九年级数学上册期末试卷测试卷附答案
- 格式:doc
- 大小:998.50 KB
- 文档页数:30
人教版九年级上册数学期末考试试题一、单选题1.在有理数2,0,﹣1,﹣3中,任意取两个数相加,和最小是()
A.2B.﹣1C.﹣3D.﹣42.下列属于中心对称图形的是()
A.B.C.D.3.数据4000亿用科学记数法表示为()A.120.410B.10410C.11410D.110.410
4.若一个多边形的内角和等于720°,则这个多边形的边数是()A.5B.6C.7D.85.函数2yx中,自变量x的取值范围是()A.2xB.2xC.2xD.2x6.如果数据1x,2x,L,nx的方差是3,则另一组数据12x,22x,L,2
n
x
的方
差是()A.3B.6C.12D.57.若21xy,则342xy的值是()
A.5B.-5C.1D.-18.如图,把△ABC绕着点A逆时针旋转40°得到△ADE,∠1=30°,则∠BAE=()
A.10°B.30°C.40°D.70°9.P为⊙O内一点,3OP,⊙O半径为5,则经过P点的最短弦长为()A.5B.6C.8D.1010.二次函数2yxmx
的图象如图,对称轴为直线2x,关于
x
的一元二次方程20xmxt
(t为实数)在15x的范围内有解,则t的取值范围是()
A.5tB.53tC.34tD.54t二、填空题
11.计算:1013.142____________.12.分解因式:22368xyxy-=__________.13.小红参加学校举办的“我爱我的祖国”主题演讲比赛,她的演讲稿、语言表达、形象风度得分分别为85分,70分,80分,若依次按照40%,30%,30%的百分比确定成绩,则她的平均成绩是________分.14.在平面直角坐标系中,一次函数2yx与反比例函数0kykx的图象交于11,Axy,
22,Bxy
两点,则12yy的值是____________.
九年级数学(上)期末试卷(含答案)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A.B.C.D.2.某斜坡的坡度i=l:,则该斜坡的坡角为()A.75°B.60°C.45°D.30°3.将抛物线y=﹣3x2﹣1向左平移2个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣3(x+2)2+1B.y=﹣3(x﹣2)2﹣3C.y=﹣3(x+2)2﹣3D.y=﹣3(x﹣2)2+14.如图,在△ABC中,∠C=90°,若sin B=,则sin A=()A.B.C.D.5.若反比例函数y=的图象分布在第二、四象限,则k的取值范围是()A.k<B.k>C.k>2D.k<26.如图,在△ABC中,点D、E和点F、G分别是边AB、AC的三等分点,△ABC的面积为18,则四边形DEGF的面积为()A.2B.3C.6D.97.如图,CD是Rt△ABC斜边AB上的中线,过点C作CE⊥CD交AB的延长线于点E,添加下列条件仍不能判断△CEB与△CAD相似的是()A.∠CBA=2∠A B.点B是DE的中点C.CE•CD=CA•CB D.=8.如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论中正确的个数有()个.①abc>0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当ax2+bx+c>3时,x的取值范围是0<x<2.A.1个B.2个C.3个D.4个10.已知二次函数y=﹣x2+2x+3,截取该函数图象在0≤x≤4间的部分记为图象G,设经过点(0,t)且平行于x轴的直线为l,将图象G在直线l下方的部分沿直线l翻折,图象G在直线上方的部分不变,得到一个新函数的图象M,若函数M的最大值与最小值的差不大于5,则t的取值范围是()A.﹣1≤t≤0B.﹣1≤t≤﹣C.﹣D.t≤﹣1或t≥0二、填空题(本大题共4小题,每小题5分,满分20分)11.二次函数y=x2﹣2x+m的图象与x轴的一个交点的坐标是(﹣1,0),则图象与x轴的另一个交点的坐标是.12.如图,在△ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,将△ACD以点C为旋转中心,顺时针旋转90°得到△BCE,若点A、D、E共线,则∠AEB的度数等于.13.如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(x<0)的图象交于点A(﹣2,m),将直线y=﹣x沿y轴向上平移n个单位长度,交y轴于点B,交反比例函数图象于点C,连接OC,若BC=OA,则n的值为.14.四边形ABCD是一张矩形纸片,点E在AD上,将△ABE沿BE折叠,使点A落在矩形的对角线BD上,连接CF,若DE=1,请探究下列问题:(1)如图1,当F恰好为BD的中点时,AE=;(2)如图2,当点C、E、F在同一条直线上时,AE=.三、(本大题共2小题,每小题8分,总计16分)15.计算:(3﹣π)0﹣2cos30°﹣+|1﹣tan60°|.16.如图,在平面直角坐标系中,△ABC的顶点均在格点(网格线的交点)上.(1)将△ABC绕点A顺时针旋转90°得到△AB1C1,画出△AB1C1;(2)在给定的网格中,以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,画出△A2B2C2.四、(本大题共2小题,每小题8分,总计16分)17.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(1,0),与y轴的交点坐标为(0,1).(1)求此二次函数的表达式;(2)用配方法求顶点坐标.18.已知,如图:AB是⊙O的直径,AB=AC,BC交⊙O于D,DE⊥AC于点E,求证:DE是⊙O的切线.五、(本大题共2小题,每小题10分,总计20分)19.小聪在学习解直角三角形的知识后,萌生了测量他家对面位于同一水平面的楼房高度的想法,他站在自家C处测得对面楼房顶端A的仰角为37°,然后又下楼至楼底的D 处,测得对面楼房顶端A的仰角为60°,已知CD的距离为40米,请你用小聪测得的数据求出对面楼房AB的高度.(结果精确到0.1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)20.如图,已知Rt△ABC中,∠BAC=90°,BC=6,AC=4,以A为圆心,AB为半径画圆,与边BC交于另一点D.(1)求BD的长;(2)连接AD,求∠DAC的余弦值.六、(本大题共1小题,每小题12分,总计12分)21.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(m,4)、B(2,n)的两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象,直接写出不等式kx+b﹣<0的解集;(3)求△AOB的面积.七、(本大题共1小题,每小题12分,总计12分)22.某大学生利用暑假40天社会实践参与了某公司旗下一家加盟店经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示:销售量p(件)p=50﹣x销售单价q(元/件)当1≤x≤20时,q=30+x当21≤x≤40时,q=20+(1)请计算第几天该商品的销售单价为35元/件(2)这40天中该加盟店第几天获得的利润最大?最大利润是多少?(3)在实际销售的前20天中,公司为鼓励加盟店接收大学生参加实践活动决定每销售一件商品就发给该加盟店m(m≥2)元奖励.通过该加盟店的销售记录发现,前10天中,每天获得奖励后的利润随时间x(天)的增大而增大,求m的取值范围.八、(本大题共1小题,每小题14分,总计14分)23.如图①,在正方形ABCD中,B为边BC上一点,连接AE,过点D作DN⊥AE交AE、AB分别于点F、N.(1)求证:△ABE≌△DAN;(2)若E为BC中点,①如图②,连接AC交DP于点M,求CM:AM的值;②如图③,连接CF,求tan∠CFE的值.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.2.某斜坡的坡度i=l:,则该斜坡的坡角为()A.75°B.60°C.45°D.30°【分析】根据坡度i与坡角α之间的关系为i=tanα计算即可.解:设该斜坡的坡角为α,∵斜坡的坡度i=1:,∴tanα==,则α=30°,故选:D.3.将抛物线y=﹣3x2﹣1向左平移2个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣3(x+2)2+1B.y=﹣3(x﹣2)2﹣3C.y=﹣3(x+2)2﹣3D.y=﹣3(x﹣2)2+1【分析】先确定抛物线y=﹣3x2﹣1的顶点坐标为(0,﹣1),再利用点平移的坐标变换规律得到点(0,﹣1)平移后所得对应点的坐标为(﹣2,﹣3),然后根据顶点式写出平移后的抛物线解析式.解:抛物线y=﹣3x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向左平移2个单位长度,再向下平移2个单位长度所得对应点的坐标为(﹣2,﹣3),所以平移后的抛物线解析式为y=﹣3(x+2)2﹣3.故选:C.4.如图,在△ABC中,∠C=90°,若sin B=,则sin A=()A.B.C.D.【分析】根据题目的已知设AC=4a,AB=5a,然后利用勾股定理求出BC的长,最后利用锐角三角函数的定义进行计算即可.解:在△ABC中,∠C=90°,sin B==,∴设AC=4a,AB=5a,∴BC===3a,∴sin A===,故选:A.5.若反比例函数y=的图象分布在第二、四象限,则k的取值范围是()A.k<B.k>C.k>2D.k<2【分析】根据反比例函数的图象和性质,由1﹣2k<0即可解得答案.解:∵反比例函数y=的图象分布在第二、四象限,∴1﹣2k<0,解得k>,故选:B.6.如图,在△ABC中,点D、E和点F、G分别是边AB、AC的三等分点,△ABC的面积为18,则四边形DEGF的面积为()A.2B.3C.6D.9【分析】由点D、E、F、G分别是边AB、AC的三等分点,可得DF∥EG∥BC,AD:AE:AB=1:2:3,即可证得△ADF∽△AEG∽△ABC,然后由相似三角形面积比等于相似比的平方,求得S△ADF:S△AEG:S△ABC的值,再根据△ABC的面积为18,继而求得答案.解:∵点D、E、F、G分别是边AB、AC的三等分点,∴DF∥EG∥BC,AD:AE:AB=1:2:3,∴△ADF∽△AEG∽△ABC,∴S△ADF:S△AEG:S△ABC=1:4:9,∵△ABC的面积为18,∴S△ADF=2,S△AEG=8,∴四边形DEGF的面积为8﹣2=6.故选:C.7.如图,CD是Rt△ABC斜边AB上的中线,过点C作CE⊥CD交AB的延长线于点E,添加下列条件仍不能判断△CEB与△CAD相似的是()A.∠CBA=2∠A B.点B是DE的中点C.CE•CD=CA•CB D.=【分析】根据相似三角形的判定方法一一判断即可.解:∵CE⊥CD,∴∠EDC=90°,∵∠BCA=90°,∴∠BCE=∠DCA=90°﹣∠BCD,∵CD是Rt△ABC斜边AB上的中线,∴DC=DB=DA,∴∠DAC=∠A,∴∠BCE=∠DCA=∠A,∵∠CBA=2∠A,∠CBA+∠A=90°,∴∠A=∠BCE=∠DCA=30°,∠CBA=60°,∴∠E=∠CBA﹣∠BCE=30°,∴∠BCE=∠DCA=∠E=∠A,∴△CEB∽△CAD,∴A不符合题意,∵点B是DE的中点,∴BE=BC,∴∠BCE=∠E,∴∠BCE=∠E=∠DCA=∠A,∴△CEB∽△CAD,∴B不符合题意,∵CE•CD=CA•CB,∴=,∵∠BCE=∠DCA,∴△CEB∽△CAD,∴C不符合题意.由=,由于∠E和∠A不能判断相等,故不能判断△CEB与△CAD相似,∴D符合题意,故选:D.8.如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°【分析】连接AC,根据圆内接四边形的性质求出∠DAB,根据圆周角定理求出∠ACB、∠CAB,计算即可.解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°﹣∠C=70°,∵=,∴∠CAB=∠DAB=35°,∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=55°,故选:A.9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论中正确的个数有()个.①abc>0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0;④当ax2+bx+c>3时,x的取值范围是0<x<2.A.1个B.2个C.3个D.4个【分析】利由抛物线的位置可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x =﹣1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在直线y=3上方所对应的自变量的范围可对④进行判断.解:∵抛物线开口向下,∴a<0,∵对称轴在y轴的右侧,∴﹣>0,∴b>0,∵抛物线交y轴的正半轴,∴c>0,∴abc<0,故①错误;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,故②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,即3a+c=0,故③错误;∵(0,3)关于直线x=1的对称点的坐标为(2,3),∴当ax2+bx+c>3时,x的取值范围是0<x<2,故④正确.故选:B.10.已知二次函数y=﹣x2+2x+3,截取该函数图象在0≤x≤4间的部分记为图象G,设经过点(0,t)且平行于x轴的直线为l,将图象G在直线l下方的部分沿直线l翻折,图象G在直线上方的部分不变,得到一个新函数的图象M,若函数M的最大值与最小值的差不大于5,则t的取值范围是()A.﹣1≤t≤0B.﹣1≤t≤﹣C.﹣D.t≤﹣1或t≥0【分析】找到最大值和最小值差刚好等于5的时刻,则t的范围可知.解:如图1所示,当t等于0时,∵y=﹣(x﹣1)2+4,∴顶点坐标为(1,4),当x=0时,y=3,∴A(0,3),当x=4时,y=﹣5,∴C(4,﹣5),∴当t=0时,D(4,5),∴此时最大值为5,最小值为0;如图2所示,当t=﹣1时,此时最小值为﹣1,最大值为4.综上所述:﹣1≤t≤0,故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.二次函数y=x2﹣2x+m的图象与x轴的一个交点的坐标是(﹣1,0),则图象与x轴的另一个交点的坐标是(3,0).【分析】由二次函数的解析式得出图象的对称轴,由图象的对称性即可得出答案.解:∵二次函数y=x2﹣2x+m的图象的对称轴为x=﹣=1,与x轴的一个交点的坐标是(﹣1,0),∴由二次函数图象的对称性得:二次函数的图象与x轴的另一个交点的坐标是(3,0);故答案为:(3,0).12.如图,在△ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,将△ACD以点C为旋转中心,顺时针旋转90°得到△BCE,若点A、D、E共线,则∠AEB的度数等于90°.【分析】由旋转的性质得∠DCE=90°,CD=CE,则△CDE是等腰直角三角形,得∠ADC=∠CEB=135°,从而得出答案.解:∵将△ACD以点C为旋转中心,顺时针旋转90°得到△BCE,∴∠DCE=90°,CD=CE,∠ADC=∠CEB,∴∠CDE=∠CED=45°,∴∠ADC=∠CEB=135°,∴∠AEB=∠CEB﹣∠CED=90°,故答案为:90°.13.如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(x<0)的图象交于点A(﹣2,m),将直线y=﹣x沿y轴向上平移n个单位长度,交y轴于点B,交反比例函数图象于点C,连接OC,若BC=OA,则n的值为.【分析】由直线解析式求得A的坐标,进而求得反比例函数的解析式,根据定义求得C 的横坐标,把横坐标代入反比例函数的解析式求得C的坐标,代入y=﹣x+n即可求得n的值.解:∵直线y=﹣x与反比例函数y=(x<0)的图象交于点A(﹣2,m),∴m=﹣(﹣2)=1,k=﹣2m,∴k=﹣2,∵BC=OA,∴C的横坐标为﹣1,把x=﹣1代入y=﹣得,y=2,∴C(﹣1,2),∵将直线y=﹣x沿y轴向上平移n个单位长度,得到直线y=﹣x+n,∴把C的坐标代入得2=+n,求得n=,故答案为:.14.四边形ABCD是一张矩形纸片,点E在AD上,将△ABE沿BE折叠,使点A落在矩形的对角线BD上,连接CF,若DE=1,请探究下列问题:(1)如图1,当F恰好为BD的中点时,AE=;(2)如图2,当点C、E、F在同一条直线上时,AE=.【分析】(1)当点F恰好为BD中点时,由折叠的性质得EF⊥BD,即可求证∠ABE=∠DBE=∠ADB=30°,即可求出DE长;(2)当点C、E、F在同一直线上时,易知BF=BA=CD,∠BCF=∠DEC,∠BFC=∠CDE=90°,可求证△BFC≌△CDE(AAS),再根据△DEF∽△CED的相似比求解即可.解:(1)当点F恰好为BD中点时,由折叠的性质得EF⊥BD,∴EB=ED,∴∠EBD=∠EDB,由折叠的性质得∠ABE=∠EBD,∴∠ABE=∠DBE=∠ADB,又∵∠ABE+∠DBE+∠ADB=90°,∴∠ABE=30°,∴∠DBE=30°,∠ADB=30°,∴BE=DE=1,∴AE=BE==.故答案为:;(2)当点C、E、F在同一直线上时,根据翻折的性质可知:BF=BA=CD,∠BCF=∠DEC,∠BFC=∠CDE=90°,∴△BFC≌△CDE(AAS),∴FC=DE=1,设AE=x,可得EF=x,∵∠DEF=∠CED,∠EFD=∠EDC,∴△DEF∽△CED,∴DE2=EF•EC,∴12=x(x+1),解得:x=或x=(舍去负值),∴AE=,故答案为:.三、(本大题共2小题,每小题8分,总计16分)15.计算:(3﹣π)0﹣2cos30°﹣+|1﹣tan60°|.【分析】直接利用特殊角的三角函数值以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简,进而得出答案.解:原式=1﹣2×﹣2+﹣1=1﹣﹣2+﹣1=﹣2.16.如图,在平面直角坐标系中,△ABC的顶点均在格点(网格线的交点)上.(1)将△ABC绕点A顺时针旋转90°得到△AB1C1,画出△AB1C1;(2)在给定的网格中,以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,画出△A2B2C2.【分析】(1)利用旋转变换的性质分别作出B,C的对应点B1,C1即可;(2)利用位似变换的性质分别作出A,B,C的对应点A2,B2,C2即可.解:(1)如图,△AB1C1即为所求;(2)如图,△A2B2C2即为所求.四、(本大题共2小题,每小题8分,总计16分)17.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(1,0),与y轴的交点坐标为(0,1).(1)求此二次函数的表达式;(2)用配方法求顶点坐标.【分析】(1)通过待定系数法求解.(2)将抛物线解析式化为顶点式求解.解:(1)将(1,0),(0,1)代入y=﹣x2+bx+c得,解得,∴y=﹣x2﹣x+1.(2)∵y=﹣x2﹣x+1=﹣(x+)2+,∴抛物线顶点坐标为(﹣,).18.已知,如图:AB是⊙O的直径,AB=AC,BC交⊙O于D,DE⊥AC于点E,求证:DE是⊙O的切线.【分析】连接OD,根据等腰三角形的性质证得∠C=∠ABC,∠ODB=∠ABC,进而得到∠ODB=∠C,由平行线的性质得到OD∥AC,继而可得DE⊥OD,由切线的判定定理可得DE为⊙O的切线.【解答】证明:连接OD,∵AB=AC,∴∠C=∠ABC,又∵OD=OB∴∠ODB=∠ABC,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线.五、(本大题共2小题,每小题10分,总计20分)19.