当前位置:文档之家› (新)用固相萃取技术富集水中多环芳烃

(新)用固相萃取技术富集水中多环芳烃

(新)用固相萃取技术富集水中多环芳烃
(新)用固相萃取技术富集水中多环芳烃

土壤中多环芳烃前处理(中文)

11 水体沉积物和土壤中多环芳烃的分析方法研究 汪瑾彦1* 陈大舟2 汤 桦2 冯 洁1 吴 雪2 王 覃3 赵新颖3 李 蕾1** (1.北京化工大学理学院?北京?100029) (2.中国计量科学研究院化学计量与分析科学研究所?北京?100013) (3.北京市理化分析测试中心?北京?100089?) 摘?要?简单论述水体沉积物和土壤中多环芳烃的来源及危害,系统综述国内外分析多环芳烃的前处理和检测方法的研究进展,对微波辅助萃取、超声波提取、快速溶剂萃取、超临界流体萃取、固相萃取、固相微萃取等前处理技术在水体沉积物和土壤中的应用进行概述和比较,对气相色谱质谱联用、高效液相色谱、高效液相色谱质谱联用等测定方法分别进行归纳和对比,并对多环芳烃的分析方法进行展望。关键词?多环芳烃 沉积物 土壤 前处理 检测 *作者简介:汪瑾彦(1985-),女,湖南湘潭人,硕士研究生,研究方向为环境污染物监测和分析**通讯作者,Email:lilei@https://www.doczj.com/doc/db14605844.html, 多环芳烃(polycyclic aromatic hydrocarbons ,PAHs)是指2个或2个以上苯环以稠环形式相连的化合物, 如萘、蒽、菲等。PAHs 是一类具有“致癌、致畸、致突变”效应的持久性有机污染物。目前已发现的致癌性多环芳烃及其衍生物已超过400种。 环境中的PAHs 主要来源于含碳化合物的不完全燃烧,如石油、木材、垃圾和煤[1]。PAHs 通过废水的排放,大气沉降,土表迁移,石油泄漏等多种形式进入水体,在我国的许多海洋和河流的沉积物中都不同程度地检测出PAHs ,如黄河、黄浦江和珠江等[2~4]。PAHs 虽然在土壤中含量极少,但在我国分布广泛且不均衡,尤其是在农业土壤和人口较集中的城市周边土壤中[5~8],由于其低溶解性和憎水性,比较容易进入生物体内,并通过生物链进入生态系统,从而危害人类健康和整个生态系统的安全。 因此, 在环境质量评价、环境本底调查等方面对PAHs 进行监测显得十分重要。世界各国都制定相关法律来控制PAHs 对环境的危害。目前,大多数国家都将PAHs 列为环境监测的重要内容之一,美国环保总署(EPA)确定16种PAHs(简称EPA-PAHs)作为优先监测污染物[9]。我国颁布的环境监测的项目中,也将PAHs 列入其中。 1?样品前处理 由于PAHs 在土壤和水体沉积物中存在的形态多种多样,而且土壤和水体沉积物成分复杂,基体干扰较严重,因此,在分析检测土壤和水体沉积物 中PAHs 的含量之前,样品前处理步骤十分重要。目前用于土壤和沉积物中PAHs 的前处理方法有微波协助萃取法(MAE)、超声波提取(UE)、加速溶剂萃取(ASE)、固相萃取(SPE)、固相微萃取(SPME)和超临界流体萃取(SFE)等,这些方法各有其优缺点。1.1?微波辅助萃取法(MAE) 微波辅助萃取是以微波为能量的样品制备方法。该法能保持分析对象的原本状态,与传统的索氏提取相比,该法更加快速、节能、节省溶剂、污染小,而且有利于萃取热不稳定的物质,有利于被萃取物从基体上解吸,特别适合处理大量样品。 Criado 等[10]在1g 空白土壤中加入总量为25μg 的16种PAHs ,用2~10mL 乙腈,10min 微波萃取。结果表明,3mL 乙腈时条件最优,微波能量在425W 时信号最强。Li Xu 等[11]用微波辅助微固相萃取(MAE-μ-SPE)一步萃取净化土壤中的PAHs 。在一个装有溶剂探测器的微波萃取系统加入1.0g 土样,加入10mL 水,在2min 内温度由室温升至指定水平。其最佳实验条件是用微波在50℃加热20min ,超声波乙腈洗提5min 。GC-MS 分析检出限达到0.0017~0.0057ng/g,线性范围可达1~500/1000 ng/g 。 Pinuela 等[12]用25mL 丙酮∶二氯甲烷溶剂(1∶1)萃取海洋中19种PAHs ,萃取温度为110℃,微波炉功率1200W ,萃取10min ,回收率可达47%~102%。 1.2?超声波提取(UE)? 超声提取法是一种较为简单、快速的固体样品

