当前位置:文档之家› 蓄电池内阻电池检测

蓄电池内阻电池检测

蓄电池内阻电池检测
蓄电池内阻电池检测

FXJ-3000A蓄电池巡检仪(内阻型)-----(直流系统专用)

--

线

--

线

--

--

线

在线测量蓄电池组中各个单体电池的内阻,监测蓄电池组运行过程中各个单只电池劣化腐蚀的程度和趋势,动态测量各单体电池内阻及负载能力,快速判别各单体电池性能,可在线自动测量;

内嵌蓄电池失效分析数学模型,实现各单体蓄电池性能变化趋势和性能诊断;采用先进的蓄电池性能分析诊断方法和阀控式铅酸蓄电池性能分析方法,实现蓄电池组各单体电池的容量诊断和智能化管理;

在线实时监测蓄电池组各单体电压、组端电压、充放电电流和温度等;

实时报警功能,实现对电压、温度、内阻的超限报警;

在线实时监测蓄电池组的电压、充电/放电电流、单电池电压、蓄电池组运行的环境温度,完成对蓄电池组运行工况参数的实时在线监测,对蓄电池的开路、短路等情况,提前给出预警,以保证蓄电池组设备运行的安全性。

浮充状态下,实时监测蓄电池组以及各个单只电池的浮充电压,当出现过充情况,及时给出报警,防止因过充而影响蓄电池组的寿命。

放电过程中,实时监测蓄电池组以及各个单只电池的工作电压,当出现过放情况下,及时给出报警,防止因过放而影响蓄电池的寿命。

FXJ-3000A-1812-------------------------- 1组蓄电池组(18只,12V电池)

FXJ-3000A-10402------------------------- 1组蓄电池组(104只,2V电池)

FXJ-3000A-10802------------------------- 1组蓄电池组(108只,2V电池)

技术特点

■在线甄别蓄电池组中落后单体

采用自主的专利技术—蓄电池内阻交流测量方法,在线测量蓄电池组中各个单体的内阻,分析蓄电池组的一致性,实现蓄电池组健康度的实时监测。

■在线均衡维护提高蓄电池组的一致性

独有的在线均衡维护技术手段,降低蓄电池组离散性,提高蓄电池组各单体的一致性,延长蓄电池组的使用寿命。

■智能化的性能诊断模式

内嵌蓄电池失效分析数学模型,实现各单体蓄电池性能变化趋势和性能诊断;采用先进的蓄电池性能分析诊断方法和阀控式铅酸蓄电池性能分析方法,实现蓄电池组各单体电池的容量诊断和智能化管理;

■判断蓄电池组的整体性能

■在线实时监测蓄电池组的电压、充电/放电电流、单电池电压、蓄电池组运行的环境温度,完成对蓄电池组运行工况参数的实时在线监测

■智能化的实时监测

蓄电池高度智能化的运行数模,系统根据实时监测的蓄电池各项参数,自动完成对每只蓄电池性能的现场诊断。

■独立的模块化设计

采用自主的专利技术—蓄电池内阻交流测量方法,对充电系统和工作回路无任何干扰,完全独立于被监测设备而正常工作。在线测量蓄电池组中各个单体的内阻,分析蓄电池组的一致性,实现蓄电池组健康度的实时监测。

■可靠的实时在线性

采用先进的蓄电池阻抗测量技术以及数字信号处理技术(DSP),无需将蓄电池脱离系统,即可实现高效率、高可靠性的在线监测。

■全系列参数测量与管理

在线实时监测蓄电池组的电压、充电/放电电流、单电池电压、单电池内阻、单电池剩余容量、蓄电池温度,完成对蓄电池组运行工况参数的实时在线监测

■实时的充放电管理

实时的蓄电池充放电管理,对于异常工作状况如蓄电池设备的短路、开路、过充、过放等预警模式,及时给出实时声光报警,保障蓄电池安全可靠的运行。

■网络化的远程管理

开放的通讯接口,适合多种网络资源的要求(RS232、RS485、TCP/IP等),实现各现场的蓄电池设备的集中监控。

■模块化的设计

模块化的设计,标准化的安装尺寸,易于现场的在线安装与维护。

■良好的中文人机界面

7寸彩色液晶触摸屏,实时的数据多种形式的显示模式,快捷的数据查询,灵活的门限设置、三级化的报警管理、声光等多种报警形式、智能化的人机界面,方便维护人员的操作。

18只的连接示意图:

技术参数:

测量项目FXJ-3000A-1812 FXJ-3000A-10402 FXJ-3000A-10802

电池组充/放电电流1路1路1路

电池组电压1路1路1路

单电池电压18路104路108路

单电池内阻18路104路108路

蓄电池组运行温度1路1路1路

【测量指标】

监测项目测量范围测量精度

电池组充放电电流-500A~+500A(可选传感器)1%

电池组电压0~300V 0.2%

单电池电压0~18V 0.2%

【分析管理参数】

远程网络化管理

通过FXJ-3000A蓄电池在线监测装置,实时采集的各个不同站点的蓄电池数据(包括蓄电池运行参数、性能参数),通过数据网络通道,传输指定的计算机。

通过专业化的蓄电池管理软件,完成对于上传的各个站点蓄电池数据的再处理。该方案的技术核心是建立在蓄电池阻抗的在线测量以及计算机网络技术,数据传输到中心监控中心站,在集中管理计算机,利用后台的蓄电池管理软件,对数据进行综合分析处理,绘出各个站点的各组蓄电池的运行参数以及性能参数的历史曲线,对于蓄电池运行中出现的微小变化,管理软件通过门限的分析,当出现超过门限的情况下,及时给出报警,同时将报警事件的类别、起始时间、结束时间,一并存储,以备运维人员的查询。

同时将根据采集上传的数据,专业化的蓄电池管理软件,进行实时的监测,由于管理软件内置蓄电池性能分析管理模型,借助各个站点的蓄电池数据(电压、电流),自动建立各个站点中每只蓄电池的诊断分析平台,构筑蓄电池的管理系统;这为运维人员提供更加直观的数据。

智能化的软件,大大减少蓄电池监测与维护对于运维人员的专业化知识的要求,提高蓄电池管理的科学化。

蓄电池内阻电池检测

FXJ-3000A蓄电池巡检仪(内阻型)-----(直流系统专用) -- 在 线 甄 别 落 后 单 体 电 池 -- 蓄 电 池 内 阻 的 在 线 监 测 -- 全 系 列 参 数 测 量 与 管 理 -- 蓄 电 池 劣 化 腐