小聪在学习解直角三角形的知识后,萌生了测量他家对面位于同一水平面的楼房高度的想法,他站在自家C处测得对面楼房顶端A的仰角为37°,然后又下楼至楼底的D 处,测得对面楼房顶端A的仰角为60°,已知CD的距离为40米,请你用小聪测得的数据求出对面楼房AB的高度.(结果精确到0.1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)【分析】根据正切的定义得出AB=BD•tan∠ABD=BD=1.73BD,=0.75,即可得出BD≈40.8米,从而得出AB=1.73BD=70.6米.解:作CE⊥AB于E,则CE=BD,BE=CD,在Rt△ABD中,tan∠ABD=,∴AB=BD•tan∠ABD=BD=1.73BD,在Rt△ACE中,tan∠ACE==,∴=0.75,∴BD≈40.8(米),∴AB=1.73BD≈70.6(米).答:楼房AB的高度约为70.6米;20.如图,已知Rt△ABC中,∠BAC=90°,BC=6,AC=4,以A为圆心,AB为半径画圆,与边BC交于另一点D.(1)求BD的长;(2)连接AD,求∠DAC的余弦值.【分析】(1)过点A作AH⊥BD于H,利用面积法求出AH,再利用勾股定理求出BH,由垂径定理即可解决问题;(2)过点D作DM⊥AC于M,利用面积法求出DM,再由勾股定理求出AM即可解决问题.解:(1)过点A作AH⊥BD于H,如图1所示:∵Rt△ABC,∠BAC=90°,BC=6,AC=4,∴AB===2,∵AB•AC=BC•AH,∴AH===,∴BH===,∵AH⊥BD,∴BH=HD=,∴BD=;(2)过点D作DM⊥AC于M,如图2所示:由(1)得:AH=,BD=,AB=2,∴AD=AB=2,CD=BC﹣BD=6﹣=,,∵AH•CD=DM•AC,∴DM===,在Rt△ADM中,由勾股定理得:AM===,∴cos∠DAC===.六、(本大题共1小题,每小题12分,总计12分)21.如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(m,4)、B(2,n)的两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象,直接写出不等式kx+b﹣<0的解集;(3)求△AOB的面积.【分析】(1)将A,B两坐标先代入反比例函数求出m,n,然后由待定系数法求函数解析式.(2)根据直线在曲线下方时x的取值范围求解.(3)由S△AOB=S△AON﹣S△BON求解.解:(1)∵(m,4),(2,n)在反比例函数y=图象上,∴4=,n=,解得m=1,n=2,∴A(1,4),B(2,2),把(1,4),(2,2)代入y=kx+b中得,解得,∴一次函数解析式为y=﹣2x+6.(2)由图象可得当0<x<1或x>2时,直线y=﹣2x+6在反比例函数y=(x>0)图象下方,∴﹣2x+6<的解集为0<x<1或x>2,∴kx+b﹣<0的解集为0<x<1或x>2.(3)把y=0代入y=﹣2x+6得0=﹣2x+6,解得x=3,∴点N坐标为(3,0),∴S△AOB=S△AON﹣S△BON=ON•y A﹣ON•y B=ON(y A﹣y B)=×3×(4﹣2)=3.七、(本大题共1小题,每小题12分,总计12分)22.某大学生利用暑假40天社会实践参与了某公司旗下一家加盟店经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示:销售量p(件)p=50﹣x销售单价q(元/件)当1≤x≤20时,q=30+x当21≤x≤40时,q=20+(1)请计算第几天该商品的销售单价为35元/件(2)这40天中该加盟店第几天获得的利润最大?最大利润是多少?(3)在实际销售的前20天中,公司为鼓励加盟店接收大学生参加实践活动决定每销售一件商品就发给该加盟店m(m≥2)元奖励.通过该加盟店的销售记录发现,前10天中,每天获得奖励后的利润随时间x(天)的增大而增大,求m的取值范围.【分析】(1)分别令当1≤x≤20时和当21≤x≤40时的函数值为35,然后求得对应的x的值即可;(2)分为当1≤x≤20时和当21≤x≤40时两种情况,列出列出与天数的函数关系式,然后利用二次函数和反比例函数的性质求解即可;(3)先求得抛物线的对称轴方程,然后依据前10天的利润随x的增大而增大列出关于m的不等式求解即可.解:(1)当1≤x≤20时,30+x=35,解得x=10当21≤x≤40时,20+=35,解得x=35,经检验,x=35是分式方程的解.(2)当1≤x≤20时,w=(30+﹣20)(50﹣x)=﹣(x﹣15)2+612.5,当x=15时,w有最大值为612.5当21≤x≤40时,w=(20+﹣20)(50﹣x)=﹣525,当x=21时,w有最大值为725∵612.5<725∴第21天时获得最大利润,最大利润为725(3)W=x2+15x+500+m(50﹣x)=x2+(15﹣m)x+500+50m,∵前10天每天获得奖励后的利润随时间x(天)的增大而增大,∴对称轴为x=﹣=15﹣m>9.5,解得:m<∴2≤m<.八、(本大题共1小题,每小题14分,总计14分)23.如图①,在正方形ABCD中,B为边BC上一点,连接AE,过点D作DN⊥AE交AE、AB分别于点F、N.(1)求证:△ABE≌△DAN;(2)若E为BC中点,①如图②,连接AC交DP于点M,求CM:AM的值;②如图③,连接CF,求tan∠CFE的值.【分析】(1)由AAS证明△ABE≌△DAN即可;(2)①由全等三角形的性质得BE=AN=BC,则AN=AD=CD,再证△CDM∽△ANM,得==2即可;②过点C作CM⊥DN于M,设AB=AD=CD=2a,则BE=a,由全等三角形的性质得BE=AN=a,AE=DN=a,再证△CDM∽△DNA,求出CM=a,DM=a,则MF=a,然后由锐角三角函数定义得tan∠MCF=,最后由平行线的性质得∠CFE=∠MCF,即可得出答案.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=DA,∠B=∠DAN=90°,∵DN⊥AE,∴∠AFN=90°,∴∠FAN+∠ANF=90°,∵∠ADN+∠ANF=90°,∴∠FAN=∠AND,即∠BEA=∠AND,在△ABE和△DAN中,,∴△ABE≌△DAN(AAS);(2)解:①∵四边形ABCD是正方形,∴AB∥CD,AB=BC=CD,∵E为BC中点,∴BE=CE=BC,同(1)得:△ABE≌△DAN(AAS),∴BE=AN=BC,∴AN=AD=CD,∵AB∥CD,∴△CDM∽△ANM,∴==2;②过点C作CM⊥DN于M,如图③所示:设AB=AD=CD=2a,则BE=a,在Rt△ABE中,由勾股定理得:AE===a,同(1)得:△ABE≌△DAN(AAS),∴BE=AN=a,AE=DN=a,∵∠DAN=90°,DN⊥AE,∴AF===a,∴NF===a,∵CM⊥DN,∴∠CMD=90°=∠DAN,∴∠DCM+∠CDM=90°,∵∠CDM+∠NDA=90°,∴∠DCM=∠NDA,∴△CDM∽△DNA,∴==,即==,解得:CM=a,DM=a,∴MF=DN﹣NF﹣DM=a﹣a﹣a=a,∴tan∠MCF===,∵DN⊥AE,CM⊥DN,∴AE∥CM,∴∠CFE=∠MCF,∴tan∠CFE=tan∠MCF=.。
人教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列手机手势解锁图案中,是中心对称图形的是()A .B .C .D .2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件3.下列方程中,是一元二次方程的是()A .x +1x=0B .ax 2+bx +c =0C .x 2+1=0D .x ﹣y ﹣1=04.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.抛物线y=(x+2)2-3的对称轴是()A .直线x =2B .直线x=-2C .直线x=-3D .直线x=36.关于反比例函数y =﹣4x的图象,下列说法正确的是()A .经过点(﹣1,﹣4)B .图象是轴对称图形,但不是中心对称图形C .无论x 取何值时,y 随x 的增大而增大D .点(12,﹣8)在该函数的图象上7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°8.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣19.如图,直线y=2x与双曲线2yx在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的()A.①②B.①②③C.①②④D.②③④二、填空题11.点P(4,﹣6)关于原点对称的点的坐标是_____.12.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.13.已知正六边形的边长为10,那么它的外接圆的半径为_____.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=6x(x>0)和y=﹣8x(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.16.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则BB'的长为_____.三、解答题17.解方程:x2﹣4x﹣12=0.18.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.19.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有1名男生和1名女生获得音乐奖.(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.20.如图,破残的圆形轮片上,弦AB的垂直平分线交 AB于点C,交弦AB于点D.已知CD=c m.12AB=cm,4(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.21.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.22.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.23.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.24.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.已知抛物线y=1x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.2(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.参考答案1.B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C【解析】【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.4.B【分析】常数项移到方程左边,两边都加上一次项系数一半的平方,最后再把左边写成完全平方式,右边化简即可.【详解】解:∵x2-2x-5=0∴x 2-2x=5∴x 2-2x+1=5+1∴()216x -=.故答案为:B .【点睛】本题考查用配方法解一元二次方程.其关键是化二次项系数为1,算准一项系数一半的平方及用准完全平方公式.当一项系数为负时,用完全平方差公式;当一项系数为正时,用完全平方和公式5.B 【详解】试题解析:在抛物线顶点式方程2()y a x h k =-+中,抛物线的对称轴方程为x =h ,2(2)3y x =+- ,∴抛物线的对称轴是直线x =-2,故选B.6.D 【分析】反比例函数()0ky k x=≠的图象k 0>时位于第一、三象限,在每个象限内,y 随x 的增大而减小;0k <时位于第二、四象限,在每个象限内,y 随x 的增大而增大;在不同象限内,y 随x 的增大而增大,根据这个性质选择则可.【详解】∵当12x =时,4842y =-=-∴点(12,﹣8)在该函数的图象上正确,故A 、B 、C 错误,不符合题意.故选:D .【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.7.B 【分析】连接OA ,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.8.D 【分析】根据根的判别式(240b ac =-≥△)即可求出答案.【详解】当原方程为一元一次方程时,k=0,此时方程y=-2x-1有实数解当原方程为一元二次方程时,由题意可知:440k +≥△=时,方程有实数解∴1k ≥-故选:D .【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围.9.D 【解析】试题分析:联立直线与反比例解析式得:y 2x{2y x==,消去y 得到:x 2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A (1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D .10.B 【分析】根据题意和函数图象,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确是①②③,故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的图像和性质是解题的关键.11.(﹣4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P (4,﹣6)关于原点对称的点的坐标是(﹣4,6),故答案为:(﹣4,6).【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标.12.(0,﹣7)【分析】根据题意得出0x =,然后求出y 的值,即可以得到与y 轴的交点坐标.【详解】令0x =,得7y =-,故与y 轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y 轴的交点坐标问题,掌握与y 轴的交点坐标的特点(0x =)是解题的关键.13.10【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【详解】边长为10的正六边形可以分成六个边长为10的正三角形,∴外接圆半径是10,故答案为:10.【点睛】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.14.5【分析】设共有x 个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:()1102x x -=⨯,把相关数值代入求正数解即可.【详解】设共有x 个飞机场.()1102x x -=⨯,解得15=x ,24x =-(不合题意,舍去),故答案为:5.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15.7【分析】根据反比例函数比例系数k 的几何意义得到S △OQM =4,S △OPM =3,然后利用S △POQ =S △OQM +S △OPM 进行计算.【详解】解:如图,∵直线l ∥x 轴,∴S △OQM =12×|﹣8|=4,S △OPM =12×|6|=3,∴S △POQ =S △OQM +S △OPM =7.故答案为7.考点:反比例函数系数k 的几何意义.16.π【分析】根据图示知45BAB ∠'=︒,所以根据弧长公式180n r l π=求得 'BB 的长.【详解】根据图示知,45BAB ∠'=︒,∴ 'BB 的长为:454180ππ⨯=.故答案为:π.【点睛】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.17.x 1=6,x 2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:()()620x x -+=,60x =﹣或20x +=,所以1262x x ==-,.18.2017年至2019年“双十一”交易额的年平均增长率为20%.【分析】设2017年至2019年“双十一”交易额的年平均增长率为x ,根据该平台2017年及2019年的交易额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设2017年至2019年“双十一”交易额的年平均增长率为x ,根据题意得:()25001720x -=,解得:10.2==20%x ,2 2.2x =-(舍去).答:2017年至2019年“双十一”交易额的年平均增长率为20%.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.19.(1)25;(2)12【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【详解】解:(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是25;故答案为:2 5;(2)画树状图为:共有6种等可能的结果数,其中刚好是一男生一女生的结果数为3,概率31 62 ==所以刚好是一男生一女生的概率为1 2.【点睛】本题考查了概率问题,掌握概率公式以及树状图的画法是解题的关键.20.(1)作图见解析;(2)(1)作图见解析;(2)132 cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=132 cm,故半径为:132 cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.21.(1)75°(2)见解析【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF =90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.22.(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.5.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△P AB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=k x,得k=3,∴反比例函数的表达式y=3 x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=5,∴直线AD 的解析式为y =﹣2x +5,令y =0,得x =52,∴点P 坐标(52,0),(3)S △P AB =S △ABD ﹣S △PBD =12×2×2﹣12×2×12=2﹣12=1.5.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.23.(1)见解析;(2)见解析;(3)BE =16.【分析】(1)如图,连接OE .欲证明PE 是⊙O 的切线,只需推知OE ⊥PE 即可;(2)由圆周角定理得到90AEB CED ∠=∠=︒,根据“同角的余角相等”推知34∠=∠,结合已知条件证得结论;(3)设EF x =,则2CF x =,由勾股定理可求EF 的长,即可求BE 的长.【详解】(1)如图,连接OE .∵CD 是圆O 的直径,∴90CED ∠=︒.∵OC OE =,∴12∠=∠.又∵PED C ∠=∠,即1PED ∠=∠,∴2PED ∠=∠,∴=2=90PED OED OED ∠+∠∠+∠︒,即90OEP ∠=︒,∴OE EP ⊥,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)∵AB 、CD 为⊙O 的直径,∴==90AEB CED ∠∠︒,∴34∠=∠(同角的余角相等).又∵1PED ∠=∠,∴4PED ∠=∠,即ED 平分∠BEP ;(3)设EF x =,则2CF x =,∵⊙O 的半径为10,∴210OF x =-,在Rt △OEF 中,222OE OF EF +=,即()22210210x x +-=,解得8x =,∴8EF =,∴216BE EF ==.