固相萃取柱知识点

1、使用阳离子固相萃取柱前为什么要用甲醇和水活化 要是使用的是高聚物基质的阳离子柱,可直接上样,不用活化,要是使用的是硅胶基质的阳离子柱,活化是为了打开键合在硅胶上的碳基团链,使之充分发生作用,甲醇是为了与碳链互溶,用水过度是为了能和样品溶液相溶。 2、固相萃取技术原理及应用 一、固相萃取基本原理与操作 1、固相萃取吸附剂与目标化合物之间的作用机理 固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的 1)疏水作用力:如C18、C8、Silica、苯基柱等 2)离子交换作用:SAX, SCX,COOH、NH2等 3)物理吸附:Florsil、Alumina等 2、p H值对固相萃取的影响 pH值可以改变目标物/吸附剂的离子化或质子化程度。对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。而目标物的离子化程度则与pH值有关。如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH值必须大于其pKa值两个单位才能保证其完全离子化。对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。

3、固相萃取操作步骤及注意事项 针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。 1)填料保留目标化合物 固相萃取操作一般有四步(见图1): ? 活化---- 除去小柱内的杂质并创造一定的溶剂环境。(注意整个过程不要使小柱干涸) ? 上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。(注意流速不要过快,以1ml/min为宜,最大不超过5ml/min)? 淋洗---- 最大程度除去干扰物。(建议此过程结束后把小柱完全抽干) ? 洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。(注意流速不要过快,以1ml/min为宜) 如下图1:

多环芳烃

多环芳烃、硝基苯等有机污染物去除技术的进展 摘要:目前,污染时当今世界范围所面临的普遍问题。特别是有机的污染是当今更严重的问题。这篇文章主要介绍了多环芳烃和硝基苯类有机污染物去除技术的进展。 关键词:多环芳烃硝基苯去除技术 一、多环芳烃类污染物的研究进展 随着煤、石油在工业生产,交通运输以及生活中被广泛应用,多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)已成为世界各国共同关注的有机污染物。多环芳烃不易溶于水,极易附着在固体颗粒上,所以一般来说,大气、土壤中的大多数多环芳烃处于吸附态。多环芳烃类污染物分布很广,基本上在各种环境介质中都发现了PAH s。因排废气、废水及废物倾倒,多环芳烃对水、大气及土壤产生直接污染。吸附在烟气微粒上的多环芳烃随气流传向周围及更远处,又随降尘、降雨及降雪进入水体及土壤而土壤及地面多环芳烃通过扬尘再次进入大气,通过呼吸及食物链进入动物体产生毒害。 在土壤和沉积物环境中,大多数PAHs因较强的疏水性趋向于分配到土壤或沉积物颗粒上去,并与天然有机物发生相互作用,很少保留在水体当中。当沉积物一旦遭到严重的污染,在与上覆水体发生相互频繁的交换作用时,被污染的沉积物环境还将

成为水体再次污染的潜在来源,造成二次污染。 水环境中PAHs生物降解的程度要靠PAHs的溶解率的大小,正因为大多数PAHs易被吸附分配到土壤或沉积物颗粒上去,使之生物有效性降低而导致其生物降解率大大降低。虽然被吸附于土壤、沉积物上的PAHs因生物有效性降低而减小对环境的毒害,但最终会通过各种因素再次释放到环境之中产生危害。刘凌[12]在研究吸附作用对有机污染物的生物降解过程影响时,发现吸附在土壤颗粒内部的有机污染物,必须通过解吸和扩散过程传输到土壤颗粒外部的水溶液中,然后才能被微生物降解。如果有机污染物的土壤-水吸附分配系数Kd越大,则它存在于土壤水溶液的重量百分比就越小,发生生物降解反应的可能性就越小。Weissenfels等在研究阻碍PAHs生物降解的土壤特性和PAHs吸附与生物降解之间的关系时也发现,PAHs与土壤有机质结合力是PAHs发生生物降解的关键。他在沙和土壤吸附PAHs实验中,观察到沙吸附的PAHs能够很快被微生物降解到检测限以下,而土壤吸附的PAHs则降解很慢,并且有23%的PAHs不可被微生物降解。 二、硝基苯类有机污染物去除技术的进展 硝基芳香族化合物是重要的化工原料,被广泛应用于医药、燃料、农药、塑料等的合成前体,常常在生产和使用过程中被释放到环境中对生态系统造成影响,是一类重要的环境污染物。硝基苯对人与动物有较强的毒害作用,能引起紫绀,刺激皮

