比赛项目排序问题的贪婪算子遗传算法
- 格式:pdf
- 大小:174.36 KB
- 文档页数:3
改进遗传算法解决TSP问题陈林;潘大志【摘要】针对基本遗传算法收敛速度慢,易早熟等问题,提出一种改进的遗传算法。
新算法利用贪婪思想产生初始种群来加快寻优速度,用贪婪思想来引导交叉操作,在交叉操作之前,把当前较差的一半种群替换成随机种群,最后用改进的变异算子和进化逆转操作进行寻优,利用新的遗传算法求解基本的旅行商问题。
仿真结果表明,改进的遗传算法具有全局搜索能力强、收敛速度快的特点,优化质量和寻优效率都较好。
%Aiming at the problem of slow convergence and easy premature convergence, an improved genetic algorithm is proposed. New algorithm uses greedy idea to generate the initial population for speeding up the searching speed and greedy idea to guide the crossover operation, before the crossover operation, selects the random population to replace the half of the poor population, finally with the help of the improved mutation operator and evolutionary reversal operation to realize optimization, constructs a new genetic algorithm for solving the traveling salesman problem. The simulation results show that the improved genetic algorithm has the characteristics of strong global search ability and fast convergence speed.【期刊名称】《智能计算机与应用》【年(卷),期】2016(006)005【总页数】4页(P17-19,23)【关键词】遗传算法;贪婪思想;进化逆转;旅行商问题【作者】陈林;潘大志【作者单位】西华师范大学数学与信息学院,四川南充637009;西华师范大学数学与信息学院,四川南充637009【正文语种】中文【中图分类】TP18遗传算法(GA)是一种进化算法,其基本原理是仿效生物界中的“物竞天择、适者生存”的演化法则。
遗传算法算子引言遗传算法是一种基于进化论理论的优化算法,常用于解决复杂的搜索和优化问题。
遗传算法使用模拟生物进化的方式,通过对种群的基因组进行操作来搜索最优解。
其中,算子是遗传算法中用于操作基因组的基本组成部分。
算子包括选择、交叉和变异等操作,它们的作用是模拟生物进化过程中的自然选择、基因重组和突变。
选择算子选择算子是遗传算法中最基本的操作之一,它决定了哪些个体能够生存和繁殖,从而影响种群的进化方向。
常用的选择算子包括轮盘赌选择、竞争选择和排名选择等。
轮盘赌选择轮盘赌选择是一种基于个体适应度的选择算子。
它的原理是将每个个体的适应度值按比例映射到一个区间上,然后通过随机选择一个点来确定被选中的个体。
适应度较高的个体被选中的概率较大,而适应度较低的个体被选中的概率较小。
轮盘赌选择的具体步骤如下: 1. 计算每个个体的适应度值; 2. 将每个个体的适应度值映射到一个区间上,得到一个适应度累积值; 3. 生成一个随机点,根据该随机点在适应度累积值上的位置确定被选中的个体。
轮盘赌选择的优点是简单且易于实现,但随着种群进化的进行,适应度较低的个体被选中的概率会逐渐降低,从而可能导致种群早熟收敛。
竞争选择竞争选择是一种基于竞争关系的选择算子。
它的原理是随机选取一组个体,然后从中选择适应度最高的个体作为被选中的个体。
竞争选择通常使用锦标赛选择和随机选择两种方法。
锦标赛选择的具体步骤如下: 1. 随机选取一组个体作为竞争对手; 2. 从竞争对手中选择适应度最高的个体作为被选中的个体。
竞争选择的优点是能够保留种群中适应度较高的个体,但容易导致种群中适应度较低的个体被淘汰,从而可能导致种群多样性的降低和早熟收敛的问题。
排名选择是一种基于个体排名的选择算子。
它的原理是将每个个体按照适应度从高到低进行排序,然后根据排名选择个体。
排名选择通常使用线性排名选择和指数排名选择两种方法。