蚀 的 在 线 监 测 在线测量蓄电池组中各个单体电池的内阻,监测蓄电池组运行过程中各个单只电池劣化腐蚀的程度和趋势,动态测量各单体电池内阻及负载能力,快速判别各单体电池性能,可在线自动测量; 内嵌蓄电池失效分析数学模型,实现各单体蓄电池性能变化趋势和性能诊断;采用先进的蓄电池性能分析诊断方法和阀控式铅酸蓄电池性能分析方法,实现蓄电池组各单体电池的容量诊断和智能化管理; 在线实时监测蓄电池组各单体电压、组端电压、充放电电流和温度等; 实时报警功能,实现对电压、温度、内阻的超限报警; 在线实时监测蓄电池组的电压、充电/放电电流、单电池电压、蓄电池组运行的环境温度,完成对蓄电池组运行工况参数的实时在线监测,对蓄电池的开路、短路等情况,提前给出预警,以保证蓄电池组设备运行的安全性。 浮充状态下,实时监测蓄电池组以及各个单只电池的浮充电压,当出现过充情况,及时给出报警,防止因过充而影响蓄电池组的寿命。 放电过程中,实时监测蓄电池组以及各个单只电池的工作电压,当出现过放情况下,及时给出报警,防止因过放而影响蓄电池的寿命。 FXJ-3000A-1812-------------------------- 1组蓄电池组(18只,12V电池) FXJ-3000A-10402------------------------- 1组蓄电池组(104只,2V电池) FXJ-3000A-10802------------------------- 1组蓄电池组(108只,2V电池) 技术特点 ■在线甄别蓄电池组中落后单体 采用自主的专利技术—蓄电池内阻交流测量方法,在线测量蓄电池组中各个单体的内阻,分析蓄电池组的一致性,实现蓄电池组健康度的实时监测。 ■在线均衡维护提高蓄电池组的一致性 独有的在线均衡维护技术手段,降低蓄电池组离散性,提高蓄电池组各单体的一致性,延长蓄电池组的使用寿命。 ■智能化的性能诊断模式 内嵌蓄电池失效分析数学模型,实现各单体蓄电池性能变化趋势和性能诊断;采用先进的蓄电池性能分析诊断方法和阀控式铅酸蓄电池性能分析方法,实现蓄电池组各单体电池的容量诊断和智能化管理; ■判断蓄电池组的整体性能 ■在线实时监测蓄电池组的电压、充电/放电电流、单电池电压、蓄电池组运行的环境温度,完成对蓄电池组运行工况参数的实时在线监测 ■智能化的实时监测 蓄电池高度智能化的运行数模,系统根据实时监测的蓄电池各项参数,自动完成对每只蓄电池性能的现场诊断。 ■独立的模块化设计 采用自主的专利技术—蓄电池内阻交流测量方法,对充电系统和工作回路无任何干扰,完全独立于被监测设备而正常工作。在线测量蓄电池组中各个单体的内阻,分析蓄电池组的一致性,实现蓄电池组健康度的实时监测。 ■可靠的实时在线性 采用先进的蓄电池阻抗测量技术以及数字信号处理技术(DSP),无需将蓄电池脱离系统,即可实现高效率、高可靠性的在线监测。

浅谈铅酸蓄电池容量及其测试方法

铅酸蓄电池剩余容量测试方法 1、容量的定义 铅酸蓄电池的容量即电池的放电能力,指的是当电池在一定的条件下进行放电,外界可以从电池中获取的容量,人们一般用安时数来表示,即AH,符号是C。 2、铅酸蓄电池容量的分类 铅酸蓄电池的容量分为额定容量、理论容量、实际容量。 1)额定容量 额定容量指的是在铅酸蓄电池设计和生产的时候,厂家规定在一定放 电条件下,电池能放出的最低限度的电量。 2)理论容量 理论容量指的是按照理论计算,参照化学反应方程式以及电解液中每 种化学物质的含量,假设电池中的所有化学物质在电池放电时全部参 加化学反应,所有化学物质消耗完所计算得到的容量。 3)实际容量 实际容量指的是在实际的电池放电中,电池放电放到规定条件时所释 放的电量。实际容量达不到理论容量,与铅酸蓄电池使用的次数多少、 使用时间的长短有关。电池使用越多,时间越久,实际容量就会越少。 一般铅酸蓄电池放出1A的电量,其正极的二氧化铅就会被消耗掉 4.463g左右,负极的海绵状铅就会被消耗掉3.866g左右,电解液中 的硫酸就会被消耗掉3.660g左右。 3、放电率和放电终止电压 在讲电池容量的时候,首先,有必要来了解一下与铅酸蓄电池有关的两个重要参数。即放电率和放电终止电压。 1)放电率 放电率指的是铅酸蓄电池在一定条件下放电电流的大小,有电流率和时间率之分。电流率指的是对额定容量不同的铅酸蓄电 池间的放电电流的比较,一般用10小时率来作为电流率的标准, 表示符号为I 。时间率指的是铅酸蓄电池在一定的放电条件下, 10

电池放电放到电池的终止电压时止的时间长短。 2)放电终止电压 放电终止电压指的是铅酸蓄电池在一定的温度下(例如25℃),用一定的放电率对电池进行放电,放电放到电池还可以再反复充 电使用时的最低电压,这个最低电压就称为放电终止电压。 因此,一般铅酸蓄电池的额定容量是这样规定的,在温度为25度的环境下,以放电率为10小时率的电流对电池进行放电,放大终止电压时电池所能释放出的电量,即为电池的额定容量。电池10小时放电率下的额定容量用C 10 来表示。10小时率的放电电流的大小如下式: I 10= 10 10 C =0.1C 10 4、影响铅酸蓄电池容量的因素 1)生产工艺因素 这里包括电池铅板与电解液接触的面积、极板的中心距离、参与化学 反应的物质的孔率、电解液的量、铅板的厚度等。 2)电池使用过程中的因素 包括电池放电时的放电终止电压、电池工作环境(温度、湿度)、放电 电流大小、电解液的密度、电池使用的时间、电池使用过程中的保养 等。 5、铅酸蓄电池剩余容量测试方法 1)传统测试方法 传统的容量测试方法是将电池接上一个负载进行放电,按照某一个恒定的放电率,放到终止电压后,停止放电,计算放电时 间和放电电流的乘积,就得到电池的容量。这种方法虽然可以比 较精确的得到铅酸蓄电池的保有容量,但是这种方法在测量过程 中时间长,人工成本高,消耗的电池能量高,对在线的电池组有 一定的风险,同时由于要对电池经常性的放电,这样就加速了电 池的老化,缩短了电池的使用寿命,因此在很多场合不适用。 例如,电池用10A的电流放电,放电时间为10H,则此电池的容量为10*10=100AH。 对于一个200AH/12V的蓄电池,如果采用20小时放电率进行放电,则放电电流为10A(0.05C),放电到终止电压10.5V,电池