环境中多环芳烃的研究进展

环境中多环芳烃的研究进展 摘要:多环芳烃(PAHs)是一类已被证实具有难降解性,“三致”作用且易在生物体内富集的碳氢化合物,它广泛存在于大气、水、动植物和土壤中。本文论述了多环芳烃的性质和来源,研究了它在各介质中的迁移转化,着重阐述了它的监测分析方法的研究进展,包括预处理方法,各种仪器监测以及生物监测的原理及方法,也论述了环境中多环芳烃的降解方法,涉及到物理降解、化学降解以及微生物降解。 关键词:PAHs 来源迁移仪器监测生物监测微生物降解 一、多环芳烃的定义、性质及来源 多环芳烃从广义上说上讲是指分子中含有2个或2个以上苯环的化合物,而狭义的多环芳烃是指若干个苯环稠合在一起或是由若干个苯环和环戊二烯稠合在一起组成的稠环芳香烃类[1]。它是煤、石油、木材、烟草、有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物。它是最早发现且数量最多的致癌物,也是环境中最早发现且数量最多的致癌物。目前已经发现的致癌性多环芳烃及其衍生物已超过400种,每年排放到大气中的多环芳烃约几十万t[2]。美国环保局提出的129种“优先污染物”中,多环芳烃类化合物有16种。 多环芳烃具有强疏水性,其水溶性随分子量的增加而减小。但是当溶液中存在其它有机化合物时,它们可与这些有机物形成胶体,使水溶性发生很大的变化;另外,由于其由两个或两个以上苯环构成,结构稳定,不易被降解,且随分子量的增加降解性降低,故具有强吸附性,此外它还具有难降解性、毒性以及生物蓄积性,多环芳烃最突出的特性是具有强致癌性、致畸性及致突变性,当PAHs与-N02、-0H、-NH2等发生作用时,会生成致癌性更强的PAHs衍生物。另外,PAHs 很容易吸收太阳光中可见(400-760nm)和紫外(290-400nm)区的光。对紫外辐射引起的光化学反应尤为敏感。另外可在其生成、迁移、转化和降解过程中,可直接通过呼吸道、皮肤、消化道进入人体和动物体,并且可以间接通过食物链的放大作用进入人体和动物,又由于其亲脂性及难降解性,易在生物体内蓄积,对人体及动物健康产生危害。 环境中的PAHs除极少量来源于生物体(某些藻类、植物和细菌)内合成,森林草原自然起火,火山喷发等自然本底外,绝大部分由人为活动污染造成,主要来自于两方面:首先是煤、石油和木材及有机高分子化合物的不完全燃烧,即热解成因[3]。随着生活水平的提高及基础设施的完备,交通污染源也逐渐成为多环芳烃污染非常重要的一部分;此外,我国是燃煤大国,在北方城市,使用煤炉取暖的情况很普遍,而在煤炉排放的废气中,致癌性PAHs浓度可达1000ug/m3,另外,家庭炉灶每年所产生的PAHs的含量也相当多,以居室厨房内做饭时由于欠氧燃烧产生的为例,其中BaP含量可达559ug/m3,超过国家卫生标准近百倍;在食品制作过程中,若油炸时温度超过200°C以上,就会分解放出含有大量PAHs的致癌物;吸烟所引起的居室环境的污染,已引起国内外的关

固相萃取需要注意的问题

1、固相萃取的五个步骤 固相萃取过程要求样品以溶液形式存在,没有干扰,而且有足够的浓度以被检测。 固相萃取的发展过程分为五步: 第一步选择萃取管或片 注意:建议固相萃取片用于大体积样品、含有大量颗粒或处理时需要很高流速的 样品。 选择固相萃取管或片:吸附剂类型

选择固相萃取管或片:大小

选择固相萃取管或片:大管填料量 第二步预处理萃取管或片 在萃取样品之前,为了预处理固相萃取管填料,要用一满管溶剂冲洗管子。对萃取片则用5-10毫升。 反相类型硅胶和非极性吸附剂介质,通常用水溶性有机溶剂,如甲醇,预处理,然后用水或缓冲溶液。甲醇湿润吸附剂表面和渗透键合烷基相,以允许水更有效地润湿硅胶表面。有时预处理溶剂在此之前使用甲醇。这些溶剂通常与洗脱剂一样是用于消除固相萃取管上的杂质及其对分析物的干扰,也可能该杂质只溶于强洗脱溶剂。 正相类型固相萃取硅胶和极性吸附剂介质通常用样品所在的有机溶剂来预处理。 离子交换填料将用于非极性有机溶剂中的样品,并用样品溶剂来预处理。对极性溶剂中的样品,用水溶性有机溶剂,再用具有适当pH值、适当含量和盐的浓度的有机溶剂的。