【点睛】本题考查了圆和三角形的几何问题,掌握切线的性质、圆周角定理和勾股定理是解题的关键.24.(1)y =﹣x 2+2x +3;(2)①S =﹣m 2+3m ,1≤m ≤3;②P (32,3);(3)存在,点P 的坐标为(32,3)或(﹣12﹣).【分析】(1)将点B ,C 的坐标代入2y x bx c =-++即可;(2)①求出顶点坐标,直线MB 的解析式,由PD ⊥x 轴且OD m =知P (m ,﹣2m +6),即可用含m 的代数式表示出S ;②在①的情况下,将S 与m 的关系式化为顶点式,由二次函数的图象及性质即可写出点P 的坐标;(3)分情况讨论,如图2﹣1,当90CPD ∠=︒时,推出3PD CO ==,则点P 纵坐标为3,即可写出点P 坐标;如图2﹣2,当90PCD ∠=︒时,证PDC OCD ∠=∠,由锐角三角函数可求出m 的值,即可写出点P 坐标;当90PDC ∠=︒时,不存在点P .【详解】(1)将点B (3,0),C (0,3)代入2y x bx c =-++,得09333b c =-++⎧⎨=⎩,解得23b c ì=ïí=ïî,∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =++=--+-,∴顶点M (1,4),设直线BM 的解析式为y kx b =+,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为=26y x -+,∵PD ⊥x 轴且OD m =,∴P (m ,﹣2m +6),∴()21126322PCD S S PD OD m m m m -++ ====-,即23S m m =-+,∵点P 在线段BM 上,且B (3,0),M (1,4),∴13m ≤≤;②∵2239324S m m m ⎛⎫=-+=--+ ⎪⎝⎭,∵10-<,∴当32m =时,S 取最大值94,∴P (32,3);(3)存在,理由如下:①如图2﹣1,当90CPD ∠=︒时,∵90COD ODP CPD ∠=∠∠=︒=,∴四边形CODP 为矩形,∴3PD CO ==,将3y =代入直线=26y x -+,得32x =,∴P (32,3);②如图2﹣2,当∠PCD =90°时,∵3OC =,OD m =,∴22229CD OC OD m =++=,∵//PD OC ,∴PDC OCD ∠=∠,∴cos PDC cos OCD ∠=∠,∴DC OCPD DC =,∴2DC PD OC = ,∴()29326m m =+-+,解得1 3m -=-(舍去),23m +=-,∴P (3-+12-),③当90PDC ∠=︒时,∵PD ⊥x 轴,∴不存在,综上所述,点P 的坐标为(32,3)或(3-+12-.【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.25.(1)y =12x 2﹣x ﹣4;(2)S =﹣(m ﹣2)2+16,S 的最大值为16;(3)点P 的坐标为:(1,﹣)或(1,﹣1).【分析】(1)根据交点式可求出抛物线的解析式;(2)由S=S △OBC +S △OCD +S △ODA ,即可求解;(3)∠BPC=45°,则BC 对应的圆心角为90°,可作△BCP 的外接圆R ,则∠BRC=90°,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,证明△BMR ≌△RNC (AAS )可求出点R (1,-1),即点R 在函数对称轴上,即可求解.【详解】解:(1)∵抛物线y =12x 2+bx+c 与x 轴交于A (4,0)、B (﹣2,0),∴抛物线的表达式为:y =12(x ﹣4)(x+2)=12x 2﹣x ﹣4;(2)设点D (m ,12m 2﹣m ﹣4),可求点C 坐标为(0,-4),∴S =S △OBC +S △OCD +S △ODA =211112444[(4)]2222m m m ⨯⨯+⨯+⨯---=﹣(m ﹣2)2+16,当m =2时,S 有最大值为16;(3)∠BPC =45°,则BC 对应的圆心角为90°,如图作圆R ,则∠BRC =90°,圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点R (m ,n ).∵∠BMR+∠MRB =90°,∠MRB+∠CRN =90°,∴∠CRN =∠MBR ,∠BMR =∠RNC =90°,BR =RC ,∴△BMR ≌△RNC (AAS ),∴CN =RM ,RN =BM ,即m+2=n+4,﹣n =m ,解得:m =1,n =﹣1,即点R (1,﹣1),即点R 在函数对称轴上,,则点P的坐标为:(1,﹣)或(1,﹣1).【点睛】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.。
人教版九年级数学上册期末测试题附答案九年级(上)期末数学试卷一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和13.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=35.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<48.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣39.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.14.同圆的内接正三角形与外切正三角形的周长比是.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是mm.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:打开电视机,正在播放篮球比赛是随机事件,A不正确;守株待兔是随机事件,B不正确;明天是晴天是随机事件,C不正确;在只装有5个红球的袋中摸出1球,是红球是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是()A.﹣1和1B.1和1C.2和1D.0和1【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式进行选择.【解答】解:一元二次方程2某2﹣某+1=0的一次项系数和常数项依次是﹣1和1.故选:A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:a某2+b某+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中a某2叫二次项,b某叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.方程2某(某﹣3)=5(某﹣3)的根是()A.某=B.某=3C.某1=,某2=3D.某1=﹣,某2=3【考点】解一元二次方程-因式分解法.【分析】先把方程变形为:2某(某﹣3)﹣5(某﹣3)=0,再把方程左边进行因式分解得(某﹣3)(2某﹣5)=0,方程就可化为两个一元一次方程某﹣3=0或2某﹣5=0,解两个一元一次方程即可.【解答】解:方程变形为:2某(某﹣3)﹣5(某﹣3)=0,∴(某﹣3)(2某﹣5)=0,∴某﹣3=0或2某﹣5=0,∴某1=3,某2=.故选C.【点评】本题考查了运用因式分解法解一元二次方程的方法:先把方程右边化为0,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°【考点】圆周角定理.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【解答】解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠B=÷2=30°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π【考点】圆锥的计算;勾股定理.【专题】压轴题;操作型.【分析】运用公式=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB==13,∴母线长l=13,半径r为5,∴圆锥的侧面积是=πlr=13某5某π=65π.故选B.【点评】要学会灵活的运用公式求解.7.如图,抛物线y1=﹣某2+4某和直线y2=2某,当y1<y2时,某的取值范围是()A.0<某<2B.某<0或某>2C.某<0或某>4D.0<某<4【考点】二次函数与不等式(组).【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的某的取值范围即可.【解答】解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1<y2时某的取值范围是0<某<2.故选A.【点评】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.8.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1B.3C.﹣1D.﹣3【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点可得a、b的值,进而得到答案.【解答】解:∵点A(1,a)、点B(b,2)关于原点对称,∴b=﹣1,a=﹣2,a+b=﹣3,故选:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.9.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5%B.20%C.15%D.10%【考点】由实际问题抽象出一元二次方程.【分析】设定期一年的利率是某,则存入一年后的本息和是5000(1+某)元,取3000元后余[5000(1+某)﹣3000]元,再存一年则有方程[5000(1+某)﹣3000](1+某)=2750,解这个方程即可求解.【解答】解:设定期一年的利率是某,根据题意得:一年时:5000(1+某),取出3000后剩:5000(1+某)﹣3000,同理两年后是[5000(1+某)﹣3000](1+某),即方程为[5000(1+某)﹣3000](1+某)=2750,解得:某1=10%,某2=﹣150%(不符合题意,故舍去),即年利率是10%.故选D.【点评】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金某(1+利率某期数),难度一般.10.某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【考点】根与系数的关系.【分析】先由一元二次方程根与系数的关系得出,某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.【解答】解:∵某1,某2是关于某的一元二次方程某2﹣m某+m﹣2=0的两个实数根,∴某1+某2=m,某1某2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程某2﹣m某+m﹣2=0即为某2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.【点评】本题主要考查了一元二次方程根与系数的关系:如果某1,某2是方程某2+p某+q=0的两根时,那么某1+某2=﹣p,某1某2=q.11.若函数,则当函数值y=8时,自变量某的值是()A.±B.4C.±或4D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得某=,∵某≤2,某=不合题意舍去,故某=﹣;再代入下边的方程某=4,∵某>2,故某=4,综上,某的值为4或﹣.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.12.如图为二次函数y=a某2+b某+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴某=1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【解答】解:①由抛物线的开口向下知a<0,故本选项错误;②由对称轴为某==1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;③由图象可知,当某=1时,y>0,则a+b+c>0,故本选项正确;④从图象知,抛物线与某轴有两个交点,∴△>0,故本选项错正确;⑤由图象可知,当某=﹣2时,y<0,则4a﹣2b+c<0,故本选项正确;【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.【考点】概率公式.【分析】由小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【解答】解:∵小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8;∴从这十张卡片中随机抽取一张恰好能被4整除的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.同圆的内接正三角形与外切正三角形的周长比是1:2.【考点】正多边形和圆.【分析】作出正三角形的边心距,连接正三角形的一个顶点和中心可得到一直角三角形,解直角三角形即可.【解答】解:如图所示:∵圆的内接正三角形的内心到每个顶点的距离是等边三角形高的,设内接正三角形的边长为a,∴等边三角形的高为a,∴该等边三角形的外接圆的半径为a∴同圆外切正三角形的边长=2某a某tan30°=2a.∴周长之比为:3a:6a=1:2,故答案为:1:2.【点评】本题考查了正多边形和圆的知识,解题时利用了圆内接等边三角形与圆外接等边三角形的性质求解,关键是构造正确的直角三角形.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求得BC=2EF,然后根据相似三角形的性质即可得到结论.【解答】解:∵△ABC中,E、F分别是AB、AC的中点,EF=4,∴EF是△ABC的中位线,∴BC=2EF,EF∥BC,∴△AEF∽△ABC,∴S△AEF:S△ABC=()2=,故答案为:.【点评】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟记三角形的中位线的性质是解题的关键.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是8mm.【考点】相交弦定理;勾股定理.【专题】应用题;压轴题.【分析】根据垂径定理和相交弦定理求解.【解答】解:钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则下面的距离就是2.利用相交弦定理可得:2某8=AB某AB,解得AB=8.故答案为:8.【点评】本题的关键是利用垂径定理和相交弦定理求线段的长.17.将抛物线y=某2﹣2向上平移一个单位后,又沿某轴折叠,得新的抛物线,那么新的抛物线的表达式是y=﹣某2+1.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=某2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律和关于某轴对称的点的坐标特征得到(0,﹣2)变换后的对应点的坐标为(0,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=某2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于某轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣某2+1.故答案为【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=某2﹣2某﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.【考点】二次函数综合题.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【解答】解:连接AC,BC,∵抛物线的解析式为y=某2﹣2某﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=某2﹣2某﹣3,解得:某=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AOBO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.【点评】本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:某2﹣3某+2=0.(2)已知:关于某的方程某2+k某﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)把方程某2﹣3某+2=0进行因式分解,变为(某﹣2)(某﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;(2)①由△=b2﹣4ac=k2+8>0,即可判定方程有两个不相等的实数根;②首先将某=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【解答】(1)解:某2﹣3某+2=0,(某﹣2)(某﹣1)=0,某1=2,某2=1;(2)①证明:∵a=1,b=k,c=﹣2,∴△=b2﹣4ac=k2﹣4某1某(﹣2)=k2+8>0,∴方程有两个不相等的实数根;②解:当某=﹣1时,(﹣1)2﹣k﹣2=0,解得:k=﹣1,则原方程为:某2﹣某﹣2=0,即(某﹣2)(某+1)=0,解得:某1=2,某2=﹣1,所以另一个根为2.【点评】本题考查了根的判别式,一元二次方程a某2+b某+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.也考查了用因式分解法解一元二次方程.20.(1)解方程:+=;(2)图①②均为7某6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)【考点】利用旋转设计图案;解分式方程;利用轴对称设计图案.【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【解答】解:(1)由原方程,得5+某(某+1)=(某+4)(某﹣1),整理,得2某=9,解得某=4.5;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为轴对称图形;.【点评】此题比较灵活的考查了等腰梯形、矩形的对称性,是道好题.21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设垂直于墙的一边长为某米,则矩形的另一边长为(30﹣2某)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【解答】解:(1)设垂直于墙的一边长为某米,则某(30﹣2某)=72,解方程得:某1=3,某2=12.当某=3时,长=30﹣2某3=24>18,故舍去,所以某=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则某(30﹣2某)=120,整理得即某2﹣15某+60=0,△=b2﹣4ac=152﹣4某60=﹣15<0,方程无实数解,故面积不能为120平方米.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB 的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【考点】切线的判定.【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【解答】解:(1)连结BD,如图1所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.【点评】本题考查了切线的判定、圆周角定理、勾股定理、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握圆周角定理和切线的判定是解决问题的关键.24.如图,在平面直角坐标系某Oy中,直线y=某+2与某轴交于点A,与y轴交于点C,抛物线y=a某2+b某+c的对称轴是某=﹣且经过A,C两点,与某轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据相似三角形的性质,可得关于m的方程,根据自变量与函数值的对应关系,可得M点坐标.【解答】解:(1)当某=0时,y=2,即C(0,2),当y=0时,某+2=0,解得某=﹣4,即A(﹣4,1).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣某2﹣某+2;(2)抛物线上是存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣m2﹣m+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2.由勾股定理,得AC==2,BC==.当△ANM∽△ACB时,=,即=,解得m=0(不符合题意,舍),m=﹣4(不符合题意,舍);当△ANM∽△BCA时,=,即=,解得m=﹣3,m=﹣4(不符合题意,舍),当m=﹣3时,﹣m2﹣m+2=2,即M(﹣3,2).综上所述:抛物线存在点M,过点M作MN垂直某轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用相似三角形的性质得出关于m的方程是解题关键,要分类讨论,以防遗漏.。