电池容量测试方法

容量是指电池存储电量的大小。电池容量的单位是“mAh”,中文名称是毫安时(在衡量大容量电池如铅蓄电池时,为了方便起见,一般用“Ah”来表示,中文名是安时,1Ah=1000mAh)。若电池的额定容量是1300mAh,如果以0.1C(C为电池容量)即130mA的电流给电池放电,那么该电池可以持续工作10小时(1300mAh/130mA=10h);如果放电电流为1300mA,那供电时间就只有1小时左右(实际工作时间因电池的实际容量的个别差异而有一些差别)。这是理想状态下的分析,数码设备实际工作时的电流不可能始终恒定在某一数值(以数码相机为例,工作电流会因为LCD显示屏、闪光灯等部件的开启或关闭而发生较大的变化),因而电池能对某个设备的供电时间只能是个大约值,而这个值也只有通过实际操作经验来估计。 附:充电电池的分类 首先容我向大家介绍与充电电池种类以及相关术语。目前数码产品中使用最多的就是AA(俗称5号)和AAA(俗称7号)标准电池,还有一部份使用专用电池。不管它们的外形如何,从它里面的电芯可以分为镍镉可充电电池(Ni-Cd Battery)、镍氢可充电电池(Ni-Mh Battery)、锂离子电池(Li-lon Battery)三种。 镍镉可充电电池 镍镉可充电电池采用1.6倍电压充电,通常充电次数为300~800次。在充放电达500次后电容量会下降,只能达到约80%。镍镉电池的缺点是在充放电时,阴极会长出镉的针状结晶,有时会穿透分隔物而引起内部枝状晶体式的短路。 这里我顺带提一提大名鼎鼎的“记忆效应”,相信不少朋友都知道这个词,但它倒底是怎么一回事儿呢?针对镍镉电池而言,由于传统工艺中电池负极为烧结式,镉晶粒较粗,如果镍镉电池在它们被完全放电之前就重新充电,镉晶粒容易聚集成块而使电池放电时形成放电平台。电池会储存这一放电平台并在下次循环中将其作为放电的终点。尽管电池本身的容量可以使电池放电到更低的平台上,但在以后的放电过程中电池将只记得这一低容量。也就是说电池容量变小了,这就是所谓的“记忆效应”。 镍氢可充电电池 镍氢可充电电池主要是为了取代镍镉电池而设计的。镍氢电池是使用氧化镍作为阳极,以及吸收了氢的金属合金作为阴极,氢氧化钾碱性水溶液为电解液。镍氢电池的能量密度比镍镉电池大,相同体积的镍氢电池容量可以达到镍镉电池的2倍左右。同时它不含有害金属、更加环保,同时镍氢电池基本消除了“记忆效应”。它的充电效率高,能在2小时内充足90%电量。但是不耐过充和过度放电,因此这种电池的充电器必须可自动断电,否则易造成电池损坏。 基于以上优点,镍氢电池几乎已经完全取代了镍镉电池。目前销售数码相机、MP3的电脑市场上出售的标准AA、AAA电池绝大多数是镍氢电池,主流AA镍氢电池容量达到了1500~2600mAH时,主流AAA镍氢电池容量达650~800mAH。而容量仅几百mAH的镍镉电池仅在一些百货商场可以见到,但与镍氢电池相同明显没有性价比,不建议贪图价格上的便宜而选用镍镉电池。关于容量方面的选择,目前DC、MP3等产品的液晶屏越来越大,应该尽量选择大容量的产品。 锂离子电池 我们俗称的锂电池一般将多颗电芯串连起来,电压范围在3.0~4.0V之间(公称电压3.6V)。以前还有一种金属锂电池,但锂离子电池比金属锂电子更安全,原因就在于是采用锂离子状态,锂离子电池没有可流动的液态电解质,而是改为聚合物电解质导电。锂离子电池与相同

为什么要对蓄电池进行内阻测试

为什么要对蓄电池进行内阻测试 蓄电池电压、电流、温度是蓄电池重要的运行参数,但是不能反映蓄电池内部状态。内阻作为目前国际公认的对蓄电池最有效的、测量最便捷的性能参数,能够反映蓄电池的劣化程度、容量状态等性能指标,而这些指标是电压、电流、温度等运行参数所无法反映的。 蓄电池的四种主要的失效模式:(失水、负极板硫化、正极板腐蚀和热失控的直接影响使蓄电池的容量下降,内阻升高)是造成蓄电池内阻升高的主要原因。 随着蓄电池的容量状态的下降,蓄电池的内阻会升高。容量越大的蓄电池其反映的内阻越小,同时随着蓄电池劣化程度的加大,蓄电池的内阻也会出现显著的增高。所以,蓄电池的内阻与其容量有着密切的关系:蓄电池内阻升高是蓄电池性能劣化的重要标志。 国际电信电源年会的研究成果显示,如果蓄电池的内阻超过正常值25%,该容量已降低到其标称容量的80%左右,如果蓄电池内阻超过正常值的50%,该蓄电池容量已降低到其标称容量的80%以下,需及时更换。 蓄电池在绝大部分现场是串联使用的,单体蓄电池的性能状态直接影响到蓄电池组的性能状态。同时,蓄电池组中的落后电池会加快与其串联的其他蓄电池的劣化速度。所以,对单体蓄电池的监测是保障蓄电池组的容量状态和使用寿命的必要条件。 通过对蓄电池组中的单体蓄电池进行内阻测试,能够准确地掌握蓄电池组中的每个单体蓄电池的性能状态。同时对于保证蓄电池供电稳定和延长蓄电池组的使用寿命具有重要意义。 蓄电池的容量状态会随着使用时间的增长而降低。根据国际电化学年会对25,000只通信用蓄电池的研究结果表明,蓄电池在使用2年后就会进入不稳定期。也就是说,蓄电池组在使用2年后就会出现容量状态大幅度下降的蓄电池单体。