线性排名选择的具体步骤如下: 1. 将种群中的个体按照适应度从高到低进行排序;2. 计算每个个体的选择概率,通常使用线性函数进行映射;3. 生成一个随机点,根据该随机点在选择概率累积值上的位置确定被选中的个体。
遗传算法的选择操作
遗传算法的选择操作是在进化过程中用于选择优秀个体的操作。
选择操作决定了哪些个体将被传递到下一代,并决定了进化过程中的多样性程度。
常见的遗传算法选择操作包括:
1. 轮盘赌选择(Roulette Wheel Selection):按照适应度比例来选择个体,适应度高的个体被选中的概率较大。
该方法模拟了轮盘赌的选择方式。
2. 锦标赛选择(Tournament Selection):随机选择一定数量的个体,然后从中选择适应度最高的个体作为父代个体。
该方法好处是可以保证一部分适应度较低的个体也有机会被选择。
3. 排序选择(Rank Selection):根据个体的适应度值进行排序,然后按照排名来选择个体。
适应度较高的个体排名较靠前,被选中的概率较大。
4. 锦标赛选择(Tournament Selection):随机选择一定数量的个体,然后从中选择适应度最高的个体作为父代个体。
该方法好处是可以保证一部分适应度较低的个体也有机会被选择。
5. 随机选择(Random Selection):对个体进行随机选择,每个个体被选中的概率相等。
选择操作的目标是保持适应度高的个体,并且保持种群的多样性。
不同的选择操作对于种群的进化过程和效果都有影响,选择合适的选择操作能够提高算法的性能和效果。
TSP 问题及LINGO 求解技巧巡回旅行商问题(Traveling Salesman Problem ,TSP),也称为货郎担问题。
最早可以追溯到1759年Euler 提出的骑士旅行问题。
1948年,由美国兰德公司推动,TSP 成为近代组合优化领域的一个典型难题。
它已经被证明属于NP 难题。
用图论描述TSP ,给出一个图(,)G V E =,每边e E ∈上有非负权值()w e ,寻找G 的Hamilton 圈C ,使得C 的总权()()()W C w e e E C =∑∈最小. 几十年来,出现了很多近似优化算法。
如近邻法、贪心算法、最近插入法、最远插入法、模拟退火算法以及遗传算法。
这里我们介绍利用LINGO 软件进行求解的方法。
问题1设有一个售货员从10个城市中的某一个城市出发,去其它9个城市推销产品。
10个城市相互距离如下表。
要求每个城市到达一次仅一次后,回到原出发城市。
问他应如何选择旅行路线,使总路程最短。
我们采用线性规划的方法求解设城市之间距离用矩阵d 来表示,ij d 表示城市i 与城市j 之间的距离。
设0--1矩阵X 用来表示经过的各城市之间的路线。
设01,ij i j x i j i j ⎧=⎨⎩若城市不到城市若城市到城市且在前考虑每个城市后只有一个城市,则:11,nij j j ix =≠=∑1,,i n =… 考虑每个城市前只有一个城市,则:11,nij i i jx =≠=∑1,,j n =…; 但仅以上约束条件不能避免在一次遍历中产生多于一个互不连通回路。
为此我们引入额外变量i u (1,,i n =…),附加以下充分约束条件:1,i j ij u u nx n -+≤-1i j n <≠≤;该约束的解释:如i 与j 不会构成回路,若构成回路,有:1ij x =,1ji x =,则:1i j u u -≤-,1j i u u -≤-,从而有:02≤-,导致矛盾。
贪婪算法的基本原理贪婪算法(Greedy Algorithm)是一种常见的算法设计思想,它在每一步选择中都采取当前状态下最优的选择,以期望达到全局最优解。
贪婪算法的基本原理可以概括为“局部最优选择,期望全局最优解”。
在每个步骤中做出局部最优选择是贪婪算法的关键特点。
贪婪算法通常适用于满足贪婪选择性质(Greedy Choice Property)和最优子结构(Optimal Substructure)的问题。
贪婪选择性质意味着通过做出局部最优选择,可以得到全局最优解。
最优子结构意味着一个问题的最优解可以通过一系列子问题的最优解来表示。
当一个问题具有最优子结构性质时,我们可以通过贪婪算法来求解问题。
1.定义问题的优化目标。
2.将问题分解为若干子问题,子问题必须满足最优子结构性质。
3.设计一个贪婪策略,通过局部最优选择来做出决策。
4.解决每个子问题,得到局部最优解。
5.将各个子问题的解合并,得到原问题的解。
不过,贪婪算法不一定能得到全局最优解,因为它只关注局部最优选择,并没有进行全局。
有时,贪婪算法会陷入局部最优解而无法达到全局最优解。
因此,在使用贪婪算法求解问题时,必须确保问题满足贪心选择性质和最优子结构性质。