九年级上册乌鲁木齐数学全册期末复习试卷测试卷(含答案解析) 一、选择题1.圆锥的底面半径为2,母线长为6,它的侧面积为( )A .6πB .12πC .18πD .24π2.下列方程中,是关于x 的一元二次方程的为( )A .2210x x +=B .220x x --=C .2320x xy -=D .240y -=3.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( )A .5人B .6人C .4人D .8人4.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( )A .13B .512C .12D .15.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( )A .30πcm 2B .15πcm 2C .152π cm 2D .10πcm 26.如图,////AD BE CF ,直线12l l 、与这三条平行线分别交于点、、A B C 和点D E F 、、.已知AB =1,BC =3,DE =1.2,则DF 的长为( )A .3.6B .4.8C .5D .5.27.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( )A .②④B .①③C .②③④D .①③④8.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=2且∠ACB 最大时,b 的值为( )A .226+B .226-+C .242+D .2429.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( )A .y =2(x+1)2+4B .y =2(x ﹣1)2+4C .y =2(x+2)2+4D .y =2(x ﹣3)2+410.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =11.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( )A .45B .35C .43D .3412.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80° 13.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( )A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x + 14.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离 B .相切C .相交D .无法判断 15.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( )A .23(1)3y x =--+B .23(1)3y x =-+C .23(1)3y x =+-D .23(1)3y x =-++ 二、填空题16.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)17.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.18.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .19.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.20.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________;21.抛物线21(5)33y x =--+的顶点坐标是_______.22.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________.23.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).24.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.25.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____.26.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.27.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.28.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .29.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________30.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”) 三、解答题31.已知二次函数y =x 2-2mx +m 2+m -1(m 为常数).(1)求证:不论m 为何值,该二次函数的图像与x 轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.32.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(-3,0),与y轴交于点B (0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠PA′O=90◦.求点C的坐标.33.如图,C是直径AB延长线上的一点,CD为⊙O的切线,若∠C=20°,求∠A的度数.34.如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A、B,点C为x轴正半轴上的点,点 D从点C处出发,沿线段CB匀速运动至点 B 处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接EC′,若△ DEC′与△ BOC 的重叠部分面积为S,点D的运动时间为t(秒),S与 t 的函数图象如图 2 所示.(1)V D= ,C 坐标为;(2)图2中,m= ,n= ,k= .(3)求出S与t 之间的函数关系式(不必写自变量t的取值范围).35.对于实数a,b,我们可以用{}max,a b表示a,b两数中较大的数,例如{}max3,13-=,{}max2,22=.类似的若函数y1、y2都是x的函数,则y=min{y1, y2}表示函数y1和y2的取小函数.(1)设1y x=,21 =yx ,则函数1max,y xx⎧⎫=⎨⎬⎩⎭的图像应该是___________中的实线部分.(2)请在下图中用粗实线描出函数()(){}22max 2,2y x x =---+的图像,观察图像可知当x 的取值范围是_____________________时,y 随x 的增大而减小.(3)若关于x 的方程()(){}22max 2,20x x t ---+-=有四个不相等的实数根,则t 的取值范围是_____________________. 四、压轴题36.如图1,Rt △ABC 两直角边的边长为AC =3,BC =4.(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边BC 相切于点Y .请你在图2中作出并标明⊙O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为S ,你认为能否确定S 的最大值?若能,请你求出S 的最大值;若不能,请你说明不能确定S 的最大值的理由.37.如图,已知矩形ABCD 中,BC =2cm ,AB 3,点E 在边AB 上,点F 在边AD 上,点E 由A 向B 运动,连结EC 、EF ,在运动的过程中,始终保持EC ⊥EF ,△EFG 为等边三角形.(1)求证△AEF ∽△BCE ;(2)设BE 的长为xcm ,AF 的长为ycm ,求y 与x 的函数关系式,并写出线段AF 长的范围;(3)若点H 是EG 的中点,试说明A 、E 、H 、F 四点在同一个圆上,并求在点E 由A 到B 运动过程中,点H 移动的距离.38.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________39.如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P为抛物线上一动点,且满足∠PAB=2∠ACO.求点P的坐标.40.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl =π×2×6=12π,故选:B .【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.B解析:B【解析】【分析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程.【详解】解:A.2210x x +=,是分式方程, B.220x x --=,正确,C.2320x xy -=,是二元二次方程,D.240y -=,是关于y 的一元二次方程,故选B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.3.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.4.C解析:C【解析】【分析】根据随机事件A 的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒, ∴红灯的概率是:301302552=++. 故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键. 5.B解析:B【解析】试题解析:∵底面半径为3cm ,∴底面周长6πcm ∴圆锥的侧面积是12×6π×5=15π(cm 2), 故选B . 6.B解析:B【解析】【分析】根据平行线分线段成比例定理即可解决问题.【详解】解:////AD BE CF ,AB DE BC EF ∴=,即1 1.23EF=, 3.6EF ∴=,3.6 1.24.8DF EF DE ∴++===,故选B .【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.7.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可.【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心,∴OA =OC =OB ,∵四边形OCDE 为正方形,∴OA =OC <OD ,∴OA =OB =OC =OE ≠OD ,∴OA =OC ≠OD ,即O 不是△ADC 的外心,OA =OE =OB ,即O 是△AEB 的外心,OB =OC =OE ,即O 是△BCE 的外心,OB =OA ≠OD ,即O 不是△ABD 的外心, 故选:A .【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.8.B解析:B【解析】【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可.【详解】解:∵AB=42A(0,2)、B(a ,a +2)∴22(22)42a a ++-=,解得a =4或a =-4(因为a >0,舍去)∴B(4,6),设直线AB 的解析式为y=kx+2,将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+,将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B.【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.9.A解析:A【解析】【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可.【详解】解:原抛物线y=2(x﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4).所以,平移后抛物线的表达式是y=2(x+1)2+4,故选:A.【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键. 10.D解析:D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.11.A解析:A【解析】【分析】先根据勾股定理计算出斜边AB的长,然后根据正弦的定义求解.【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB222268BC AC+=+10,∴sin B=84105 ACAB==.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.12.C解析:C【解析】【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=12(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.13.D解析:D【解析】【分析】先确定抛物线y=3x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.14.C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l 和⊙O 相交,则d <r ;②直线l 和⊙O 相切,则d=r ;③直线l 和⊙O 相离,则d >r (d 为直线与圆的距离,r 为圆的半径).因此,∵⊙O 的半径为6,圆心O 到直线l 的距离为5,∴6>5,即:d <r .∴直线l 与⊙O 的位置关系是相交.故选C .15.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 二、填空题16.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】根据黄金比值为512-计算即可. 【详解】 解:∵点P 是线段AB 的黄金分割点(AP>BP )∴51AP 252AB -=⨯=- 故答案为:252-.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.17.50【解析】【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径 ∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 18.【解析】【分析】【详解】设扇形的圆心角为n°,则根据扇形的弧长公式有: ,解得所以解析:16【解析】【分析】【详解】设扇形的圆心角为n °,则根据扇形的弧长公式有:π·4=8180n ,解得360πn = 所以22360S ==16360360扇形π4πr π=n 19.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100 解析:9π 【解析】【分析】 分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键. 20.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 21.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 22.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.23.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm ,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).24.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=2,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=4,在Rt△ECF中,sin∠AEC=225210CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.25.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.26.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π. 【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 27.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △C 解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32.本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.28.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.29.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.解:设y=x2-4x与x轴的另外一个交点为B,令y=0,则x=0或4,过点B(4,0),由函数的对称轴,二次函数y=x2-4x翻折后的表达式为:y=-x2+4x,当直线y=-2x+b处于直线m的位置时,此时直线和新图象只有一个交点A,当直线处于直线n的位置时,此时直线n过点B(4,0)与新图象有三个交点,当直线y=-2x+b处于直线m、n之间时,与该新图象有两个公共点,当直线处于直线m的位置:联立y=-2x+b与y=x2-4x并整理:x2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B时,将点B的坐标代入直线表达式得:0=-8+b,解得:b=8,故-1<b<8;故答案为:-1<b<8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A、B两个临界点,进而求解.30.