求解.【解答】解:从左面看到应该有2列,正方形的个数分别为2,1,故选:B.【点评】本题考查了简单几何体的三视图的知识,解题的关键是了解左视图是从左面看到的,难度不大.6.【分析】根据25<31<36,即可得的取值范围.【解答】解:∵25<31<36,∴5<<6,故选:D.【点评】本题考查了估算无理数的大小,运用“夹逼法”是解决本题的关键.7.【分析】根据分式的运算法则即可求出答案.【解答】解:原式==x+1,故选:A.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=1,去分母,方程两边同时乘以x(x﹣2)得:(x+1)(x﹣2)+x=x(x﹣2),x2﹣x﹣2+x=x2﹣2x,x=1,经检验,x=1是原分式方程的解,故选:A.【点评】考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故选:B.【点评】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出5∠A=180°是解此题的关键.10.【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=2.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,从而得出S △AOB=3.【解答】解:∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1).如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=2.∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,∴S△AOB=3.故选:B.【点评】本题考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.也考查了反比例函数图象上点的坐标特征,梯形的面积.11.【分析】想办法证明S△PEB=S△PFD解答即可.【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,(本题也可以证明两个阴影部分的面积相等,由此解决问题)故选:C.【点评】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.12.【分析】利用抛物线与y轴的交点位置得到c>0,利用对称轴方程得到b=﹣2a,则2a+b+c=c>0,于是可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣1,0)右侧,则当x =﹣1时,y<0,于是可对②进行判断;根据二次函数的性质得到x=1时,二次函数有最大值,则ax2+bx+c ≤a+b+c,于是可对③进行判断;由于直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,利用函数图象得x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,然后把b=﹣2a代入解a的不等式,则可对④进行判断.【解答】解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以①正确;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④正确.故选:A.【点评】本题考查了二次函数与不等式(组):利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解.也考查了二次函数图象与系数的关系.二、填空题:本大题共6小题,每小题3分,共18分13.【分析】根据多项式与多项式的乘法解答即可.【解答】解:(a+3)(a﹣4)=a2﹣4a+3a﹣12=a2﹣a﹣12,故答案为:a2﹣a﹣12.【点评】此题考查多项式与多项式的乘法,关键是根据多项式与多项式的乘法的法则计算.14.【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.15.【分析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,∴抽取的两张卡片上数字之积为负数的概率是,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.16.【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的方程,求出方程的解即可得到k的范围.【解答】解:∵方程x2+(2k+3)x+k2=0有两个不相等的实数根,∴△=(2k+3)2﹣4k2>0,解得:k>﹣.故答案为:k>﹣.【点评】此题考查了根的判别式,根的判别式的值大于0时,方程有两个不相等的实数根;根的判别式的值等于0时,方程有两个相等的实数根;根的判别式的值小于0时,方程无解.17.【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠CPD的度数.【解答】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠CPD=180°﹣120°=60°.故答案是:60;【点评】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.18.