密封铅酸蓄电池内阻分析

密封铅酸蓄电池内阻分析 下载:上传时间:11-26 文件大小:85k 作者:桂长清柳瑞华 前言 现在我国邮电部门已广泛采用阀控式密封铅蓄电池作为通信电源。由于这种电池是密封的,不像原来的自由电解液固定型铅蓄电池那样透明直观,又无法直接测量电解液密度,因而给使用维护工作带来一定的困难。于是人们希望通过检测电池内阻的办法来识别和预测电池的性能。目前进口的和国产的用于在线测量电池内阻的VRLA电导测试仪已在一些部门得到应用。然而实践中可以发现,利用在线检测阀控式密封铅蓄电池内阻(或电导)来识别和判断电池的性能并不能令人满意。本文拟在分析电池内阻的组成、测试原理和方法的基础上,阐述这一方法的适用条件及其局限性。 1蓄电池内阻的组成 宏观看来,如果电池的开路电压为V0,当用电流I放电时其端电位为V,则r =( V0-V)/I就是电池内阻。然而这样得到的电池内阻并不是一个常数,它不但随电池的工作状态和环境条件而变,而且还因测试方法和测试持续时间而异。究其实质,乃因电池内阻r包括着复杂的而且是变化着的成分。 理论电化学早已指出,电池在充电或放电时其端电压V是由以下3部分组成的: (1) 式中的IRΩ称为欧姆极化,它是由电池内部各组件的欧姆内阻RΩ引起的;是由电极附近液层中参与反应或生成的离子的浓度变化引起的,称为浓差极化;是由反应粒子进行电化学反应所引起的,称为活化极化。由(1)式可知,宏观上测出的电池内阻(即稳态内阻)R是由3部分组成的:欧姆内阻RΩ、浓差极化内阻Rc 和活化极化内阻Re。 欧姆内阻RΩ包括电池内部的电极、隔膜、电解液、连接条和极柱等全部零部件的电阻。虽然在电池整个寿命期间它会因板栅腐蚀和电极变形而改变,但是在每次检测电池内阻过程中可以认为是不变的。 浓差极化内阻既然是由反应离子浓度变化引起的,只要有电化学反应在进行,反应离子的浓度就总是在变化着的,因而它的数值是处于变化状态,测量方法不同或测量持续时间不同,其测得的结果也会不同。 活化极化内阻是由电化学反应体系的性质决定的;电池体系和结构确定了,其活化极化内阻也就定了;只有在电池寿命后期或放电后期电极结构和状态发生了变化而引起反应电流密度改变时才有改变,但其数值仍然很小。

蓄电池容量测试操作说明

1准备工作: 1.1工具准备 1.2资料准备 检修票,通信电源蓄电池组维护测试记录表(半年), 1.3注意事项 放电仪的选用: 注意蓄电池放电仪型号选用,48V蓄电池放电仪(型号:IDCE-4815CT)只能用48V蓄电池测试,UPS蓄电池放电仪(型号:IDCE-6006CT)只能用于UPS蓄电池测试。切勿混用。 2操作步骤: 2.1手续办理: 2.1.1信息确认: 把测试事宜及内容告知管理处相关人员,了解测试站点近期市电供电情况,是否存在市电供电异常,确认测试站点当日及第二日市电供电正常,才进行测试,否则,不得进行测试。

2.1.2资料报备: (1)填写检修申请票,并由管理处相关人员签字确认,完成维护报备工作; (2)通知网管中心,测试前将测试内容和涉及的设备向网管中心值班人员报备。 2.2检查记录: 2.2.1设备检查 (1)设备检查记录电池组浮充总电压、单体浮充电压、负载电流、环境温度以及开关电源的其它设置参数,检查蓄电池组的现有容量是否100%。 (2)检查所有的电池端子是否处于拧紧状态 (3)检查电池是否有漏液、酸雾等异常。 2.2.2仪器检查 按照设备清单清点配件是否齐全, 面板介绍 2.3开机与参数设置 2.3.1开机 UPS电源系统:

1)断开待测电池组断路器(注意:严禁两个断路器同时断开),如下图: 2)接交流电源,打开仪表上的市电开关,正常开机 40V蓄电池: 1)断开开关电源柜内的待测电池组熔断丝(注意:两组熔断丝严禁同时断开) 2)把正负极电缆接入仪器正负极接口,另一端与蓄电池正负极相连,然后先打开仪表 市电开关,再合上F1空开,仪表正常开机。(拆下的电池线铜鼻子做好绝缘保护)

(整理)铅酸蓄电池的性能检测

铅酸蓄电池的性能检测 一、容量 电池容量是指在规定条件下测得的并由制造商宣称的电池容量值。实际上是在规定 温度下,以一定电流放电一定时间,当达到规定的终止电压时,所能给出的电量,用C 表示,以安时(Ah)为单位。 ⑴起动电池的容量 a. 额定储备容量,用Cr.n表示,其值应符合GB/T 5008.2-2008标准的规定。 b. 实际储备容量,用Cr.e表示,其值应在第3次或之前的储备容量试验时,达到额定储备容量用Cr.n。 c. 20h率额定容量,用C20表示,其值应符合GB/T 5008.2-2008标准的规定。 d. 实际容量,用Ce表示,其值应在第3次或之前的容量试验时,应不低于额定容量C20的95%。 ⑵牵引电池的容量 a. 额定容量,用C5表示,在30℃温度下放电5h,放电电流是C5/5(A),放电至单体电压1.70V,所给出的电量(Ah),其值应符合GB/T 7403.1-2008标准的规定。 b. 实际容量,用Ce表示,在规定条件下,电池所能放出的电量(Ah),其值应在第1次容量试验时应不低于额定容量C5的85%。实际容量在前10次容量试验内至少有1次 达到额定容量。 ⑶内燃机车用排气式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.1-2008标准的规定。 ⑷内燃机车用阀控密封式电池的容量 电池的额定容量以C5表示,其值应在第6次循环内达到电池标称容量值,应符合GB/T 7404.2-2008标准的规定。

⑸铁路客车用电池的容量 a. 额定容量,用C10、C5、C1表示,其容量值在进行容量试验时要达到额定值,在3次试验中有1次合格为合格,应符合GB/T 13281-2008标准的规定。 b. 实际容量,用Ce表示,即在规定条件下测得的电池实际放电容量。 c. 低温容量,用Cd表示,电池在零下40℃环境中静置8h,以I10(A)电流放电至单体电压1.60V,计算其容量,低温容量Cd与常温容量C10、C5、C1的比值不少于0.4(>40%)。 ⑹固定型防酸式电池的容量 C10容量在第1次循环不低于0.90C10,第5次循环应达到C10;C1和1.0C容量分别在第7次、第9次循环达到额定值,应符合GB/T 13337.1-2008标准的规定。 ⑺固定型阀控密封式电池的容量 C10容量在第1次循环不低于0.95C10,第3次循环应达到C10、C3、C1,应符合GB/T 19638.1-2008的规定。 ⑻小型阀控密封式电池的容量 C20容量应符合GB/T 19639.2-2008的规定。实际容量Ce在第5次充/放循环内应不低于C20。 ⑼电动道路车辆用电池的容量 a. 额定容量,用C3表示,第1次放电容量应不低于0.85C3,第10次放电容量或之前放电容量应达到C3,应符合GB/T 18332.1-2008的规定。 b. 低温容量,用Cd表示,电池在零下18℃环境中静置24h,以I3(A)电流放电至单体电压1.40V,其容量应不低于0.5C3。 ⑽电动助力车用密封式电池的容量 a. 额定容量,用C2表示,应在第3次循环内达到。 b. 实际容量,用Ca表示,应符合GB/T 22199-2008的规定。