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题31.(1)证明见解析;(2)k ≥34. 【解析】【分析】(1)根据判别式的值得到△=(2m -1)2 +3>0,然后根据判别式的意义得到结论; (2)把(0,-2)带入平移后的解析式,利用配方法得到k= (m+12)²+34,即可得出结果. 【详解】(1)证:当y =0时 x 2-mx +m 2+m -1=0∵b 2-4ac =(-m )2-4(m 2+m -1)=8m 2-4m 2-4m +4=4m 2-4m +4=(2m -1)2 +3>0∴方程x 2-mx +m 2+m -1=0有两个不相等的实数根∴二次函数y =x 2-mx +m 2+m -1图像与x 轴有两个公共点(2)解:平移后的解析式为: y =x 2-mx +m 2+m -1-k,过(0,-2),∴-2=0-0+m²+m-1-k, ∴k= m²+m+1=(m+12)²+34,∴k ≥34. 【点睛】本题考查了二次函数图象与几何变换以及图象与x 轴交点个数确定方法,能把一个二次三项式进行配方是解题的关键.32.(1)24(3)9y x =+;(2)P(1511,2411);(3)C(-3,-5)或 (-3,2513) 【解析】【分析】(1)设顶点式,将B 点代入即可求;(2)根据4m+3n=12确定点P 所在直线的解析式,再根据内切线的性质可知P 点在∠BAO 的角平分线上,求两线交点坐标即为P 点坐标;(3)根据角之间的关系确定C 在∠DBA 的角平分线与对称轴的交点或∠ABO 的角平分线与对称轴的交点,通过求角平分线的解析式即可求.【详解】(1)∵抛物线的顶点坐标为A(-3,0),设二次函数解析式为y=a(x+3)2,将B (0,4)代入得,4=9a ∴a=49∴24(3)9y x =+ (2)如图 ∵P (m,n),且满足4m+3n=12∴443n m =-+ ∴点P 在第一象限的443y x =-+上, ∵以点P 为圆心的圆与直线AB 、x 轴相切,∴点P 在∠BAO 的角平分线上,∠BAO 的角平分线:y=1322x +, ∴134=4223x x +-+, ∴x=1511,∴y=2411∴P(1511,2411)(3)C(-3,-5)或 (-3,2513)理由如下: 如图,A ´(3,0),可得直线L A ´B 的表达式为443y x =-+ , ∴P 点在直线A ´B 上,∵∠PA ´O=∠ABO=∠BAG, 2∠CBA+∠PA′O=90°,∴2∠CBA=90°-∠PA′O=∠GAB,在对称轴上取点D,使∠DBA=∠DAB,作BE⊥AG于G点,设D点坐标为(-3,t)则有(4-t)2+32=t2t=25 8,∴D(-3,25 8),作∠DBA的角平分线交AG于点C即为所求点,设为C1∠DBA的角平分线BC1的解析式为y=913x+4,∴C1的坐标为 (-3, 25 13);同理作∠ABO的角平分线交AG于点C即为所求,设为C2,∠ABO的角平分线BC2的解析式为y=3x+4,∴C2的坐标为(-3,-5).综上所述,点C的坐标为(-3, 2513)或(-3,-5).【点睛】本题考查了二次函数与图形的结合,涉及的知识点角平分线的解析式的确定,切线的性质,勾股定理及图象的交点问题,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.33.35°【解析】【分析】连接OD,根据切线的性质得∠ODC=90°,根据圆周角定理即可求得答案.【详解】连接OD,∵CD为⊙O的切线,∴∠ODC=90°,∴∠DOC=90°﹣∠C=70°,由圆周角定理得,∠A=12∠DOC=35°.【点睛】本题考查了切线的性质和圆周角定理,有圆的切线时,常作过切点的半径.34.(1)点D的运动速度为1单位长度/秒,点C坐标为(4,0).(2)55;45;53)①当点C′在线段BC上时,S=14t2;②当点C′在CB的延长线上,S=−1312t285203;③当点E在x轴负半轴, S=t25t+20.【解析】【分析】(1)根据直线的解析式先找出点B的坐标,结合图象可知当t5C′与点B重合,通过三角形的面积公式可求出CE的长度,结合勾股定理可得出OE的长度,由OC=OE+EC可得出OC的长度,即得出C点的坐标,再由勾股定理得出BC的长度,根据CD=12BC,结合速度=路程÷时间即可得出结论;(2)结合D点的运动以及面积S关于时间t的函数图象的拐点,即可得知当“当t=k 时,点D与点B重合,当t=m时,点E和点O重合”,结合∠C的正余弦值通过解直角三角形即可得出m、k的值,再由三角形的面积公式即可得出n的值;(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S关于t的函数关系式;②由重合部分的面积=S△CDE−S△BC′F,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD和DF的值,结合三角形的面积公式即可得出结论.【详解】。
人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。
( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。
若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。
10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。
九年级(上)期末数学试卷一.相信你的选择(每小题3分,共30分)1.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B. C.D.2.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个3.下面三视图表示的可能是宜昌四种特产:西瓜、蜜橘、梨、土豆中的()A.西瓜B.蜜橘C.土豆 D.梨4.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.5.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(﹣2a,﹣2b)B.(﹣a,﹣2b)C.(﹣2b,﹣2a)D.(﹣2a,﹣b)6.二次函数y=﹣x2+2x+k的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+k=0的一个解x1=3,另一个解x2=()A.1 B.﹣1 C.﹣2 D.07.如图,为了测量河的宽度,王芳同学在河岸边相距200m的M和N两点分别测定对岸一棵树P 的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是()A.200m B.m C.m D.100m8.(3)(2012•福州)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.100()米9.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米10.如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米二.试试你的身手(每小题3分,共30分)11.在△ABC中,若∠A、∠B满足|cosA﹣|+(sinB﹣)2=0,则∠C=.12.若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有桶.13.如图,C、D分别是一个湖的南、北两端A和B正东方向的两个村庄,CD=6km,且D位于C 的北偏东30°方向上,则AB=km.14.如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为米.15.如图所示的两个三角形是位似图形,它们的位似中心是点.16.复习课上,张老师念了这样一道题目:已知二次函数y=ax2+bx+c的图象如图所示,“三位同学”分别说出了它的一些结论.“可心”说:①a+b+c<0;②a﹣b+c>1;“童谣”说:③abc>0;④4a﹣2b+c<0;“思宇”说:⑤c﹣a>1.请你根据图找出其中正确结论的序号是.17.如图,一条河的两岸有一段平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为米.18.兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图象上(如图所示),则6楼房子的价格为元/平方米.19.如图,大楼高30m,远处有一塔BC,某人在楼底A处测得塔顶的仰角为60°,爬到楼顶D测得塔顶的仰角为30°.则塔高BC为m.20.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)三.挑战你的能力(共40分)21.如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:(1)ctan30°=;(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.22.如图,电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是2 m,已知AB、CD在灯光下的影长分别为BM=1.6 m,DN=0.6m.(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子;(2)求标杆EF的影长.23.如图所示,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=,BC=;(2)判断△ABC与△DEF是否相似?并证明你的结论.24.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.25.北京的6月绿树成荫花成海,周末小明约了几个同到户外活动.当他们来到一座小亭子时,一位同学提议测量一下小亭子的高度,大家很高兴.于是设计出了这样一个测量方案:小明在小亭子和一棵小树的正中间点A的位置,观测小亭子顶端B的仰角∠BAC=60°,观测小树尖D的仰角∠DAE=45°.已知小树高DE=2米.请你也参与到这个活动中来,帮他们求出小亭子高BC的长.(结果精确到0.1.,)26.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x 为整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?参考答案与试题解析一.相信你的选择(每小题3分,共30分)1.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B. C.D.【考点】平行投影.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【解答】解:A、影子平行,且较高的树的影子长度大于较低的树的影子,正确;B、影子的方向不相同,错误;C、影子的方向不相同,错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,错误.故选A.【点评】本题考查了平行投影特点.2.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的性质.【专题】常规题型.【分析】结合二次函数解析式,根据函数的性质对各小题分析判断解答即可.【解答】解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x<3时,y随x的增大而减小,正确;综上所述,说法正确的有④共1个.故选A.【点评】本题考查了二次函数的性质,主要考查了函数图象的开口方向,对称轴解析式,顶点坐标,以及函数的增减性,都是基本性质,熟练掌握性质是解题的关键.3.下面三视图表示的可能是宜昌四种特产:西瓜、蜜橘、梨、土豆中的()A.西瓜B.蜜橘C.土豆 D.梨【考点】由三视图判断几何体.【专题】图表型.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是蜜橘.故选B.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.本题着重应从柱体这个概念去思考.4.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.【考点】锐角三角函数的定义;旋转的性质.【专题】压轴题.【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.【点评】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.5.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(﹣2a,﹣2b)B.(﹣a,﹣2b)C.(﹣2b,﹣2a)D.(﹣2a,﹣b)【考点】位似变换;坐标与图形性质.【专题】压轴题.【分析】位似变换中对应点的坐标的变化规律:在平面直角坐标系中,位似变换是以原点为位似中心,相似比为1:2.【解答】解:根据题意图形易得,两个图形的位似比是1:2,∴对应点是(﹣2a,﹣2b).故选A.【点评】本题主要考查位似变换中对应点的坐标的变化规律.6.二次函数y=﹣x2+2x+k的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+k=0的一个解x1=3,另一个解x2=()A.1 B.﹣1 C.﹣2 D.0【考点】抛物线与x轴的交点.【专题】数形结合.【分析】先把x1=3代入关于x的一元二次方程﹣x2+2x+k=0,求出k的值,再根据根与系数的关系即可求出另一个解x2的值.【解答】解:∵把x1=3代入关于x的一元二次方程﹣x2+2x+k=0得,﹣9+6+k=0,解得k=3,∴原方程可化为:﹣x2+2x+3=0,∴x1+x2=3+x2=﹣=2,解得x2=﹣1.故选B.【点评】本题考查的是抛物线与x轴的交点,解答此类题目的关键是熟知抛物线与x轴的交点与一元二次方程根的关系.7.如图,为了测量河的宽度,王芳同学在河岸边相距200m的M和N两点分别测定对岸一棵树P 的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是()A.200m B.m C.m D.100m【考点】解直角三角形的应用-方向角问题.【专题】压轴题.【分析】根据P在N的北偏西30°的方向,可求得∠P=∠N,再根据三角函数即可求得PM的值.【解答】解:由已知得,∠P=∠N=30°.在直角△PMN中,PM==200.故选A.【点评】本题主要考查了方向角含义,正确记忆三角函数的定义是解决本题的关键.8.如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.100()米【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.【解答】解:由已知,得∠A=30°,∠B=45°,CD=100,∵CD⊥AB于点D.∴在Rt△ACD中,∠CDA=90°,tanA=,∴AD===100在Rt△BCD中,∠CDB=90°,∠B=45°∴DB=CD=100米,∴AB=AD+DB=100+100=100(+1)米.故选D.【点评】本题考查了解直角三角形的应用,解决本题的关键是利用CD为直角△ABC斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD与BD的长.9.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米【考点】二次函数的应用.【专题】应用题;压轴题;数形结合.【分析】根据题意可以得到喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.【解答】解:∵水在空中划出的曲线是抛物线y=﹣x2+4x,∴喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,∴y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点坐标为:(2,4),∴喷水的最大高度为4米,故选A.【点评】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.10.如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米【考点】相似三角形的应用.【专题】应用题.【分析】由已知得△ABP∽△CDP,则根据相似形的性质可得,解答即可.【解答】解:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==8(米).故选:B【点评】本题综合考查了平面镜反射和相似形的知识,是一道较为简单的题,考查相似三角形在测量中的应用.二.试试你的身手(每小题3分,共30分)11.在△ABC中,若∠A、∠B满足|cosA﹣|+(sinB﹣)2=0,则∠C=75°.【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.【分析】首先根据绝对值与偶次幂具有非负性可知c osA﹣=0,sinB﹣=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C的度数即可.【解答】解:∵|cosA﹣|+(sinB﹣)2=0,∴cosA﹣=0,sinB﹣=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,则∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°,故答案为:75°.【点评】此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.12.若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有6桶.【考点】由三视图判断几何体.【分析】从俯视图中可以看出最底层方便面的个数及摆放的形状,从主视图可以看出每一层方便面的层数和个数,从左视图可看出每一行方便面的层数和个数,从而算出总的个数.【解答】解:三摞方便面是桶数之和为:3+1+2=6.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.13.如图,C、D分别是一个湖的南、北两端A和B正东方向的两个村庄,CD=6km,且D位于C 的北偏东30°方向上,则AB=3km.【考点】解直角三角形的应用-方向角问题.【专题】压轴题.【分析】过C作CE⊥BD于E,根据题意及三角函数可求得CE的长,从而得到AB的长.【解答】解:过C作CE⊥BD于E,则CE=AB.直角△CED中,∠ECD=30°,CD=6,则CE=CD•cos30°=3=AB.∴AB=3(km).【点评】此题的关键是添加辅助线构造直角三角形,再运用三角函数定义求解.14.如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为9米.【考点】相似三角形的应用.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【解答】解:∵DE∥AB,DF∥AC,∴△DEF∽△ABC,∴=,即=,∴AC=6×1.5=9米.故答案为:9.【点评】此题考查相似三角形的实际运用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.如图所示的两个三角形是位似图形,它们的位似中心是点P.【考点】位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:∵位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.故答案为:P.