为了使固相萃取填料从预处理到样品加入时都保持润湿,允许大约1ml的预处理溶剂在管过滤片或萃取片表面上。如果样品是从一个贮液管或过滤管引入固相萃取管,则多加入0.5ml最后的预处理液到1ml的固相萃取管中、2ml到3ml管中、多加入4ml到6ml管中等等。这是为了保证在样品加入之前,填料管干了,重复预处理过程。在重新引入有机溶液之前,用水冲洗管中缓冲溶液的盐。如果适当,此时样品贮液管可以用一个接口装在管上。 第三步加入样品 用移液管或微量吸液管准确地将样品转移到管或贮液管内,样品必需以适应固相萃取的形式存在。样品的总体积可以从1微升到数升(见步骤一),当过量体积的水溶液被萃取时,反相硅胶填料渐渐减少预处理时所获得的溶剂化层。这就会降低萃取效率和样品的回收率。对样品>250ml,加入少量的水溶性溶剂(大约为100% )以适当地保持反相填料的湿润性。对于每一个的应用和使用条件,样品的最大容量是特定的。如果回收率较低或重现性不好,可以按以下技术检测分析物的流失:用一个接口接两个有相同填料及预处理过的固相萃取管。让样品流过这两个管子,完成以后,分开这两个管子,分别洗脱。如果在下面管子的萃取物中发现分析物则样品体太大或填料太少,以导致分析物的流失。 为使适当的化合物保留在填料上,洗脱或沉淀不要化合物,要调节pH、盐的浓度和样品溶液在有机相中的含量。为了避免堵塞固相萃取管的过滤片或固相萃取片,如果可能,在萃取之前预先过滤或离心样品。 用真空或正压,慢谩地让样品溶液通过萃取装臵,流速会影响某些化台物的保留。一般来说,对于离子交换固相萃取管,流速小应大于2ml/min;对于其它上的固相萃取管,流速不应大于5ml/min;对于萃取片,大约为50ml/min。如果时间不是一个因素的话,滴速最佳。 对于某些很难的样品基质,另外的前处理是必要的。见下页样品前处理介绍。 第四步冲洗填料 如果分析物被保留在填料上,使用与能溶解样品的相同溶液,或另外一种不能洗脱所要化合物的溶液,去冲洗掉不要的或不要保留的物质。通常所用冲洗溶液不超过一个管体积,对固相萃取片为5-10ml。 为消除不要的、可能保留很弱的物质,用比样品基质强,但其强度又不至于洗脱分析物的的溶剂去冲洗填料。典型的溶液可含有比最后洗液少一点的有机或无机盐,也可以调节不同的pH。与最后洗脱液完全不同极性的纯溶剂或溶剂混合物

索氏提取法

索氏提取法 一、原理利用溶剂回流和虹吸原理,使固体物质每一次都能为纯的溶剂所萃取,所以萃取效率较高。萃取前应先将固体物质研磨细,以增加液体浸溶的面积。然后将固体物质放在滤纸套内,放置于萃取室中。如图安装仪器。当溶剂加热沸腾后,蒸汽通过导气管上升,被冷凝为液体滴入提取器中。当液面超过虹吸管最高处时,即发生虹吸现象,溶液回流入烧瓶,因此可萃取出溶于溶剂的部分物质。就这样利用溶剂回流和虹吸作用,使固体中的可溶物富集到烧瓶内。 二、仪器索氏提取器,干燥器(直径15~18cm,盛变色硅胶),不锈钢镊子(长20cm),培养皿,分析天平(感量0.001g),称量瓶,恒温水浴,烘箱,样品筛(60目)。 三、操作步骤 1、切片 将滤纸切成8cm×8cm,叠成一边不封口的纸包,用硬铅笔编写顺序号,按顺序排列在培养皿中。将盛有滤纸包的培养皿移入105±2℃烘箱中干燥2h,取出放入干燥器中,冷却至室温。按顺序将各滤纸包放人同一称量瓶中称重(记作a)、称量时室内相对湿度必须低于70%。 2、包装和干燥 在上述已称重的滤纸包中装入3g左右研细的样品,封好包口,放入105±2℃的烘箱中干燥3h,移至干燥器中冷却至室温。按顺序号依次放入称量瓶中称重(记作b)。 3、抽提 将装有样品的滤纸包用长镊子放入抽提筒中,注入一次虹吸量的1.67倍的无水乙醚,使样品包完全浸没在乙醚中。连接好抽提器各部分,接通冷凝水水流,在恒温水浴中进行抽提,调节水温在70~80℃之间,使冷凝下滴的乙醚成连珠状(120~150滴/min或回流7次/h以上),抽提至抽取筒内的乙醚用滤纸点滴检查无油迹为止(约需6~12h)。抽提完毕后,用长镊子取出滤纸包,在通风处使乙醚挥发(抽提室温以12~25℃为宜)。提取瓶中的乙醚另行回收。 4、称重 待乙醚挥发之后,将滤纸包置于105±2℃烘箱中干燥2h,放入干燥器冷却至恒重为止(记作c)。 四、结果与计算 粗脂肪含量(%)=( b-c)/(b-a)×100