磷酸铁锂电池测试方法

低温磷酸铁锂电池测试方法及检测标准 1.电池测试方法 1.1蓄电池充电 在20℃士5℃条件下,蓄电池以1I 3 (A)电流放电,至蓄电池电压达到2.0 V,静置 1h,然后在20℃±5℃条件下以1I 3 (A)恒流充电,至蓄电池电压达3.65V时转恒 压充电,至充电电流降至0.1I 3 时停止充电。充电后静置lh。 1.2 20℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在20℃士5℃下以1I 3 (A)电流放电,直到放电终止电压2.0V 。 c) 用1I 3 (A)的电流值和放电时间数据计算容量(以A.h计)。 d) 如果计算值低于规定值,则可以重复a)一c)步骤直至大于或等于规定值,允许5次。 1.3 -20℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在-20℃士2℃下储存20h。 c) 蓄电池在-20℃士2℃下以1I 3 (A)电流放电,直到放电终止电压2.0V。 d) 用c)电流值和放电时间数据计算容量(以A.h计),并表达为20℃放电容量的百分数。 1.4 -40℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在-40℃士2℃下储存20h。 c) 蓄电池在-40℃士2℃下以1I 3 (A)电流放电,直到放电终止电压2.0V。 d) 用c)电流值和放电时间数据计算容量(以A.h计),并表达为20℃放电容量的百分数。 备注:1I 3— 3h率放电电流,其数值等于C 3 /3。 C 3 — 3 h率额定容量(Ah)。 1.5 高温荷电保持与容量恢复能力: a) 蓄电池按1.1方法充电。 b) 蓄电池在60℃士2℃下储存7day。 c) 蓄电池在20℃士5℃下恢复5h后,以1I 3 (A)电流放电,直到放电终止电压2.OV d) 用 c)的电流值和放电时间数据计算容量(以A.h计),荷电保持能力可以表达为额定容量的百分数。 e) 蓄电池再按1.1方法充电。 f) 蓄电池在20℃士5℃下以11 3 (A )电流放电,直到放电终止电压2.0V 。

铅酸蓄电池用极板检验技术条件

铅酸蓄电池用极板检验技术条件

目次 1.范围 2.引用标准 3.术语、定义 4.产品分类 5.技术要求 6.试验条件 7.试验方法 8.判定标准 9.标志、包装和贮存

铅酸蓄电池用极板 1范围 本附件规定铅酸蓄电池用极板的产品分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本附件适用于涂膏式负极板、涂膏式正极板、管式正极板。 2引用标准 下列文件中的条款通过本附件的引用而成为本附件的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本附件,然而,鼓励根据本附件达成协议的各方研究是否使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本附件。 GB/T 626 化学试剂硝酸 GB/T 631 化学试剂氨水 GB/T 643 化学试剂高锰酸钾 GB/T 676 化学试剂乙酸(冰醋酸) GB/T 694 化学试剂无水乙酸钠 GB 1245 化学基准试剂(容量)草酸钠 GB/T 1266 化学试剂氯化钠 GB/T 1294 化学试剂酒石酸 GB/T 1400 化学试剂六次甲基四胺 GB/T 计数抽样检验程序第1部分:按接收质量限(AQL)检索的逐批检验抽样计划(GB/T ,ISO2859_1:1999,IDT) GB/T 蓄电池名词术语(GB/T , eqvIEC60486:1986) GB/T 6684 化学试剂过氧化氢 GB/T 6685 化学试剂氯化羟胺(盐酸羟胺) GB 6782 食品添加剂柠檬酸钠 GB/T 10111 利用随机数骰子进行随机抽样的方法

GB/T 15347 化学试剂抗坏血酸3术语、定义 下列术语和定义适用于本附件 干式荷电极板 极板为干态且处于高层建筑荷电状态的极板.普通型极板 极板为干态且处于低荷电状态的极板. 涂膏式极板外观术语和定义 3.3.1极板弯曲 极板弧状变形 3.3.2极板活性物质掉块 极板上活性物质脱高板栅,且形成穿透性缺陷. 3.3.3极板表面脱皮有气泡 活性物质之间层状剥离,但未形成穿透性缺陷. 3.3.4极板活性物质凹陷 极板上活性物质局部明显低于极板表面 3.3.5极板四框歪 极板对角线不相等. 3.3.6极板活性物质酥松 活性物质之间或与板栅之间结合力变差 管式极板外观术语和定义 3.4.1丝管破裂 丝管表面一处或多处相互脱离 3.4.2丝管散头 丝管顶端发散. 3.4.3铅膏粘附。 丝管外表面粘附活性物质。

铅酸蓄电池内阻模型

铅酸蓄电池内阻模型 铅酸蓄电池的内阻受到制造工艺、材料以及结构等许多因素的影响,导致内阻模型复杂。由于铅酸蓄电池具有化学特性,因此其内阻不能简单的理解成为单纯的电阻。每个电池内阻模型的建立都是基于很多数学和化学的假设。 我们知道,铅酸蓄电池内部电极主要是由铅板及其氧化物组成,电解液是硫酸。由此可见,铅酸蓄电池的内阻就分为欧姆内阻和极化内阻。极化内阻就是铅酸蓄电池内部电极在进行电化学反应时产生的电阻。由于铅酸蓄电池的电极是多孔状的,并且是由多个电极并联起来的。因此铅酸蓄电池的欧姆内阻不但包括电极电阻,电解液电阻,还包括电离子穿过隔膜微孔时所受到的阻力,正负极与隔离层的接触电阻,连接条和极柱等全部零部件的电阻。极化电阻包括电化学电阻和浓差极化电阻。电化学极化电阻是由电极附近液层中参与反应或生成离子的浓度变化而引起,发生电化学反应时,反应离子的浓度总是在变化,因而它的数量也会随之变化,测量方法的不同、测量时间的不同,其测量的结果都是不同的。浓差极化电阻是由反应离子进行电化学反应引起,其在充放电过程中电阻是变化的。研究表明,随着蓄电池充电过程的进行,内阻逐步减小,随着放电过程的进行,内阻逐步增多。 经典的铅酸蓄电池内阻阻等效模型是经过对其电化学阻抗分析得到的,如下图1所示: 图1铅酸蓄电池内阻等效模型 图1所示电路中,L1为电极产生的电感,其值得范围为0.05到0.2mh,一般情况下电感在高频时影响较大,由于我们目前使用的电池设备中,频率的范围较低,故电感的影响可以忽略不计。R1是电解液中电子转移时遇到的阻力形成的电阻,此电阻值受到电解液与电极板表面的化学反应程度影响。R2是分析阻抗,用来表示反应物的扩散特性,是一个低频物件。C1是电解液中的平板导体间形成的电容,其典型值为100AH/1.3-1.7F。R3是金属电阻(包括汇流排、极柱、