【点评】此题主要考查了位似变换的性质,利用位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,得出位似中心在M、N所在的直线上是解题关键.16.复习课上,张老师念了这样一道题目:已知二次函数y=ax2+bx+c的图象如图所示,“三位同学”分别说出了它的一些结论.“可心”说:①a+b+c<0;②a﹣b+c>1;“童谣”说:③abc>0;④4a﹣2b+c<0;“思宇”说:⑤c﹣a>1.请你根据图找出其中正确结论的序号是①②③⑤.【考点】二次函数图象与系数的关系.【分析】由二次函数的图象可得:a<0,b<0,c=1>0,对称轴x=﹣1,再结合图象判断各结论.【解答】解:由图象可得:a<0,b<0,c=1>0,对称轴x=﹣1,①x=1时,a+b+c<0,正确;②x=﹣1时,a﹣b+c>1,正确;③abc>0,正确;④4a﹣2b+c<0,错误,x=﹣2时,4a﹣2b+c>0;⑤x=﹣1时,a﹣b+c>1,又﹣=﹣1,b=2a,c﹣a>1,正确,综上可知其中正确结论的序号是①②③⑤,故答案为:①②③⑤.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c 决定抛物线与y轴交点.抛物线与y轴交于(0,c).17.如图,一条河的两岸有一段平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为22.5米.【考点】相似三角形的应用.【分析】根据题意,河两岸平行,故可根据平行线分线段成比例来解决问题,列出方程,求解即可.【解答】解:如图,设河宽为h,∵AB∥CD由平行线分线段成比例定理得:=,解得:h=22.5,∴河宽为22.5米.故答案为:22.5.【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.18.兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图象上(如图所示),则6楼房子的价格为2080元/平方米.【考点】二次函数的应用.【专题】操作型;函数思想.【分析】从图象中找出顶点坐标、对称轴,利用对称性即可解答.【解答】解:由图象可知(4,2200)是抛物线的顶点,∵x=4是对称轴,∴点(2,2080)关于直线x=4的对称点是(6,2080).∴6楼房子的价格为2080元.【点评】要求熟悉二次函数的对称性,并准确的找到所求的点与那个已知点是对称点,此题的关键是能找到顶点是(4,2200).19.如图,大楼高30m,远处有一塔BC,某人在楼底A处测得塔顶的仰角为60°,爬到楼顶D测得塔顶的仰角为30°.则塔高BC为45m.【考点】解直角三角形的应用-仰角俯角问题.【分析】用AC表示出BE,BC长,根据BC﹣BE=30得方程求AC,进而求得BC长.【解答】解:根据题意得:BC==AC,∵BE=DEtan30°=ACtan30°=AC.∴大楼高AD=BC﹣BE=(﹣)AC=30.解得:AC=15.∴BC=AC=45.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.20.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是18米.(精确到1米)【考点】二次函数的应用.【专题】压轴题.【分析】由题可知,E、F两点纵坐标为8,代入解析式后,可求出二者的横坐标,F的横坐标减去E的横坐标即为EF的长.【解答】解:由“在该抛物线上距水面AB高为8米的点”,可知y=8,把y=8代入y=﹣x2+10得:x=±4,∴由两点间距离公式可求出EF=8≈18(米).【点评】以丽水市“古廊桥文化”为背景呈现问题,考查了现实中的二次函数问题,赋予传统试题新的活力,感觉不到“老调重弹”,在考查提取、筛选信息,分析、解决实际问题等能力的同时,发挥了让学生“熏陶文化,保护遗产”的教育功能.三.挑战你的能力(共40分)21.如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:(1)ctan30°=;(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.【考点】锐角三角函数的定义;勾股定理.【专题】压轴题;新定义.【分析】(1)根据直角三角形的性质用AC表示出A B及AC的值,再根据锐角三角函数的定义进行解答即可;(2)由于tanA=,所以可设BC=3,AC=4,则AB=5,再根据锐角三角函数的定义进行解答即可.【解答】解:(1)∵Rt△ABC中,α=30°,∴BC=AB,∴AC===AB,∴ctan30°==.故答案为:;(2)∵tanA=,∴设BC=3,AC=4,∴ctanA==.【点评】本题考查的是锐角三角函数的定义及直角三角形的性质,熟知锐角三角函数的定义是解答此题的关键.22.如图,电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是2 m,已知AB、CD在灯光下的影长分别为BM=1.6 m,DN=0.6m.(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子;(2)求标杆EF的影长.【考点】相似三角形的应用.【专题】计算题;作图题.【分析】解此题要借助于相似三角形的性质,相似三角形的对应边成比例,还要注意数形结合思想与方程思想的应用.【解答】解:(1)如右图.(2)过O作OH⊥MG于点H,设DH=xm,由AB∥CD∥OH得,即,解得x=1.2.设FG=ym,同理得,即,解得y=0.4.所以EF的影长为0.4m.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了方程的思想.23.如图所示,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°,BC=2;(2)判断△ABC与△DEF是否相似?并证明你的结论.【考点】相似三角形的判定;勾股定理.【专题】压轴题;网格型.【分析】(1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.【解答】(1)解:∠ABC=90°+45°=135°,BC===2;故答案为:135°;2.(2)△ABC∽△DEF.证明:∵在4×4的正方形方格中,∠ABC=135°,∠DEF=90°+45°=135°,∴∠ABC=∠DEF.∵AB=2,BC=2,FE=2,DE=∴==,==.∴△ABC∽△DEF.【点评】此题主要考查学生对勾股定理和相似三角形的判定的理解和掌握,解答此题的关键是认真观察图形,得出两个三角形角和角,边和边的关系.24.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.【考点】待定系数法求二次函数解析式;二次函数图象上点的坐标特征.【分析】(1)把点A原点的坐标代入函数解析式,利用待定系数法求二次函数解析式解答;(2)根据三角形的面积公式求出点P到AO的距离,然后分点P在x轴的上方与下方两种情况解答即可.【解答】解:(1)由已知条件得,解得,所以,此二次函数的解析式为y=﹣x2﹣4x;(2)∵点A的坐标为(﹣4,0),∴AO=4,设点P到x轴的距离为h,则S△AOP=×4h=8,解得h=4,①当点P在x轴上方时,﹣x2﹣4x=4,解得x=﹣2,所以,点P的坐标为(﹣2,4),②当点P在x轴下方时,﹣x2﹣4x=﹣4,解得x1=﹣2+2,x2=﹣2﹣2,所以,点P的坐标为(﹣2+2,﹣4)或(﹣2﹣2,﹣4),综上所述,点P的坐标是:(﹣2,4)、(﹣2+2,﹣4)、(﹣2﹣2,﹣4).【点评】本题考查了待定系数法求二次函数解析式,二次函数图象上的点的坐标特征,(2)要注意分点P在x轴的上方与下方两种情况讨论求解.25.北京的6月绿树成荫花成海,周末小明约了几个同到户外活动.当他们来到一座小亭子时,一位同学提议测量一下小亭子的高度,大家很高兴.于是设计出了这样一个测量方案:小明在小亭子和一棵小树的正中间点A的位置,观测小亭子顶端B的仰角∠BAC=60°,观测小树尖D的仰角∠DAE=45°.已知小树高DE=2米.请你也参与到这个活动中来,帮他们求出小亭子高BC的长.(结果精确到0.1.,)【考点】解直角三角形的应用-仰角俯角问题.【专题】应用题.【分析】在Rt△ADE中,由小树的高度以及∠DAE的大小,可求解AE的长,即AC的长,进而再在Rt△ABC中,由边角关系∠BAC=60°特殊角,即可求解亭子高度BC的长.【解答】解:根据题意得:∠C=∠E=90°.在Rt△ADE中,∠DAE=45°,∠E=90°,∴∠D=∠DAE=45°.∵DE=2,∴AE=DE=2.∵A为CE的中点,∴AC=AE=2.(2分)在Rt△ACB中,∠BAC=60°,∠C=90°,∴.∴BC=.∴BC≈2×1.73≈3.5.答:小亭子高约为3.5米.【点评】本题主要考查了解直角三角形的问题,又涉及仰角、俯角的实际应用,其中重点还是直角三角形的求解问题.26.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x 为整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?【考点】二次函数的应用.【专题】销售问题.【分析】(1)销售利润=每件商品的利润×(180﹣10×上涨的钱数),根据每件售价不能高于35元,可得自变量的取值;(2)利用公式法结合(1)得到的函数解析式可得二次函数的最值,结合实际意义,求得整数解即可;(3)让(1)中的y=1920求得合适的x的解即可.【解答】解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x==4时,y最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,为1960元;(3)1920=﹣10x2+80x+1800x2﹣8x+12=0,(x﹣2)(x﹣6)=0,解得x=2或x=6,∵0≤x≤5,∴x=2,∴30+2=32(元)∴售价为32元时,利润为1920元.【点评】考查二次函数的应用;得到月销售量是解决本题的突破点;注意结合自变量的取值求得相应的售价.。
九年级(上)期末数学试卷一、选一选,本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.(3分)将6.18×10﹣3化为小数是()A.0.000618 B.0.00618 C.0.0618 D.0.6183.(3分)有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b|D.b+c>04.(3分)下列运算正确的是()A.a0=0 B.a3+a2=a5 C.a2•a﹣1=a D. +=5.(3分)若多边形的边数由3增加到n(n为大于3的整数)则其外角和的度数()A.增加B.减少C.不变D.不能确定6.(3分)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A.B.C.D.7.(3分)函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤58.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5709.(3分)已知圆锥的底面面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm210.(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C二、认真填一填,本大题共8小题,每小题4分,共32分.11.(4分)因式分解:x2y﹣4y=.12.(4分)购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款元.13.(4分)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.14.(4分)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,可列方程.15.(4分)一直角三角形的两边长分别为5和12,则第三边的长是.16.(4分)如图,在△ABC中,两条中线BE、CD相交于点O,若△ABC的周长为8cm,则△ADE的周长为.17.(4分)如图,是一个圆心人工湖的平面图,弦AB是湖上的一座桥,已知桥长100m,测得圆周角∠ACB=30°,则这个人工湖的直径为m.18.(4分)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明、证明过程或演算步骤.19.(7分)计算:﹣()﹣1+(﹣1)﹣20080﹣|﹣2|.20.(7分)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.21.(8分)(1)作Rt△ABC的外接圆⊙P(不写作法,保留作图痕迹)(2)Rt△ABC中,若∠C=90°,BC=8,AC=6.求:⊙P的面积.22.(8分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,求建筑物AB的高度.(注:结果保留到0.1,≈1.414,≈1.732)23.(8分)甘肃省省府兰州,又名金城,在金城,黄河母亲河通过自身文化的演绎,衍生和流传了独特的“金城八宝”美食,“金城八宝”美食中甜品类有:味甜汤糊“灰豆子”、醇香软糯“甜胚子”、生津润肺“热冬果”、香甜什锦“八宝百合”;其他类有:青白红绿“牛肉面”、酸辣清凉“酿皮子”、清爽溜滑“浆水面”、香醇肥美“手抓羊肉”,李华和王涛同时去品尝美食,李华准备在“甜胚子、牛肉面、酿皮子、手抓羊肉”这四种美食中选择一种,王涛准备在“八宝百合、灰豆子、热冬果、浆水面”这四种美食中选择一种.(甜胚子、牛肉面、酿皮子、手抓羊肉分别记为A,B,C,D,八宝百合、灰豆子、热冬果、浆水面分别记为E,F,G,H)(1)用树状图或表格的方法表示李华和王涛同学选择美食的所有可能结果;(2)求李华和王涛同时选择的美食都是甜品类的概率.四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤24.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.25.(10分)如图,在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.(1)求点B的坐标及k的值;(2)求直线y=﹣2x+1、直线y=kx+4与y轴所围成的△ABC的面积.26.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(10分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.28.(12分)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.参考答案与试题解析一、选一选,本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【解答】解:|﹣2|=2.故选:B.2.(3分)将6.18×10﹣3化为小数是()A.0.000618 B.0.00618 C.0.0618 D.0.618【解答】解:∵0.00618=6.18×10﹣3,∴6.18×10﹣3=0.00618,故选:B.3.(3分)有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b|D.b+c>0【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.4.(3分)下列运算正确的是()A.a0=0 B.a3+a2=a5 C.a2•a﹣1=a D. +=【解答】解:(A)a0=1(a≠0),故A错误;(B)a2与a3不是同类项,故B错误;(D)原式=,故D错误;故选:C.5.(3分)若多边形的边数由3增加到n(n为大于3的整数)则其外角和的度数()A.增加B.减少C.不变D.不能确定【解答】解:因为多边形外角和固定为360°,所以外角和的读数是不变的.故选:C.6.(3分)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A.B.C.D.【解答】解:∵k1>0>k2,∴函数y=k1x的结果第一、三象限,反比例y=的图象分布在第二、四象限.故选:C.7.(3分)函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤5【解答】解:由题意得,x﹣5≥0,解得x≥5.故选:C.8.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.9.(3分)已知圆锥的底面面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm2【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选:A.10.(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,故中间一段图象对应的路径为,又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.二、认真填一填,本大题共8小题,每小题4分,共32分.11.(4分)因式分解:x2y﹣4y=y(x﹣2)(x+2).【解答】解:x2y﹣4y=y(x2﹣4)=y(x﹣2)(x+2).故答案为:y(x﹣2)(x+2).12.(4分)购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款3a+5b 元.【解答】解:应付款3a+5b元.故答案为:3a+5b.13.(4分)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是1000元.【解答】解:设这台空调的进价为x元,根据题意得:2000×0.6﹣x=x×20%,解得:x=1000.故这台空调的进价是1000元.故答案为:1000.14.(4分)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,可列方程=.【解答】解:由题意可得,=,故答案为:=.15.(4分)一直角三角形的两边长分别为5和12,则第三边的长是13或.【解答】解:设第三边为x,(1)若12是直角边,则第三边x是斜边,由勾股定理得:52+122=x2,∴x=13;(2)若12是斜边,则第三边x为直角边,由勾股定理得:52+x2=122,∴x=;∴第三边的长为13或.故答案为:13或.16.(4分)如图,在△ABC中,两条中线BE、CD相交于点O,若△ABC的周长为8cm,则△ADE的周长为4cm.【解答】解:∵在△ABC中,两条中线BE、CD相交于点O,∴DE是△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴△ABC的周长:△ADE的周长=,∵△ABC的周长为8cm,∴△ADE的周长为4cm,故答案为:4cm.17.(4分)如图,是一个圆心人工湖的平面图,弦AB是湖上的一座桥,已知桥长100m,测得圆周角∠ACB=30°,则这个人工湖的直径为200m.【解答】解:连结OA、OB,如图,∵∠AOB=2∠ACB=2×30°=60°,而OA=OB,∴△OAB为等边三角形,∴OA=AB=100m,∴个人工湖的直径为200m.故答案为200m.18.(4分)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.【解答】解:按一定规律排列的一列数依次为:,,,,,,…,按此规律,第n个数为,∴当n=100时,=,即这列数中的第100个数是,故答案为:.三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明、证明过程或演算步骤.19.(7分)计算:﹣()﹣1+(﹣1)﹣20080﹣|﹣2|.【解答】解:原式=2﹣+3﹣﹣1﹣(2﹣)=2﹣2+=.20.