多环芳烃的介绍

多环芳烃(PAHs)的介绍 一、简介 PAHs,学名多环芳烃。是石油、煤等燃料及木材、可燃气体在不完全燃烧或在高温处理条件下所产生的一类有害物质,通常存在于石化产品、橡胶、塑胶、润滑油、防锈油、不完全燃烧的有机化合物等物质中,是环境中重要致癌物质之一. 在环境中,有机污染物充斥于各处,多环芳香化合物(PAH)为其大宗,且部分已被证实对人体具有致癌与致突变性。PAH之来源包括:藻类或细菌之生物合成、森林大火、火山爆发,以及火力发电厂、**场焚化场、汽机车与工厂排气等。PAH之种类很多,其中之16种化合物于1979年被美国环境保护署(US EPA)所列管。 PAHs主要包括以下16种同类物质: 1 Naphthalene 萘 2 Acenaphthylene 苊烯 3 Acenaphthene 苊 4 Fluorene 芴 5 Phenanthrene 菲 6 Anthracene 蒽 7 Fluoranthene 荧蒽 8 Pyrene 芘 9 Benzo(a)anthracene 苯并(a)蒽 10 Chrysene 屈 11 Benzo(b)fluoranthene 苯并(b)荧蒽 12 Benzo(k)fluoranthene 苯并 (k)荧蒽 13 Benzo(a)pyrene 苯并(a)芘 14 Indeno(1,2,3-cd)pyrene 茚苯(1,2,3-cd)芘 15 Dibenzo(a,h)anthracene 二苯并(a, n)蒽 16 Benzo(g,hi)perylene 苯并(ghi)北(二萘嵌苯) 性状:纯的PAH通常是无色,白色,或浅黄绿色的固体。 我们为您提供的测试标准: EPA8270 索氏萃取提取PAHs,其中覆盖了16项PAHs的测试项目!

多环芳烃(PAHs)在淡水水体中的迁移转化规律

多环芳烃(PAHs)在淡水水体中的迁移转化规律 1 概述 多环芳烃( Polycyclic Aromatic Hydrocarbons ,简称PAHs)是指两个或两个以上苯环连在一起的一类化合物,具有高脂溶性和相对低的水溶性,具有“致癌、致畸和致基因突变”(目前已发现的致癌性多环芳烃及其衍生物超过400 种)作用的持久性有机污染物( Persistent Organic Pollutant s ,POPs) 。这一类物质由于高毒性、低流动性和难降解性使其在环境保护领域备受关注。美国EPA优先控制名单中确定了16种PAHs作为优先控制污染物,我国也将7 种多环芳烃列入“中国环境优先控制污染物”黑名单。PAHs由于化石燃料燃烧、机动车、垃圾焚烧、精炼油、焦炭和沥青生产以及铝的生产等人类活动而广泛分布于环境中。多环芳烃在环境中大多数是以吸附态和乳化态形式存在,一旦进入环境,便受到各种自然界固有过程的影响,发生变迁。通过复杂的物理迁移、化学及生物转化反应,在大气、水体、土壤、生物体等系统中不断变化,改变分布状况。处在不同状态、不同系统中的多环芳烃则表现出不同的变化行为。多环芳烃进入大气后,可通过化学反应、降尘、降雨、降雪等过程进入土壤及水体中。人们可以通过呼吸、饮食等多种途径摄入,对人类健康产生极大危害,因此研究多环芳烃在环境中的行为具有十分重要的意义。多环芳烃在环境中,特别是水环境中的迁移转化和归宿也得到广泛关注。本文着重探讨河流、湖泊等淡水水体中多环芳烃的迁移转化研究成果,并指出存在问题和今后努力的方向。 2 PAHs在淡水水体中的迁移转化规律 2.1 PAHs 在大气-水体间迁移转化 PAHs 在大气-水体间迁移转化方式有:气态湿沉降、携带PAHs 的颗粒物湿沉降与干沉降、水-气界面PAHs 交换。李军等利用双膜理论计算多环芳烃在麓湖水面上的交换通量,除萘、苊、二氢苊的通量方向是从湖水到大气外,其它多环芳烃都是从大气进入水体。每年大气向麓湖中输送约1 300 g 多环芳烃,主要以菲为主,占总量的60%以上;湖水向大气挥发约220 g多环芳烃,主要以萘为主,占总挥发量的95%,这显然是由于萘挥发性很强的缘故。Gigliotti 等自1997 年开始,研究Patapsco 河自巴尔的摩断面至北部的切萨皮克断面的大气-水交换通量,发现PAHs 中芴在刮大风时中交换通量最高,单位交换通量为14 200 ng/(m2?d),菲最低,为11 400 ng/(m2?d)。 2.2 PAHs 在水中光化学降解 光化学降解是水环境中PAHs 降解的重要方式之一,PAHs 可以吸收太阳光中的可见(400~700 nm)和紫外(290~400 nm)光,发生分解。1981 年,Mill 等