充电电池容量测试仪实现方案

充电电池容量测试仪实现方案 电池容量是衡量电池质量的重要指标。充电电池的容量测试有很多的方法。可以依据电池的放电曲线,进行短时间放电,从而粗略得出电池容量。这种方法最大的优点是快速,但是充电电池的放电曲线并不具有普遍性,很多劣质电池放电初期电压也很平稳,一旦进入中后期,电压下降非常迅速,所以采用这种方法得出的结论将非常不准确的。 最可靠最准确无误的还是以标准电流放电,全程测量实际放电时间的方式。不同的放电电流,充电电池最终能够释放出的电量是不同的,有一定的差距。蓄电池的容量标注都是有统一标准的。目前使用最多的是10小时率放电容量与20小时率放电容量两种。10小时率放电容量就是电池以恒定电流放电,至电量耗尽放电时间能够维持10个小时左右,这个电流就被称作10小时率电流(衡量电量用尽的标准,不能以电池放电端电压降低到零为准。电池过度放电,会导致电池容量减少,无法恢复,乃至提早损坏、完全失效。所以每种电池放电终止电压都有严格的规定,这个可以查阅相关资料。 过度放电与过度充电是造成充电电池不能达到使用年限、提前报废的主要原因)。实时放电的测量方法最大的缺点就是费时费力,因为耗时久这样测量精度也很容易受到各种外部因素的影响。测量过程中如果用10小时率电流持续放电时间至少都要在5个小时以上,作这样长时间的测试更需要足够的耐心与精力以及充裕的时间。科技的发展是非常迅速,今天单片机已经非常普及了。通过单片机程序控制对放电时间,深度进行自动化控制,就很容易精准测出电池的实际容量,实现整个过程的自动控制。模拟实际放电测量容量的方法虽然对能源有一点浪费,但是对于1A、2A以下的小容量充电电池还是完全可行的,对大容量电池进行抽样检查也是很有必要。 下面介绍的电池容量测试仪采用89S51作为控制芯片,图1就是硬件的电路原理图。 图1 硬件的电路原理图 这个电池容量测试仪由放电电路、单片机控制计时两个完全独立部分组合而成。单片机部分制作费时费力,而且市面上单片机已很普及,没必要亲手制作,随便找一片51单片机实验板就可以了。放电电路则是比较简单的,仅由四五只元件构成。单片机部分主要负责对放电时间计时,最终得到一组可靠的数据,用于电池性能的考量。 这种放电电路的实质就是一模拟可控硅。当我们将待测电池接入电路相应位置时,点按启动键,如果电池尚有余量,则电池两端放电电压将维持在设定值以上,三极管VT1就会瞬间饱和,电池通过电阻R2进行放电。这种电路有可靠精确陡峭的开关特性,VT1绝对工作于饱和截止两种状态之下。通过可调电阻对开关电路临界值(即充电电池放电终止电压)进行调节设定,便可适应于各种不同类型充电电池的全程保护放电。由于个人的应用不需要非常精准的测试结果,所以实际测试中电池模拟放电原则上还是以快些为好,只需要得到一个大致的电池容量。为了较快完成电池测试过程,这里的电路设计采用两小时率电流进行放电。通过对各种电池测量结果的横向比较,容量的差异还是显而易见的,以此作为衡量电池优劣的标准,就已经足够了。这里以1000mAH、1.2V规格镍氢电池测试为例,放电电流500mA就需要采用2Ω的放电电阻,电池终止放电电压应控制在1V以上。放电终止电压通过可调电阻R1来调节设定。普通可调电阻精度较差,且容易产生漂移,会导致设定好的终止电压随时间推移以及使用环境变化产生较大的波动。为了保证放电终止电压的精准且易于设定,R1可以使用3296系列精密可调电位器。3296多圈可调精密电位器的可调范围一般在50T,所以每圈的调节范围为2%,每转动一度,阻值变化大约0.005%,所以很容易调节获得一个精确、稳定的阻值。 终止电压的设定必须在实际放电过程中进行,负载电阻R2阻值变动,已经设定的终止电压也

蓄电池的内阻的技术含义和测量

蓄电池的内阻的技术含义和测量 郑州移动通信分公司胡贵山 内容提要:蓄电池的内阻是电池的一个重要指标,它的物理含义和电化学含义是什么?能不能用蓄电池的电导内阻来判断电池的安全性?本文就蓄电池的动态内阻和静 态内阻的技术含义作了分析, 1.蓄电池内阻的构成 蓄电池的内阻是由以下几部分构成。 1.1极柱间的欧姆电阻。其中包括构件的电阻,电解液的电阻,隔板的电阻。以上的电阻是蓄电池的静态电阻,即在不放电的条件下,测得的欧姆电阻。 1.2蓄电池的极化电阻。蓄电池在放电的条件下,由于外电路放电的需要,导致内部电解液中离子的运动。离子的运动有趋极效应,即在电池的内部的正负极附近,有不同浓度的离子存在,形成浓差极化。如SO42-离子,在正极附近的消耗量比负极大。电化学极化是化学电极在电化学反应时的特征,即在放电时电极电位会自动向减少位差的方向偏移。在两种极化作用下,导致正极电极电位下降,负极电极电位上升。总的结果,使电池的端电压下降,宏观上表现出电池内阻增大。 2. 池的空载电压在开关 电压V2。 r= 显然, 其动态内阻r 比如1号电池点亮2.5V的小灯泡时工作电流0.35A,当灯不亮时,可测的电池的供电电压下降到0.8V左右,这是由于电池内阻增大造成的。计算在这种工作状态下,电池空载电压1.3V,内阻是1.44Ω。把这样的电池再用于晶体管收音机,由于工作电流减小到50mA,电池的供电电压依然可在1.25V左右,计算内阻相应为1Ω,晶体管收音机照样工作。 因此,当说到蓄电池的动态内阻是多少Ω时,必须同时说明其放电电流值,同时蓄电池的动态内阻值,与蓄电池的保有容量直接相关。用适当的检测电流,检测电池的负载电压,本质就是测量电池的动态内阻,通过对负载电压的测量,可快速测量出电池的保有容量。 蓄电池的报废都是因为动态内阻增大造成的。蓄电池的动态内阻值直接决定蓄电池能否安全使用,测定其动态内阻值是否超限是检测蓄电池安全状态的最可靠的手段。