(7分)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.【解答】解:(﹣)÷=[﹣)÷=(﹣)÷=×=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x=1代入,原式=3.21.(8分)(1)作Rt△ABC的外接圆⊙P(不写作法,保留作图痕迹)(2)Rt△ABC中,若∠C=90°,BC=8,AC=6.求:⊙P的面积.【解答】解:(1)Rt△ABC的外接圆⊙P如图所示:(2)在Rt△ACB中,∵∠C=90°,AC=6,BC=8,∴AB==10,∴⊙P的面积=25π.22.(8分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,求建筑物AB的高度.(注:结果保留到0.1,≈1.414,≈1.732)【解答】解:设AB=x米,在Rt△ABC中,∵∠ACB=45°,∴BC=AB=x米,则BD=BC+C D=x+100(米),在Rt△ABD中,∵∠ADB=30°,∴tan∠ADB==,即=,解得:x=50+50≈136.6,即建筑物AB的高度约为136.6米.23.(8分)甘肃省省府兰州,又名金城,在金城,黄河母亲河通过自身文化的演绎,衍生和流传了独特的“金城八宝”美食,“金城八宝”美食中甜品类有:味甜汤糊“灰豆子”、醇香软糯“甜胚子”、生津润肺“热冬果”、香甜什锦“八宝百合”;其他类有:青白红绿“牛肉面”、酸辣清凉“酿皮子”、清爽溜滑“浆水面”、香醇肥美“手抓羊肉”,李华和王涛同时去品尝美食,李华准备在“甜胚子、牛肉面、酿皮子、手抓羊肉”这四种美食中选择一种,王涛准备在“八宝百合、灰豆子、热冬果、浆水面”这四种美食中选择一种.(甜胚子、牛肉面、酿皮子、手抓羊肉分别记为A,B,C,D,八宝百合、灰豆子、热冬果、浆水面分别记为E,F,G,H)(1)用树状图或表格的方法表示李华和王涛同学选择美食的所有可能结果;(2)求李华和王涛同时选择的美食都是甜品类的概率.【解答】解:(1)列表得:E F G H李华王涛A AE AF AG AHB BE BF BG BHC CE CF CG CHD DE DF DG DH由列表可知共有16种情况;(2)由(1)可知有16种情况,其中李华和王涛同时选择的美食都是甜品类的情况有AE,AF,AG三种情况,所以李华和王涛同时选择的美食都是甜品类的概率=.四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤24.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=150;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240名学生最喜爱足球活动.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.25.(10分)如图,在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.(1)求点B的坐标及k的值;(2)求直线y=﹣2x+1、直线y=kx+4与y轴所围成的△ABC的面积.【解答】解:(1)∵直线y=﹣2x+1过点B,点B的横坐标为﹣1,∴y=2+1=3,∴B(﹣1,3),∵直线y=kx+4过B点,∴3=﹣k+4,解得:k=1;(2)∵k=1,∴一次函数解析式为:y=x+4,∴A(0,4),∵y=﹣2x+1,∴C(0,1),∴AC=4﹣1=3,∴△ABC的面积为:×1×3=.26.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.27.(10分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.【解答】解:(1)如图所示,连接BO,∵∠ACB=30°,∴∠OBC=∠OCB=30°,∵DE⊥AC,CB=BD,∴Rt△DCE中,BE=CD=BC,∴∠BEC=∠BCE=30°,∴△BCE中,∠EBC=180°﹣∠BEC﹣∠BCE=120°,∴∠EBO=∠EBC﹣∠OBC=120°﹣30°=90°,∴BE是⊙O的切线;(2)当BE=3时,BC=3,∵AC为⊙O的直径,∴∠ABC=90°,又∵∠ACB=30°,∴AB=tan30°×BC=,∴AC=2AB=2,AO=,∴阴影部分的面积=半圆的面积﹣Rt△ABC的面积=π×AO2﹣AB×BC=π×3﹣××3=﹣.28.(12分)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.【解答】方法一:解:(1)∵对称轴为直线x=2,∴设抛物线解析式为y=a(x﹣2)2+k.将A(﹣1,0),C(0,5)代入得:,解得,∴y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.设P(x,﹣x2+4x+5),如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=﹣x2+4x+5,∴MN=ON﹣OM=﹣x2+4x+4.S四边形MEFP=S梯形OFPN﹣S△PMN﹣S△OME=(PN+OF)•ON﹣PN•MN﹣OM•OE=(x+2)(﹣x2+4x+5)﹣x•(﹣x2+4x+4)﹣×1×1=﹣x2+x+=﹣(x﹣)2+∴当x=时,四边形MEFP的面积有最大值为,把x=时,y=﹣(﹣2)2+9=.此时点P坐标为(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3.令y=﹣x2+4x+5=3,解得x=2±.∵点P在第一象限,∴P(2+,3).四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF 的周长将取得最小值.如答图3,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.设直线PM2的解析式为y=mx+n,将P(2+,3),M2(1,﹣1)代入得:,解得:m=,n=﹣,∴y=x﹣.当y=0时,解得x=.∴F(,0).∵a+1=,∴a=.∴a=时,四边形PMEF周长最小.方法二:(1)略.(2)连接MF,过点P作x轴垂线,交MF于点H,有最大值时,四边形MEFP面积最大.显然当S△PMF当a=1时,E(1,0),F(2,0),∵M(0,1),∴l MF:y=﹣x+1,设P(t,﹣t2+4t+5),H(t,﹣t+1),=(P Y﹣H Y)(F X﹣M X),∴S△PMF=(﹣t2+4t+5+t﹣1)(2﹣0)=﹣t2+t+4,∴S△PMF最大值为,∴当t=时,S△PMF=EF×MY=×1×1=,∵S△MEF的最大值为+=.∴S四边形MEFP(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3,∴﹣x2+4x+5=0,解得:x=2±,∵点P在第一象限,∴P(2+,3),PM、EF长度固定,当ME+PF最小时,PMEF的周长取得最小值,将点M向右平移1个单位长度(EF的长度),得M1(1,1),∵四边形MEFM1为平行四边形,∴ME=M1F,作点M1关于x轴的对称点M2,则M2(1,﹣1),∴M2F=M1F=ME,当且仅当P,F,M2三点共线时,此时ME+PF=PM2最小,∵P(2+,3),M2(1,﹣1),F(a+1,0),∴K PF=K M1F,∴,∴a=.。
九年级上学期期末考试数学试卷(附答案)一.单选题。
(每小题4分,共40分)1.﹣5的相反数是()A.15B.﹣15C.5D.﹣52.如图是一根空心方管,它的左视图是()A. B. C. D.3.一个数是8600,这个数用科学计数法表示8600为()A.8.6×102B.8.6×103C.86×102D.0.86×1044.下列各式计算正确的是()A.3x+3y=6xyB.4xy2-5xy2=﹣1C.﹣2(x-3)=﹣2x+6D.2a+a=3a25.把20个除颜色外完全相同的小球,放在一个不透明的盒子中,其中有m个白球,做大量重复试验,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子里,最终发现摸到白球的频率稳定在35%左右,则m的值大约是()A.7B.8C.9D.106.关于菱形一定具有的性质,下列说法错误的是()A.对角线互相平分B.对角线互相垂直C.邻边相等D.对角线相等7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,下列关系正确的是()A.sinA=BCAC B.tanB=ACABC.cosA=CDACD.sinB=CDBC(第7题图)(第8题图)(第9题图)8.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,AC⊥x轴于点C,BD⊥x轴于点D,连接OA ,BC ,若点C (1,0),BD=2,△BCD 面积为3,则△AOC 的面积是( ) A.2 B.3 C.4 D.59.如图,已知点C ,D 是以AB 为直径的半圆O 的三等分点,圆的半径为1,则图中阴影部分面积是( )A.16π B.316π C.124π D.112π+√3410.如图,二次函数y=ax 2+bx+c 的图象的顶点在第一象限,且过点(0,1)和(﹣1,0)下列结论:①ab >0,②b 2-4ac >0,③0<a+b+c <2,④0<b <1,⑤当y >﹣1时,x >0,其中正确结论个数是( )A.2个B.3个C.4个D.5个(第10题图)二.填空题。
人教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.已知函数:(1)xy=9;(2)y=6x ;(3)y=-23x ;(4)y=22x ;(5)y=31x -,其中反比例函数的个数为()A .1B .2C .3D .43.关于x 的一元二次方程(2x -1)2+n 2+1=0的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判定4.一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为A .83cmB .163cmC .3cmD .43cm 5.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =50°,则∠OAB 的度数为()A .25°B .20°C .15°D .30°6.某楼盘2016年房价为每平方米11000元,经过两年连续降价后,2018年房价为9800元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为()A .9800(1-x)2+9800(1-x)+9800=11000B .9800(1+x)2+9800(1+x)+9800=11000C .11000(1+x)2=9800D .11000(1-x)2=98007.已知三点()11,x y 、()22,x y 、()33,x y 均在双曲线上4y x =,且1230x x x <<<,则下列各式正确的是()A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<8.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是()A.12B.13C.23D.169.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A2B2C cm2D2 10.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b =0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①④⑤B.①③④⑤C.①③⑤D.①②③二、填空题11.m、n分别为的一元二次方程2410x x--=的两个不同实数根,则代数式24m m mn-+的值为________12.二次函数解析式为21y x mx=--,当x>1时,y随x增大而增大,求m的取值范围__________13.如图,OA⊥OB,等腰直角△CDE的腰CD在OB上,∠ECD=45°,将△CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则OCCD的值为__________14.如图,ABC ∆中,60,45,22BAC ABC AB ∠=∠== D 是线段BC 上的一个动点,以AD 为直径画O 分别交,AB AC 于,E F 连接EF ,则线段EF 长度的最小值为__________.15.如图,四边形ABCD 是O 的内接四边形,若O 半径为4,且2C A ∠∠=,则 BD的长为________.(结果保留π)16.如图,O 是ABC 的外接圆,AD 是O 的切线,且//AD BC ,直线CO 交AD 于点E .若44E ∠=︒,则B ∠=______°.三、解答题17.解方程:2(1)x +-2(x+1)=318.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC 的三个顶点A ,B ,C 都在格点上,将△ABC 绕点A 按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB 在变换到AB′的过程中扫过区域的面积.19.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A (2,5)在反比例函数k y x=的图象上,过点A 的直线y=x+b 交x 轴于点B .(1)求k 和b 的值;(2)求△OAB 的面积.20.某学校为了增强学生体质,决定开设以下体育课外活动项目:A :篮球B :乒乓球C :羽毛球D :足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)21.已知函数解析式为y=(m-2)2-2m x (1)若函数为正比例函数,试说明函数y 随x 增大而减小(2)若函数为二次函数,写出函数解析式,并写出开口方向(3)若函数为反比例函数,写出函数解析式,并说明函数在第几象限22.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.23.如图,已知等边△ABC,AB=12.以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求△FDG的面积.24.如图,已知抛物线y=38x2-34x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P 四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.25.已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE;连结EC,取EC的中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,求证:BM=DM且BM⊥DM;(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.参考答案1.B【解析】根据轴对称图形与中心对称图形的概念判定即可.【详解】解:A、不是轴对称图形,也是中心对称图形B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故答案为B.【点睛】本题考查了中心对称图形与轴对称图形的概念,掌握轴对称和中心对称概念的区别是解答本题的关键.2.C【分析】直接根据反比例函数的定义判定即可.【详解】解:反比例函数有:xy=9;y=6x;y=-23x.故答案为C.【点睛】本题考查了反比例函数的定义,即形如y=kx(k≠0)的函数关系叫反比例函数关系.3.C【分析】先对原方程进行变形,然后进行判定即可.【详解】解:由原方程可以化为:(2x-1)2=-n2-1∵(2x-1)2≥0,-n2-1≤-1∴原方程没有实数根.故答案为C.【点睛】本题考查了一元二次方程的解,解题的关键在于对方程的变形,而不是运用根的判别式.4.A【详解】试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:r=83cm.故选A.考点:弧长的计算.5.A【分析】根据圆周角定理可得∠BAC=25°,又由AC∥OB,∠BAC=∠B=25°,再由等边对等角即可求解答.【详解】解:∵∠BOC=2∠BAC,∠BOC=50°,∴∠BAC=25°,又∵AC ∥OB∴∠BAC=∠B=25°∵.OA=OB∴∠OAB=∠B=25°故答案为A .【点睛】本题考查了圆周角定理和平行线的性质,灵活应用所学定理以及数形结合思想的应用都是解答本题的关键.6.D【分析】设该楼盘这两年房价每年平均降低率为x ,则第一次降价后房价为每平方米11000(1-x )元,第二次降价后房价为每平方米11000(1-x )2元,然后找等量关系列方程即可.【详解】解:设该楼盘这两年房价每年平均降低率为x ,则由题意得:11000(1-x )2=9800故答案为D .【点睛】本题考查了一元二次方程的应用,审清题意、找到等量关系是解决问题的关键.7.B【分析】根据反比例函数的增减性解答即可.【详解】解:∵k=4>0,∴函数图象在一、三象限,∵1230x x x <<<∴横坐标为x 1,x 2的在第三象限,横坐标为x 3的在第一象限;∵第三象限内点的纵坐标小于0,第一象限内点的纵坐标大于0,∴y 3最大,∵在第三象限内,y 随x 的增大而减小,∴213y y y <<故答案为B .【点睛】本题考查了反比例函数的增减性,对点所在不同象限分类讨论是解答本题的关键.8.A【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61122=.故答案为A .【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.9.C【解析】试题解析:∵△ABC 为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC .∵筝形ADOK ≌筝形BEPF ≌筝形AGQH ,∴AD=BE=BF=CG=CH=AK .∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK ,四边形ODEP 、四边形PFGQ 、四边形QHKO 都为矩形.∴∠ADO=∠AKO=90°.连结AO ,在Rt △AOD 和Rt △AOK 中,{AO AOOD OK ==,∴Rt △AOD ≌Rt △AOK (HL ).∴∠OAD=∠OAK=30°.设OD=x ,则AO=2x ,由勾股定理就可以求出3,∴3,∴纸盒侧面积=3x (3)32+18x ,3x-32)2+932,∴当32932故选C .考点:1.二次函数的应用;2.展开图折叠成几何体;3.等边三角形的性质.10.C【分析】①根据对称轴x=1,确定a ,b 的关系,然后判定即可;②根据图象确定a 、b 、c 的符号,即可判定;③方程ax 2+bx+c=3的根,就y=3的图象与抛物线交点的横坐标判定即可;④根据对称性判断即可;⑤由图象可得,当1<x<4时,抛物线总在直线的上面,则y 2<y 1.【详解】解:①∵对称轴为:x=1,∴12ba -=则a=-2b,即2a+b=0,故①正确;∵抛物线开口向下∴a <0∵对称轴在y 轴右侧,∴b >0∵抛物线与y 轴交于正半轴∴c >0∴abc<0,故②不正确;∵抛物线的顶点坐标A (1,3)∴方程ax 2+bx+c=3有两个相等的实数根是x=1,故③正确;∵抛物线对称轴是:x=1,B (4,0),∴抛物线与x 轴的另一个交点是(-2,0)故④错误;由图象得:当1<x<4时,有y 2<y 1;故⑤正确.故答案为C .【点睛】本题考查了二次函数的图像,考查知识点较多,解答的关键在于掌握并灵活应用二次函数知识.11.0【分析】由一元二次方程的解的定义可得m 2-4m-1=0,则m 2-4m=1,再由根于系数的关系可得mn=-1,最后整体代入即可解答.【详解】解:∵m 、n 分别为的一元二次方程2410x x --=∴m+n=4,mn=-1,m 2-4m-1=0,∴m 2-4m=1∴24m m mn -+=1-1=0故答案为0.