索氏提取器的原理及其操作

索氏提取器的原理及其 操作 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

索氏提取器 索氏提取器 索氏提取器又称脂肪抽取器或脂肪抽出器 索氏提取器是由提取瓶、提取管、冷凝器三部分组成的(图 ),提取管两侧分别有虹吸管和连接管。各部分连接处要严密不能漏气。提取时,将待测样品包在脱脂滤纸包内,放入提取管内。提取瓶内加入石油醚,加热提取瓶,石油醚气化,由连接管上升进入冷凝器,凝成液体滴入提取管内,浸提样品中的脂类物质。待提取管内石油醚液面达到一定高度,溶有粗脂肪的石油醚经虹吸管流入提取瓶。流入提取瓶内的石油醚继续被加热气化、上升、冷凝,滴入提取管内,如此循环往复,直到抽提完全为止。 从固体物质中萃取化合物的一种方法是,用溶剂将固体长期浸润而将所需 要的物质浸出来,即长期浸出法。此法花费时间长.溶剂用量大、效率不高。 在实验室多采用脂肪提取器(索氏提取器)来提取、脂肪提取器(如图所示)就是利用溶剂回流及虹吸原理,使固体物质连续不断地被纯溶剂萃取,既节约

溶利萃取效率又高。萃取前先将固体物质研碎,以增加固液接触的面积。然后 将固体物质放在滤纸套1内,置于提取器2中,提取器的下端勺盛有溶剂的圆 底烧瓶相连,上面接回流冷凝管。加热园底烧瓶,使溶剂沸腾,蒸气通过提取器 的支管3上升,被冷凝后滴入提取器中,溶剂和固体接触进行萃取,当溶剂面超 过虹吸管4的最高处时,含有萃取物的溶剂虹吸回烧瓶,因而萃取出一部分物 质,如此重复,使固体物质不断为纯的溶剂所苹取、将萃取出的物质富集在烧瓶中。 液—固萃取是利用溶剂对固体混合物中所需成分的溶解度大,对杂质的溶解度小来达到 提取分离的目的.一种方法是把固体物质放于溶剂中长期浸泡而达到萃取的目的,但是这种 方法时间长,消耗溶剂,萃取效率也不高.另一种是采用索氏提取器的方法,它是利用溶剂 的回流和虹吸原理,对固体混合物中所需成分进行连续提取.当提取筒中回流下的溶剂的液 面超过索氏提取器的虹吸管时,提取筒中的溶剂流回圆底烧瓶内,即发生虹吸.随温度升高,

固相萃取概述

固相萃取(SPE) 一、概述 固相萃取(Solid-Phase Extraction,简称SPE)是近年发展起来一种样品预处理技术,由液固萃取和液相色谱技术相结合发展而来,主要用于样品的分离、纯化和浓缩,与传统的液液萃取法相比较可以提高分析物的回收率,更有效的将分析物与干扰组分分离,减少样品预处理过程,操作简单、省时、省力。广泛的应用在医药、食品、环境、商检、化工等领域。 二、SPE的原理与分离模式 固相萃取是基于液-固相色谱理论,采用选择性吸附、选择性洗脱的方式对样品进行富集、分离、纯化,是一种包括液相和固相的物理萃取过程。SPE根据其相似相溶机理可分为四种:反相SPE、正相SPE、离子交换SPE、吸附SPE。 反相SPE中吸附剂(固定相)属于非极性或弱极性,如硅胶键合C18,C8, C4,C2,-苯基等。 正相SPE中吸附剂(固定相)属于极性键合相和极性吸附剂,如硅胶键合-NH2、-CN,-Diol(二醇基)、(A-,N-,B-)alumina、硅藻土等。 离子交换SPE中吸附剂(固定相)为带电荷的离子交换树脂,流动相为中等极性到非极性样品基质。用于萃取分离带有电荷的分析物 固相萃取的洗脱模式可以分为两种:一种是目标化合物比干扰物与吸附剂之间的亲和力更强,因而被保留,洗脱时采用对目标化合物亲和力更强的溶剂;另一种是干扰物比目标化合物与吸附剂之间的亲和力更强,则目标化合物被直接的洗脱。通常采用前一种洗脱方式。 三、SPE的主要步骤 一个完整的固相萃取步骤包括固相萃取柱的预处理、上样、淋洗、洗脱及收