【分析】(Ⅰ)利用勾股定理求解可得;(Ⅱ)取格点C,连接AC,使AC⊥l1,取格点E、F,连接EF,使EF∥l1,与AC交于点A′;同理,作点B′,连接AB′与l1交于点M,连接A′B与l2交于点N,连接MN即为所求.【解答】解:(Ⅰ)AB==,故答案为:;(Ⅱ)如图,取格点C,连接AC,使AC⊥l1,取格点E、F,连接EF,使EF∥l1,与AC交于点A′;同理,作点B′,连接AB′与l1交于点M,连接A′B与l2交于点N,连接MN即为所求.故答案为:取格点C,连接AC,使AC⊥l1,取格点E、F,连接EF,使EF∥l1,与AC交于点A′;同理,作点B′,连接AB′与l1交于点M,连接A′B与l2交于点N,连接MN即为所求.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握勾股定理、轴对称的性质、平行线的判定与性质等知识点.三、解答题:本大题共7小题,共66分,解答应写出文字说明,演算步骤或证明过程.19.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:,解不等式①,得x<﹣1,解不等式②,得x≤2,把不等式①和②的解集在数轴上表示出来为:∴原不等式组的解集为x<﹣1,故答案为:x<﹣1,x≤2,x<﹣1.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.20.【分析】(Ⅰ)根据统计图中的数据可以求得本次调查的居民数;(Ⅱ)根据统计图中的数据可以得到平均数、众数和中位数;(Ⅲ)根据统计图中的数据可以计算出需准备多少份一等奖奖品.【解答】解:(Ⅰ)4+10+15+11+10=50,即本次调查一共抽取了50名居民,故答案为:50;(Ⅱ)平均数是=8.26,众数是8,中位数是8;(Ⅲ)800×=160(份),答:需准备160份一等奖奖品.【点评】本题考查条形统计图、用样本估计总体、加权平均数、众数和中位数,解答本题的关键是明确题意,利用数形结合的思想解答.21.【分析】(Ⅰ)根据切线的判定得出∠PNO=∠PNM+∠ONA=∠AMO+∠ONA进而求出即可;(Ⅱ)连接ON,由PM=PN,得出∠PNM=∠AMO=30°,易得∠NPO=60°,继而证得△AON是等边三角形,从而得出△OPN是直角三角形,解直角三角形即可.【解答】(Ⅰ)证明:连接ON,如图1,则∠ONA=∠OAN,∵PM=PN,∴∠PNM=∠PMN,∵∠AMO=∠PMN,∴∠PNM=∠AMO,∴∠PNO=∠PNM+∠ONA=∠AMO+∠ONA=90°,即PN与⊙O相切.(Ⅱ)解:连接ON,如图2,∵∠AMO=30°,PM=PN,∴∠PNM=∠AMO=30°,∠OAN=60°,∴∠NPO=60°,∴OA=ON,∴△AON是等边三角形,∴∠AON=60°,∴∠NOP=30°,∴∠PNO=90°,∴OP===.【点评】此题主要考查了切线的判定与性质,等边三角形的判定与性质,含30°的直角三角形的性质,作出正确的辅助线是解题的关键.22.【分析】(1)根据题意直接利用锐角三角函数关系得出LR=AR•cos∠ARL求出答案即可;(2)根据题意直接利用锐角三角函数关系得出BL=LR•tan∠BRL,再利用AL=ARsin∠ARL,求出AB 的值,进而得出答案.【解答】解:(1)在Rt△ALR中,AR=6km,∠ARL=42.4°,由cos∠ARL=,得LR=AR•cos∠ARL=6×cos42.4°≈4.44(km).答:发射台与雷达站之间的距离LR为4.44km;(2)在Rt△BLR中,LR=4.44km,∠BRL=45.5°,由tan∠BRL=,得BL=LR•tan∠BRL=4.44×tan45.5°≈4.44×1.02=4.5288(km),又∵sin∠ARL=,得AL=ARsin∠ARL=6×sin42.4°≈4.02(km),∴AB=BL﹣AL=4.5288﹣4.02=0.5088≈0.51(km).答:这枚火箭从A到B的平均速度大约是0.51km/s.【点评】此题主要考查了解直角三角形的应用,正确选择锐角三角函数关系是解题关键.23.【分析】(1)设A、B两种型号的手机每部进价各是x元、y元,根据每部A型号手机的进价比每部B 型号手机进价多500元以及商场用50000元共购进A型号手机10部,B型号手机20部列出方程组,求出方程组的解即可得到结果;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据花费的钱数不超过7.5万元以及A型号手机的数量不少于B型号手机数量的2倍列出不等式组,求出不等式组的解集的正整数解,即可确定出购机方案;②设A种型号的手机购进a部时,获得的利润为w元.列出w关于a的函数解析式,根据一次函数的性质即可求解.【解答】解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:.答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,∵﹣100<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=21300(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.【点评】此题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用,找出满足题意的等量关系与不等关系是解本题的关键.24.