【点睛】本题考查了一元二次方程的解和根与系数的关系,其中正确运用根与系数的关系是解答本题的关键.12.m≤2【分析】先确定图像的对称轴x=2m ,当x>1时,y 随x 增大而增大,则2m ≤1,然后列不等式并解答即可.【详解】解:∵21y x mx =--∴对称轴为x=2m∵当x>1时,y 随x 增大而增大∴2m ≤1即m≤2故答案为m≤2.【点睛】本题考查二次函数的增减性,正确掌握二次函数得性质和解一元一次不等式方程是解答本题的关键.13.2【分析】由旋转角的定义可得∠DCM=75°,进一步可得∠NCO=60°,△NOC 是30°直角三角形,设DE=a ,将OC ,CD 用a 表示,最后代入即可解答.【详解】解:由题意得∠DCM=75°,∠NCM=∠ECD=45°∴∠NCO=180°-75°-45°=60°∴∠ONC=90°-60°=30°设CD=a ,∴OC=12∴2OC CD a ==故答案为2.【点睛】本题主要考查了旋转的性质、等腰直角三角形的性质,抓住旋转的旋转方向、旋转角,找到旋转前后的不变量是解答本题的关键.14.3.【详解】解:如图,连接,OE OF ,过O 点作OH EF ⊥,垂足为H∵60BAC ∠= ,∴2120EOF BAC ∠=∠= .由∵OE OF =,∴30OEF OFE ∠=∠= .而OH EF ⊥,则2EF EH =.在Rt EOH ∆中,3cos 2EH OE OEH OE =⋅∠,∴3EF OE =.所以当OE 最小即O 半径最小时,线段EF 长度取到最小值,故当AD BC ⊥时,线段EF 长度最小.在Rt ADB ∆中,2sin 222AD AB B =⋅∠=,则此时O 的半径为1,∴33EF OE ==315.8π3【分析】连接OB ,OD ,利用内接四边形的性质得出∠A=60°,进而得出∠BOD=120°,再利用弧长公式计算即可.【详解】解:如图,连接OB ,OD ,∵四边形ABCD是⊙O的内接四边形,∠C=2∠A,∴∠C+∠A=3∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴弧BD=120π48π1803⨯=,故答案为:8π3.【点睛】本题考查的是圆内接四边形的性质、圆周角定理以及弧长的计算,掌握圆内接四边形的对角互补、圆周角定理及弧长计算公式是解题关键.16.67【分析】根据切线性质和直角三角形的性质可得∠AOC,再根据圆周角定理即可得解.【详解】解:如图,连接AO,由切线的性质可得:∠OAE=90°,∴∠AOE=90°-∠E=46°,∴∠AOC=134°,∴∠B=134÷2=67°,故答案为67.【点睛】本题考查圆切线的性质,熟练掌握圆切线的性质、圆周角定理是解题关键.17.122,2x x ==-【分析】先将2(1)x +-2(x+1)=3化成2(1)x +-2(x+1)-3=0,再将x+1当作一个整体运用因式分解法求出x+1,最后求出x .【详解】解:∵2(1)x +-2(x+1)=3化成2(1)x +-2(x+1)-3=0∴(x+1-3)(x+1+1)=0∴x+1-3=0或x+1+1=0∴122,2x x ==-【点睛】本题考查了一元二次方程的解法,掌握整体换元法是解答本题的关键.18.(1)见解析;(2)254π.【分析】(1)分别作出点B 、C 绕点A 按顺时针方向旋转90︒得到的对应点,再顺次连接可得;(2)根据扇形的面积公式列式计算可得.【详解】(1)解:如图所示:△AB′C′即为所求(2)解:∵AB=,∴线段AB 在变换到AB′的过程中扫过区域的面积为:2905360π⨯=254π【点睛】本题主要考查作图以及旋转变换,解题的关键是根据旋转的性质作出变换后的对应点及扇形的面积公式.19.(1)k=10,b=3;(2)15 2 .【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=kx,得k==2×5=10把x=2,y=5代入y=x+b,得b=3(2)、∵y=x+3∴当y=0时,x=-3,∴OB=3∴S=12×3×5=7.5考点:一次函数与反比例函数的综合问题.20.解:(1)200.(2)补全图形,如图所示:(3)列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21 P126 ==.【详解】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数:3620200360÷=(人).(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可.(3)根据题意列出表格或画树状图,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.21.(1)详见解析;(2)y=-4x2,开口向下;(3)y=-x-1或y=-3x-1,函数在二四象限【分析】(1)根据正比例函数的定义求出m,再确定m-2的正负,即可确定增减性;(2)根据二次函数的定义求出m,再确定m-2的值,即可确定函数解析式和开口方向;(3)由题意可得2m-2=-1,求出m即可确定函数解析式和图像所在象限.【详解】解:(1)若为正比例函数则2m-2=1,,∴m-2<0,函数y随x增大而减小;(2)若函数为二次函数,2m-2=2且m-2≠0,∴m=-2,函数解析式为y=-4x2,开口向下m-2=-1,m=±1,m-2<0,(3)若函数为反比例函数,2解析式为y=-x-1或y=-3x-1,函数在二四象限【点睛】本题考查了正比例、二次函数、反比例函数的定义,理解各种函数的定义及其内涵是解答本题的关键.22.(1)△ABC是等腰三角形;(2)△ABC是直角三角形;(3)x1=0,x2=﹣1.【详解】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC 的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考点:一元二次方程的应用.23.(1)详见解析;(2;(3【分析】(1)如图所示,连接OD.由题意可知∠A=∠B=∠C=60°,则OD=OB,可以证明△OBD为等边三角形,易得∠C=∠ODB=60°,再运用平行线的性质和判定以及等量代换即可完成解答. (2)先说明OD为△ABC的中位线,得到BD=CD=6.在Rt△CDF中,由∠C=60°,得∠CDF=30°,根据含30度的直角三角形三边的关系得CF=12CD,则AF=AC-CF=9,最后在Rt△AFG中,根据正弦的定义即可解答;(3)作DH⊥FG,CD=6,CF=3,2,DH=92,最后根据三角形的面积公式解答即可.【详解】解:(1)如图所示,连接OD.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°∵OD=OB∴△OBD为等边三角形,∴∠C=∠ODB=60°,∴AC∥OD,∴∠CFD=∠FDO,∵DF⊥AC,∴∠CFD=∠FDO=90°,∴DF是⊙O的切线(2)因为点O是AB的中点,则OD是△ABC的中位线.∵△ABC是等边三角形,AB=12,∴AB=AC=BC=12,CD=BD=12BC=6∵∠C=60°,∠CFD=90°,∴∠CDF=30°,同理可得∠AFG=30°,∴CF=12CD=3∴AF=12-3=9.∴33939222FG AF =⨯=⨯=.(3)作DH ⊥FG ,CD=6,CF=3,DF=33∴FH=332,DH=92∴△FDG 的面积为12DH FG=8138【点睛】本题考查了切线的性质、等边三角形的性质以及解直角三角形等知识,连接圆心与切点的半径是解决问题的常用方法.24.(1)A 点坐标为(4,0),D 点坐标为(-2,0),C 点坐标为(0,-3);(2)(2,3)-或(117,3)或(117,3);(3)在抛物线上存在一点P ,使得以点A 、B 、C 、P 四点为顶点所构成的四边形为梯形;点P 的坐标为(-2,0)或(6,6).【分析】(1)令y=0,解方程2333084x x --=可得到A 点和D 点坐标;令x=0,求出y=-3,可确定C 点坐标;(2)根据两个同底三角形面积相等得出它们的高相等,即纵坐标绝对值相等,得出点M 的纵坐标为:3±,分别代入函数解析式求解即可;(3)分BC 为梯形的底边和BC 为梯形的腰两种情况讨论即可.【详解】(1)在233384y x x =--中令2330384x x =--,解得122,4x x =-=,∴A(4,0)、D(-2,0).在233384y x x =--中令0x =,得3y =-,∴C(0,-3);(2)过点C 做x 轴的平行线a ,交抛物线与点1M ,做点C 关于x 轴的对称点C ',过点C '做x 轴的平行线b ,交抛物线与点23M M 、,如下图所示:∵△MAD 的面积与△CAD 的面积相等,且它们是等底三角形∴点M 的纵坐标绝对值跟点C 的纵坐标绝对值相等∵点C 的纵坐标绝对值为:33-=∴点M 的纵坐标绝对值为:3m y =∴点M 的纵坐标为:3±当点M 的纵坐标为3-时,则2333384x x -=--解得:2x =或0x =(即点C ,舍去)∴点1M 的坐标为:(2,3)-当点M 的纵坐标为3时,则2333384x x =--解得:1x =∴点2M 的坐标为:(1,点3M 的坐标为:(1∴点M 的坐标为:(2,3)-或(1或(1;(3)存在,分两种情况:①如图,当BC 为梯形的底边时,点P 与D 重合时,四边形ADCB 是梯形,此时点P 为(-2,0).②如图,当BC 为梯形的腰时,过点C 作CP//AB ,与抛物线交于点P ,∵点C ,B 关于抛物线对称,∴B(2,-3)设直线AB 的解析式为11y k x b =+,则111140{23k b k b +=+=-,解得113{26k b ==-.∴直线AB 的解析式为362y x =-.∵CP//AB ,∴可设直线CP 的解析式为32y x m =+.∵点C 在直线CP 上,∴3m =-.∴直线CP 的解析式为332y x =-.联立2332{33384y x y x x =-=--,解得110{3x y ==-,226{6x y ==∴P(6,6).综上所述,在抛物线上存在点P,使得以A、B、C、P四点为顶点的四边形为梯形,点P的坐标为(-2,0)或(6,6).考点:1.二次函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.轴对称的应用(最短线路问题);5.二次函数的性质;6.梯形存在性问题;7.分类思想的应用.25.(1)证明见解析(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立【分析】(1)根据直角三角形斜边上的中线的性质得出BM=DM,然后根据四点共圆可以得出∠BMD=2∠ACB=90°,从而得出答案;(2)连结BD,延长DM至点F,使得DM=MF,连结BF、FC,延长ED交AC于点H,根据题意得出四边形CDEF为平行四边形,然后根据题意得出△ABD和△CBF全等,根据角度之间的关系得出∠DBF=∠ABC=90°.【详解】解:(1)在Rt△EBC中,M是斜边EC的中点,∴12BM EC=.在Rt△EDC中,M是斜边EC的中点,∴12DM EC=.∴BM=DM,且点B、C、D、E在以点M为圆心、BM为半径的圆上.∴∠BMD=2∠ACB=90°,即BM⊥DM.(2)当△ADE绕点A逆时针旋转小于45°的角时,(1)中的结论成立.证明:连结BD ,延长DM 至点F ,使得DM=MF ,连结BF 、FC ,延长ED 交AC 于点H .∵DM=MF ,EM=MC ,∴四边形CDEF 为平行四边形,∴DE ∥CF ,ED =CF ,∵ED=AD ,∴AD=CF ,∵DE ∥CF ,∴∠AHE=∠ACF .∵()45459045BAD DAH AHE AHE ∠=-∠=--∠=∠- ,45BCF ACF ∠=∠- ,∴∠BAD=∠BCF ,又∵AB=BC ,∴△ABD ≌△CBF ,∴BD=BF ,∠ABD=∠CBF ,∵∠ABD+∠DBC =∠CBF+∠DBC ,∴∠DBF=∠ABC =90°.在Rt △DBF 中,由BD BF =,DM MF =,得BM=DM 且BM ⊥DM .【点睛】本题主要考查的是平行四边形的判定与性质、三角形全等、直角三角形的性质,综合性比较强.本题解题的关键是通过构建全等三角形来得出线段相等,然后根据线段相等得出所求的结论.。
八年级数学上册期末试卷测试卷附答案 一、选择题 1.有一组数据5,3,5,6,7,这组数据的众数为( ) A.3 B.6 C.5 D.7 2.sin 30°的值为( )
A.3 B.32 C.12 D.
2
2 3.如图,△ABC的顶点在网格的格点上,则tanA的值为( )
A.12 B.105 C.33 D.
10
10 4.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A.5人 B.6人 C.4人 D.8人
5.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是( )
A.k>-1 B.k≥-1 C.k<-1 D.k≤-1 6.一元二次方程x2=9的根是( ) A.3 B.±3 C.9 D.±9 7.如图,已知一组平行线////abc,被直线m、n所截,交点分别为A、B、C和D、E、F,且1.5AB,2BC,1.8DE,则EF( )
A.4.4 B.4 C.3.4 D.2.4 8.如图,在⊙O中,AB为直径,圆周角∠ACD=20°,则∠BAD等于( ) A.20° B.40° C.70° D.80° 9.某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.有一个根是x=1 D.不存在实数根
10.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为( )
A.30° B.45° C.60° D.75° 11.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设
快递平均每年增长率为x,则下列方程中,正确的是( ) A.600(1+x)=950 B.600(1+2x)=950 C.600(1+x)2=950 D.950(1﹣x)2=600 12.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是( )
A.12a B.1(1)2a C.1(1)2a D.
1(3)2a
二、填空题 13.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________. 14.关于x的方程2()0axmb的解是19x,211x(a,m,b均为常数,0a),则关于x的方程2(3)0axmb的解是________.
15.若线段AB=10cm,点C是线段AB的黄金分割点,则AC的长为_____cm.(结果保留根 号) 16.二次函数2yaxbxc的图象如图所示,给出下列说法: ①ab0;②方程2axbxc0的根为1x1,2x3;③abc0;④当x1时,y随x值的增大而增大;⑤当y0时,1x3.其中,正确的说法有________(请写出所有正确说法的序号).
17.如图,45AOB,点P、Q都在射线OA上,2OP,6OQ,M是射线OB上的一个动点,过P、Q、M三点作圆,当该圆与OB相切时,其半径的长为
__________.
18.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”) 19.如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.
20.如图,在⊙O中,分别将弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是__________________.
21.如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为_____. 22.已知234xyzxzy
,则_______
23.已知二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),则y1_____y2.(填“>”“<”或“=”) 24.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.
三、解答题 25.如图,在Rt△ABC中,∠C=90°,矩形DEFG的顶点G、F分别在边AC、BC上,D、E在边AB上. (1)求证:△ADG∽△FEB; (2)若AD=2GD,则△ADG面积与△BEF面积的比为 .
26.如图1,矩形OABC的顶点A的坐标为(4,0),O为坐标原点,点B在第一象限,连接AC, tan∠ACO=2,D是BC的中点, (1)求点D的坐标;
(2)如图2,M是线段OC上的点,OM=23OC,点P是线段OM上的一个动点,经过P、D、B三点的抛物线交x 轴的正半轴于点E,连接DE交AB于点F. ①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时点P的坐标;
②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动的路径的长. 27.在平面直角坐标系中,点O(0,0),点A(﹣3,0).已知抛物线y=﹣x2+2mx+3(m为常数),顶点为P. (1)当抛物线经过点A时,顶点P的坐标为 ; (2)在(1)的条件下,此抛物线与x轴的另一个交点为点B,与y轴交于点C.点Q为直线AC上方抛物线上一动点. ①如图1,连接QA、QC,求△QAC的面积最大值; ②如图2,若∠CBQ=45°,请求出此时点Q坐标.
28.如图,点C在以AB为直径的圆上,D在线段AB的延长线上,且CA=CD,BC=BD. (1)求证:CD与⊙O相切; (2)若AB=8,求图中阴影部分的面积.
29.解下列方程: (1)(y﹣1)2﹣4=0; (2)3x2﹣x﹣1=0. 30.解方程:
(1)x2-3x+1=0; (2)x(x+3)-(2x+6)=0. 31.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调 查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y2x80. 设这种产品每天的销售利润为w元. (1)求w与x之间的函数关系式; (2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元? 32.如图示,AB是O的直径,点F是半圆上的一动点(F不与A,B重合),弦AD平分BAF,过点D作DEAF交射线AF于点AF.
(1)求证:DE与O相切: (2)若8AE,10AB,求DE长; (3)若10AB,AF长记为x,EF长记为y,求y与x之间的函数关系式,并求出AFEF的最大值.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】 【分析】 根据众数的概念求解. 【详解】 这组数据中5出现的次数最多,出现了2次, 则众数为5. 故选:C. 【点睛】 本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数. 2.C 解析:C 【解析】 【分析】 直接利用特殊角的三角函数值求出答案. 【详解】 解:sin 30°=12 故选C 【点睛】 此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键. 3.A 解析:A 【解析】 【分析】 根据勾股定理,可得BD、AD的长,根据正切为对边比邻边,可得答案. 【详解】 解:如图作CD⊥AB于D, CD=2,AD=22,
tanA=21222CDAD, 故选A.
【点睛】 本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边. 4.B 解析:B 【解析】 【分析】 找出这组数据出现次数最多的那个数据即为众数. 【详解】 解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次, ∴这组数据的众数是6. 故选:B.