贪婪算法在许多问题中都有广泛的应用。
以下是几个常见问题的例子:1.最小生成树问题:通过选择边的方式,连接图中的所有顶点,并使得选择的边权和最小。
2.背包问题:在给定的背包容量下,选择一些物品放入背包中,使得物品的总价值最大。
3.哈夫曼编码:通过贪心选择思想构建最优的可变长度编码,以实现数据的高效压缩。
4.集合覆盖问题:从一组集合中选择最少的集合,覆盖全集的元素。
总结起来,贪婪算法是一种简单有效的算法设计思想,它通过局部最优选择来逐步求解问题,并期望达到全局最优解。
贪婪算法适用于满足贪心选择性质和最优子结构性质的问题,但不保证一定能得到全局最优解。
在实际应用中,我们需要理解问题的特点和约束条件,并根据问题的性质选择适合的算法来解决问题。
求解TSP问题的几种算法比较侯淑静【摘要】The traveling salesman problem (TSP) is an important problem for the classical discrete optimization, which is very important to study the solving algorithm. After the introduction of the greedy algorithm, taboo search algorithm, simulated annealing algorithm, genetic algorithm, the author put forward the corresponding algorithm. Aiming at the four typical examples in the test base, we realized implementation of these algorithms with procedures, and the running time and the results of these algorithms are compared. The results show that the greedy algorithm can draw the solution in a short time, the taboo search algorithm and genetic algorithm have the same effect, and the results of simulated annealing algorithm is better than those of genetic algorithm.%旅行售货商问题(简称TSP )是离散优化的一个经典的重要问题,对求解算法的研究非常重要。
第 1 章贪婪算法虽然设计一个好的求解算法更像是一门艺术,而不像是技术,但仍然存在一些行之有效的能够用于解决许多问题的算法设计方法,你可以使用这些方法来设计算法,并观察这些算法是如何工作的。
一般情况下,为了获得较好的性能,必须对算法进行细致的调整。
但是在某些情况下,算法经过调整之后性能仍无法达到要求,这时就必须寻求另外的方法来求解该问题。
本章首先引入最优化的概念,然后介绍一种直观的问题求解方法:贪婪算法。
最后,应用该算法给出货箱装船问题、背包问题、拓扑排序问题、二分覆盖问题、最短路径问题、最小代价生成树等问题的求解方案。
1.1 最优化问题本章及后续章节中的许多例子都是最优化问题( optimization problem),每个最优化问题都包含一组限制条件( c o n s t r a i n t)和一个优化函数( optimization function),符合限制条件的问题求解方案称为可行解(feasible solution),使优化函数取得最佳值的可行解称为最优解(optimal solution)。
例1-1 [ 渴婴问题] 有一个非常渴的、聪明的小婴儿,她可能得到的东西包括一杯水、一桶牛奶、多罐不同种类的果汁、许多不同的装在瓶子或罐子中的苏打水,即婴儿可得到n 种不同的饮料。
根据以前关于这n 种饮料的不同体验,此婴儿知道这其中某些饮料更合自己的胃口,因此,婴儿采取如下方法为每一种饮料赋予一个满意度值:饮用1盎司第i 种饮料,对它作出相对评价,将一个数值s i 作为满意度赋予第i 种饮料。
通常,这个婴儿都会尽量饮用具有最大满意度值的饮料来最大限度地满足她解渴的需要,但是不幸的是:具有最大满意度值的饮料有时并没有足够的量来满足此婴儿解渴的需要。
设a i是第i 种饮料的总量(以盎司为单位),而此婴儿需要t 盎司的饮料来解渴,那么,需要饮用n种不同的饮料各多少量才能满足婴儿解渴的需求呢?设各种饮料的满意度已知。