【分析】(Ⅰ)由题意得出OA=4,OC=2,由旋转的性质得:OA'=OA=4,由矩形的性质得出∠OCB=90°,OA∥BC,在Rt△OCA'中,OC=OA',求出∠OA'C=30°,由平行线的性质即可得出结果;(Ⅱ)由矩形和旋转的性质得:OA′=OA=4,A′B′=AB=OC=2,作B'E⊥BC于E,由三角函数求出B′E=,EA′=1,A′C=2,得出CE=CA′﹣EA′=2﹣1,即可得出答案;(Ⅲ)过点A'作A'F⊥x轴于F,由勾股定理得出B'O=2,证明△B'A'O∽△A'FO,得出比例式,求出OF、A'F,即可得出点A′的坐标.【解答】解:(Ⅰ)∵A(4,0),C(0,2),∴OA=4,OC=2,由旋转的性质得:OA'=OA=4,∵四边形OABC是矩形,∴∠OCB=90°,OA∥BC,在Rt△OCA'中,OC=OA',∴∠OA'C=30°,∵OA∥BC,∴∠AOA'=∠OA'C=30°,即当点A′首次落在BC上时,旋转角为30°;(Ⅱ)由矩形和旋转的性质得:OA′=OA=4,A′B′=AB=OC=2,作B'E⊥BC于E,如图1所示:∵BC∥AO,∴∠OA′C=∠A′OA=30°,∴∠B′A′E=60°,B′E=sin∠B′A′E×BB′=×2=,EA′=cos∠B′A′E×BB′=×2=1,A′C=cos∠OA′C×OA′=×4=2,∴CE=CA′﹣EA′=2﹣1,B′的纵坐标为:2+,∴点B′的坐标为:(2﹣1,2+);(Ⅲ)过点A'作A'F⊥x轴于F,如图2所示:∵∠B'A'O=90°,A'F⊥B'O,∴B'O==2,∠A'FO=90°,∵∠A'OF=∠B'OA',∴△B'A'O∽△A'FO,∴==,即==,解得:OF=,A'F=,∴点A的坐标为(﹣,).【点评】本题是四边形综合题目,考查了矩形的性质、坐标与图形性质、勾股定理、旋转的性质、直角三角形的性质、相似三角形的判定与性质等知识;本题综合性强,熟练掌握旋转的性质,证明三角形系数是解题的关键.25.【分析】(1)求出C(0,﹣5)、点B(5,0),将点A、B的坐标代入二次函数表达式,即可求解;(2)分点P在直线BC上方、点P在直线BC上方两种情况,分别求解即可.【解答】解:(1)当x=0时,y=x﹣5=﹣5,即点C(0,﹣5),同理点B(5,0),将点A、B的坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=﹣x2+6x﹣5;(2)令y=﹣x2+6x﹣5=0,解得:x=1或5,即点A(1,0),∵OB=OC=5,∴∠OCB=∠OBC=45°,AM=AB=2,以点A、M、P、Q为顶点的四边形是平行四边形,则PQ=AM=2,PQ⊥BC,如图,作PD⊥x轴交直线BC于D,则∠PDQ=45°,∴PD=PQ=4,设点P(x,﹣x2+6x﹣5),则点D(x,x﹣5),①当点P在直线BC上方时,PD=﹣x2+6x﹣5﹣x+5=4,解得:x=1或4(舍去4);②点P在直线BC上方时,PD=﹣x2+6x﹣5﹣x+5=﹣4,解得:x=,故点P的横坐标为1或或.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
天津中考数学题型总结
一、选择题
(1)实数运算:+、-、×、÷、乘方、开方(比较基础,注意符号)
(2)特殊三角函数值:sin30°=21,cos30°=23,tan30°=33
Sin45°=22,cos45°=22,tan45°=1
Sin60°=23,cos60°=21,tan60°=3
(3)图形对称:对称中心对称:关于中心点称轴对称:关于某直线对
(4)科学计数法:10a1,n是小数点移动位数(通常在4个选项中只有一个符合a的
形式要求)
(5)三视图:注意题目要求是主视图、左视图还是俯视图
(6)无理数估值
(7)简单的分式化简计算:注意同分母和异分母(如果不会可以给x赋值)
(8)方程的解(一元二次方程或二元一次方程):
(9)(10)(11)顺序不固定,但基本包含的是
①函数上点的横纵坐标大小比较(以反比例为主):结合图像。(如果不会就赋值)
②旋转或翻折问题:几乎都是利用等量代换(如果看不出来用尺子或量角器量)
③最短路径:找其中一个定点关于动点所在直线的对称点,连接另一个定点即可
④数形结合实数大小比较:清楚绝对值、相反数的概念,结合数轴比较(右侧大于左
侧)
(12)二次函数:对称性、顶点坐标、 一元二次方程根与系数的关系等(不会就赋值)
二、填空题
(13)同底数幂乘除:乘法:指数相加,除法:指数相减
(14)平方差公式:(a+b)(a-b)=22b-a
(15)概率
(16)函数平移或函数过给定象限给未知系数赋值
(17)几何题求长度或角度(图形大多是特殊正多边形,利用全等、勾股定理、中位线、角
分线、中垂线等知识)
(18)格点问题(第一个空求长度用勾股定理,求角度直接测量,求三角函数构造直角三角
形,求面积用割补法;第二空战略放弃,有时间最后在做)
三、解答题
(19)解不等式(注意负号要变号)
(20)统计图:①扇形图求百分比(如果有两个字母,就结合条形图求解),②中位数、
众数和平均数的概念要清晰,③估值:总数×对应的百分比
(21)圆:切线、垂径定理、圆周角和圆心角。
(22)三角函数应用:作垂线构造直角三角形。
(23)最优方案:函数与方程思想结合,注意分段。
(24)几何
(25)二次函数
总结:建议做题顺序1——11,(12跳过),13——17(18题第二空跳过),后边依次做,24
题最后一问跳过,25题最后一问跳过;完成以后再按照12题,25题,24题,18题的顺序
作答。