铅酸蓄电池结构详解

铅酸蓄电池结构详解 一、蓄电池的功用 蓄电池种类较多,根据电解液不同,有酸性和碱性之分。由于铅酸蓄电池内阻小,电压稳定,在短时间内能供给较大的起动电流,而且结构简单,价格较低,所以在汽车拖拉机上被广泛采用。 蓄电池为一可逆直流电源,在汽车拖拉机上及发电机并联,它的主要作用是: (1)发动机起动时,蓄电池向起动机和点火装置供电。起动发动机时,蓄电池必须在短时间内(5~10s)给起动机提供强大的起动电流(汽油机为200~600A。柴油机有的高达1000A)。 (2)在发电机不发电或电压较低发动机处于低速时,蓄电池向点火系及其它用电设备供电,同时向交流发电机供给他激励磁电流。(3)当用电设备同时接入较多,发电机超载时,蓄电池协助发电机共同向用电设备供电。 (4)当蓄电池存电不足,而发电机负载又较少时,可将发电机的电能转变为化学能储存起来,即充电。 (5)蓄电池还有稳定电网电压的作用。当发动机运转时,交流发电机向整个系统提供电流。蓄电池起稳定电器系统电压的作用。蓄电池相当于一个较大的电容器,可吸收发电机的瞬时过电压,保护电子元件不被损坏。延长其使用寿命。 二、蓄电池的构造

车用12V蓄电池均由6个单格电池串联而成,每个单格的标称电压为2V,串联成12V的电源,向汽车拖拉机用电设备供电。 蓄电池主要由极板、电解液、格板、电极、壳体等部分组成。 1.极板 极板分为正极板和负极板两种。蓄电池的充电过程是依靠极板上的活性物质和电解液中硫酸的化学反应来实现的。正极板上的活性物质是深棕色的二氧化铅(PbO2),负极板上的活性物质是海绵状、青灰色的纯铅(Pb)。 正、负极板的活性物质分别填充在铅锑合金铸成的栅架上,加入锑的目的是提高栅架的机械强度和浇铸性能。但锑有一定的副作用,锑易从正极板栅架中解析出来而引起蓄电池的自行放电和栅架的膨胀、溃烂,从而影响蓄电池的使用寿命。 负极板的厚度为1.8mm,正极板为2.2mm,为了提高蓄电池的容量,国外大多采用厚度为1.1~1.5mm的薄型极板。另外,为了提高蓄电池的容量,将多片正、负极板并联,组成正、负极板组。在每单格电池中,负极板的数量总比正极板多一片,正极板都处于负极板之间,使其两侧放电均匀,否则因正极板机械强度差,单面工作会使两侧活性物质体积变化不一致,造成极板弯曲。 2.隔板 为了减少蓄电池的内阻和体积,正、负极板应尽量靠近但彼此又不能接触而短路,所以在相邻正负极板间加有绝缘隔板。隔板应具有多孔性,以便电解液渗透,而且应具有良好的耐酸性和抗碱性。

电池电量检测方法及原理 pdf

FUEL GAUGE 电池电量检测方法及原理锂电池具有高存储能量、寿命长、重量轻和无记忆效应等优点,已经在现行便携式设备中得到了广泛的使用,尤其是在手机、多媒体播放器、GPS终端等消费类电子设备中。这些设备不但单纯地只是支持单一的通讯功能,还支持流媒体播放和高速的无线发送和接收等等功能。随着越来越多功能的加入且要获得更长单次充电的使用时间,便携式设备中锂电池的容量也不断地增大,以智能手机为例,主流的电池容量已经800mAH增长到现在1500mAH,并且还有继续增长的趋势。 随着大容量电池的使用,如果设备能够精确的了解电池的电量,不仅能够很好地保护了电池,防止其过放电,同时也能够让用户精确地知道剩余电量来估算所能使用的时间,及时地保存重要数据。因此,在PMP和GPS中,电量计不断加入到设备中,并且电量计也在智能手机中得到了应用,尤其是在一些Windows Mobile操作系统的智能手机中,如图1所示,电池电量的显示已由原来的柱状图变为了数字显示。 本文介绍和比较三种种不同电量计的实现方法,并且以意法半导体的STC3100电池监控IC为例,在其Demo实现了1%精度的电池精度计量。 (a)柱状图电量显示(b)数字精确电量显示 图1 Windows Mobile 手机中电量计量 1,电量计的实现方法和分类。 据统计,现行设备中有三种电量计,分别是: 直接电池电压监控方法,也就是说,电池电量的估计是通过简单地监控电池的电压得来的,尽管该方法精度较低和缺乏对电池的有效保护,但其简单易行,所以在现行的设备中得到最广泛的应用。然而锂电池本身特有的放电特性,如图2所示。不难从中发现,电池的电量与其电压不是一个线性的关系,这种非线性导致电压直接检测方法的不准确性,电量测量精度超过20%。电池电量只能用分段式显示,,如图1.a所示,无法用数字显示精确的电池电量。手机用户经常发现,在手机显示还有两格电的时候,电池的电量下降得非常快,也就是因为这时候电池已经进入Phase3。 图2 锂电池放电曲线

天能阀控铅酸蓄电池电池检测标准

附件一:阀控铅酸蓄电池的检 测 1、检测方法、判断标准 1.1万用表电压检测法 情况一:蓄电池在短期内突然出现放电时间或行驶里程骤降。 步骤:a.电池间连接线检查。检查电池间连接线是否连接牢固有无松动,连接线有无腐蚀断丝; b.放电。将电池总电压放至测量值,即单格电压达到1.8V(6V电池为 5.4V/单只,8V电池为7.2V/单只,12V电池为10.8V/单只); c.放电后电压记录。打开车载用电设备(如:大灯、冷暖风机等)迅 速测量每单只电池的电压并按照不同方位电池做好电压记录; e.补充电。如有△U值大于以上参考值,对这只电池作好记号便于找到,并作以 下补充电; (1)用车载充电器充电至充电完成; (2)用单只充电器对△U值大于以上参考值的电池进行补电; (3)重复b至d步骤; (4)如△U值仍大于参考值,用车载充电器充电至充电完成后更换这只落后电池。 f.平衡适应阶段。为更好使更换的电池达到与其它电池间平衡和适应过程前期 务必按以下操作,切勿作深放电;