集分析物四个步骤。 固相萃取柱的预处理的目的主要包括两个方面:清洗萃取柱中的固定相(填料)和活化固定相。通常用两种溶剂来完成,第一个溶剂(初溶剂)用于净化固定相,另一个溶剂(终溶剂)用于建立一个合适的固定相环境使样品分析物得到适当的保留。 上样是为了让分析物被固定相萃取:将样品倒入活化后的SPE 萃取柱,然后利用加压、抽真空或离心的方法使样品进入吸附剂(采取手动或泵以正压推动或负压抽吸方式),使液体样品以适当流速通过固相萃取柱,此时,样品中的目标萃取物被吸附在固相萃取柱填料上。 上样完成后需要对固定相进行淋洗以洗去不需要的成分,尽量的减少杂质的影响。一般选择中等强度的混合溶剂,尽可能除去基体中的干扰组分,又不会导致目标萃取物流失。 淋洗后选择适当的洗脱溶剂洗脱被分析物,收集洗脱液,挥干溶剂以备后用或直接进行在线分析。为了尽可能将分析物洗脱,使比分析物吸附更强的杂质留在SPE 柱上,需要选择强度合适的洗脱溶剂。 四、SPE 的应用 固相萃取(SPE )大多数用来处理液体样品,萃取、浓缩和净化其中的半挥发性和不挥发性化合物,也可用于固体样品,但必须先处理成液体。它是一种用途广泛的样品前处理技术,广泛的应用在医药、食品、环境、商检、化工等领域。主要典型的应用领域: 1、医药发面:血清、体液,固体、液体药物成分的检测分析 如:人体血清中的咖啡因、吴茱萸碱,吴茱萸次碱的SPE 净化及检测和血清中头孢拉定、头孢氨苄、舒必利、磺胺类等药物的检测。 2、食品、食物方面:蔬菜、水果中残留农药,肉制品中残留兽药的检测 如:猪肉中五种磺胺药物(磺胺二甲基嘧啶、磺胺间甲氧嘧啶、磺胺甲唑、预处理 (清洗、活化)上样(萃取)淋洗(去杂质)洗脱(采样分析)

16种常见多环芳烃的物理性质

16种常见多环芳烃的 物理性质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

萘英文名称NAP Naphthalene分子量 128.18 物理性质;密度1.162 熔点80.5℃,沸点217.9℃,凝固点,80.5℃,闪点78.89℃,折射率1.58212(100℃)恒压燃烧热:40264.1J/g(标准大气压,298.15K)恒压燃烧热:40205J/g(标准大气压,298.15K)。不溶于水,溶于乙醇和乙醚等。易挥发,易升华溶于乙醇后,将其滴入水中,会出现白色浑浊。化学性质(1)萘的氧化温和氧化剂得醌,强烈氧化剂得酸酐。萘环比侧链更易氧化,所以不能用侧链氧化法制萘甲酸。电子云密度高的环易被氧化。(2)萘的还原(3)萘的加成(4)萘的亲电取代反应萘的a-位比b-位更易发生亲电取代反应。a-位取代两个共振式都有完整的苯环。b-位取代只有一个共振式有完整的苯环。在萘环上主要发生亲电取代,同苯环一样,但活性比苯环强从中间对称的两个C旁边的C开始标,其中1,4,5,8号碳活性完全一样(称为阿尔法碳),2,3,6,7号碳性质完全一样(称为贝塔碳)。一般情况下,阿尔法碳活性大于贝塔碳,取代基在阿尔法位上,这是由动力学控制,温度较高时,阿尔法碳[1]上取代基会转移到贝塔碳上。但在萘的弗瑞德-克来福特酰基化反应,不加热却生成了阿尔法位和贝塔位的混合物。如用硝基甲烷为溶剂,则主要生成贝塔酰化产物。 苊烯ANY Acenaphthylene 分子量:152.200 性质:黄色棱柱状或板状结晶。熔点92-93℃,沸点265-275℃(部分分解),156-160℃(3.73千帕),相对密度0.8988(16/2℃),易溶于乙醇、甲醇、丙醇、乙醚、石油醚、苯,不溶于水。能在强酸中聚合。 苊ANA Acenaphthene 英文别名:1,8-Ethylenenaphthalene 分子量:154.21性状描述:白色或略带黄色斜方针状结晶。物理参数:密 度:1.0242(99/4°C) 熔点:96.2°C 沸点:279°C 闪点:125°C 折射率:1.6048(95°C) 芴FLU Fluorene分子量:166.22 性状描述:白色叶状至小片状结晶物理参数:密度:1.202 g/mL 熔点:116-117°C 沸点:295°C 闪点:151°C