(1)充电后放电深度在30%左右进行充电为宜,即如正常可行驶100公里,在行驶30公里左右停止; (2)用车载充电器充电至充电完成; (3)以此浅放电循环至少3次以上方可,建议放电深度不大于70%为宜(即在平缓的路况行驶时感觉车速下降动力不足),如长期进行深 放电会造成电池间压差增大,电池容量、寿命快速下降的风险。 情况二:蓄电池在一定期间内放电时间或行驶里程短大于电池正常衰减且后续未出现急剧下降; 步骤:a.充电后电压记录。用车载充电器充电至充电完成,断开充电器静止2小时测量每单只电池电压并按照不同方位电池做好电压记录, 充满电即单格电压在2.2V左右(6V电池为6.6V/单只,8V电池 为8.8V/单只,12V电池为13.2V/单只),作为判断电池是否因充 电器问题未充满电; b.放电1。将电池总电压放至测量值,即单格电压达到1.8V(6V 电池为5.4V/单只,8V电池为7.2V/单只,12V电池为10.8V/单只); c.放电后电压记录。打开车载用电设备(如:大灯、冷暖风机等) 迅速测量每单只电池的电压并按照不同方位电池做好电压记录, 作为判断是否可能因电池单只落后导致,如单只落后按情况一d 至f进行,如电压正常继续以下操作; d.放电2。将电池总电压放至截止电压,即单格电压达到1.65V (6V电池为4.95V/单只,8V电池为6.6V/单只,12V电池为9.9V/ 单只); e.放电后电压记录。打开车载用电设备(如:大灯、冷暖风机等) 迅速测量每单只电池的电压并按照不同方位电池做好电压记录, 作为判断控制器欠压保护是否设置太高导致;

蓄电池容量检测方法

传统的蓄电池容量检测方法是进行整组核对性放电,即把蓄电池组连接到负载箱,然后进行放电,一直放到截止电压(没电)为止,来验证蓄电池的容量,但是这种方法有很多隐患和缺点: a、 电时间长,风险大,电池组须脱离系统,蓄电池组所存储的化学能全部以热能形式消耗掉,既浪费了电能又费时费力,效率低。 b、 行核对性放电试验,必须具备一定条件,首先,尽可能在市电基本保障的条件下进行;其次 ,必须有备用电池组 。 c、 目前,核对放电只能测试整组电池容量,不能测试每一节单体电池容量,以容量最低的一节作为整组容量,而其他部分电池由于放电深度不够,其劣化或落后程度还不能完全充分暴露出来。 d、 损蓄电池的容量。由于蓄电池的内部化学反应不是完全可逆的。全深度循环放电的次数是有限的,所以,不适宜对铅酸蓄电池频繁进行深放电。但是间隔时间过长,两次核对之间的蓄电池的状态是不确定的。蓄电池的容量下降到80%以下后,蓄电池便进入急剧的衰退状况,衰退期很短,可能在一次核对放电后几个月就失效,而在剩下的时间内电池组已存在极大的事故隐患。 内阻测试的原理: 通过大量的试验得出:蓄电池的内阻值随蓄电池容量的降低而升高,也就是说,当蓄电池不断的老化,容量在不断的降低时,蓄电池的内阻会不断加大。通过这个试验结果,我们可以得出,通过对比整组蓄电池的内阻值或跟踪单体电池的内阻变化程度,可以找出整组中落后的电池,通过跟踪单体电池的内阻变化程度,可以了解蓄电池的老化程度,达到维护蓄电池的目的。 对于VRLA蓄电池来说,如果内部电阻比基准值(平均值)增加20%以上,蓄电池性能则会下降到一个级低的水平。这个值也是IEEE STD建议立即采取纠正措施(放电试验或更换)的标准。IBEX1000则根据这个建议基准将报警值设定为20%。 相应的,VRLA蓄电池容量下降到80%以下时,蓄电池的老化程度就像在图形中的△T一样,该时间是无法预测的,同时容量衰减的速度会越来越块,而内阻值的增加也会越来越快。因此我们建议,及时更换蓄电池,以提高贵公司蓄电池系统的可靠性。 至今为止,实际应用的判别蓄电池健康状态的方法只用IEEE推荐的标准,因此我们建议,当蓄电池的内阻值增加20%以上,应考虑对此单元电池采取纠正或更换措施. 现在蓄电池的使用已经非常普遍,对蓄电池进行准确快速地检测及维护也日益迫切。国内外大量实践证明,电压与容量无必然相关性,电压只是反映电池的表面参数。国际电工IEEE-1188-1996为蓄电池维护制订了“定期测试蓄电池内阻预测蓄电池寿命”的标准。中国信息产业部邮电产品质量检验中心也提出了蓄电池内阻的相关规范(见YD/T799-2002)。蓄电池内阻已被公认是判断蓄电池容量状况的决定性参数。 内阻与容量的相关性是:当电池的内阻大于初始值(基值)的25%时,电池将无

电池电量检测芯片

电池电量检测芯片 时间:2011-12-17 22:29:42来源:作者: 电池电量监测计就是一种自动监控电池电量的IC,其向做出系统电源管理决定的处理器报告监控情况。一个不错的电池电量监测计至少需要一些测量电池电压、电池组温度和电流的方法、一颗微处理器、以及一种业经验证的电池电量监测计算法。bq2650x 和 bq27x00 均为完整的电池电量监测计,其拥有一个用于电压和温度测量的模数转换器(ADC) 以及一个电流和充电感应ADC。这些电池电量监测计还拥有一颗运行TI 电池电量监测计算法的内部微处理器。这些算法将对锂离子(Li-ion)电池的自放电、老化、温度和放电率进行补偿。该微处理器可以使主机系统处理器不用进行没完没了的计算。 电池电量监测计提供了诸如?电量剩余状态?等信息,同时bq27x00 系统还提供了?剩余运行时间?信息。主机在任何时候都可以询问到这种信息,并由主机来决定是通过LED 还是通过屏幕显示消息来通知最终用户有关电池的信息。由于系统处理器只需要一个12C 或一个HDQ 通信驱动,因此使用电池电量监测计非常简单。 电池组电路描述 图1 描述了电池组中的应用电路。根据所使用电池电量监测计IC 的不同,电池组将至少具有三到四个可用外部终端。 图1 典型的应用电路 VCC 和BAT 引脚将接入电池电压,用于IC 功率和电池电压的测量。一只低阻值感应电阻被安装在电池的接地端,以使感应电阻两端的电压能够被电池电量监测计的高阻抗SRP 和SRN 输入监控到。流经感应电阻的电流有助于我们确定电池的已充电量或已放电量。在选择感应电阻值时,设计人员必须考虑到其两端的电压不应该超过100 mV。太小的电阻值在低电流条件下可能会带来误差。电路板布局必须确保SRP 和SRN 到感应电阻的连接尽可能地靠近感应电阻的各个端点;即Kelvin 连接测量。

相关主题
文本预览
相关文档 最新文档