多环芳烃测定方法

多环芳烃在上海近郊大气颗粒物的污染特征、来源及其健康风险评估样品的预处理: (1)样品滤膜剪成碎片,添加内标选择氘代混表(Naphthalene-d8、Acenaphthene-d10、Phenanthrene-d10、Chrysene-d12、Pyrene-d12-USA) (2)提取——快速萃取仪(ASE-150, Dionex ,USA),萃取溶剂为二氯甲烷、正己烷(3:1) (3)净化——活性硅胶层析柱 (4)浓缩——氮吹 样品的分析: GCMS 2010 Plus,Shimadzu,Japan GC条件 (1)毛细管柱——Rtx-5MS(30m*0.25mm*0.25um) (2)不分流进样,进样2uL (3)进样口温度270℃,色谱柱初始温度为90℃(保持1min),8℃/min升温速率升到180℃,最后以15℃/min升温速率升至280℃(保持15min) (4)载气流速1mL/min,氩气 MS条件 (1)电子电离源(EI,70eV),SIM模式 (2)离子源温度为260℃,接口温度为200℃ (3)选择离子m/z

南黄海中部表层沉积物中多环芳烃分布特征及来源分析 样品的预处理: (1)沉积物样品冷冻干燥,研磨,添加内标(蒽-d10) (2)提取——索式提取72h,提取溶剂为二氯甲烷,索提时加入一定量的活化铜片去除硫 (3)净化——层析柱(去活氧化铝、去活硅胶、无水硫酸钠),二氯甲烷-正己烷洗脱 (4)浓缩——温度不高于20℃条件下溶剂自然挥发近干 样品的分析: HPGC6890/5973MSD GC条件 (1)色谱柱——HP-5MS(60m*0.25mm*0.25um) (2)不分流进样 (3)进样口温度290℃,色谱柱以20℃/min升至100℃,再以3℃/min至310℃,恒温18min (4)载气流速1mL/min,氩气 MS条件 (1)电子电离源(EI,70eV),SCAN模式

SPE-通过固相萃取进行样品富集和纯化-waters

SPE——通过固相萃取进行样品富集和纯化 为何使用固相萃取(SPE)技术 1. 您需要从样品中去除特定干扰物,以免它们在目标分析物的检测和定量过程中影响实验结果。在此处所示的示例中,不适当的样品制备方案未能去除干扰物,导致提取物呈现出残留的黄色干扰物,色谱图中目标分析物与多个干扰峰发生了重叠。 2. 您需要提高初始样品中目标分析物的浓度,以便所用的分析技术能够更轻松地对其进行检测和准确定量。如果目标分析物可被较强地保留,那么可能需要在SPE色谱柱上加载较大的样品量,随后仅以极小体积的洗脱液将此分析物洗脱下来,由此提高样品中分析物的浓度。

3. 您需要去除样品中的干扰物(即使不可见),这些干扰物会在质谱检测中抑制目标分析物的信号。在此处的示例中,蛋白沉淀法无法去除血浆提取物中的磷脂,从而造成严重的离子抑制。优化的复合模式SPE方案可获取最纯净的提取物,并可在最大程度上降低离子抑制效应。 What is Solid-Phase Extraction (SPE)? Don't be confused by the term solid-phase extraction [SPE]. A typical SPE device has 50 times more separation power than a simple, single liquid-liquid extraction. SPE is actually column liquid-solid chromatography. Since SPE is liquid chromatography [LC], its practice is

食品中脂肪的测定索氏提取法实验报告

1目的 熟练掌握索氏法的原理、操作步骤、注意事项。 2原理 样品用无水乙醚或石油萃取后,蒸去溶剂所得的物质,在食品分析上称为脂肪或粗脂肪。因为除脂肪外,还含色素及挥发油、蜡、树脂等脂溶性物质。索氏抽提法所测得的脂肪为游离脂肪。 3试剂 无水乙醚或石油醚 海砂:同实验二《食品中水分的测定》 4仪器 索氏提取器、干燥箱、干燥器、分析天平 5样品 奶粉 6操作 6.1样品称量 6.1.1精密称取经恒重处理后的收集瓶,m瓶(准至0.0001g) 6.1.2固体样品 精密称取2~5g样品m样(可取测定水分后的样品),必要时拌以海砂,全部移入滤纸筒内。 6.1.3液体或半固体样品 精密称取5~10g,至于蒸发皿中,加入海砂约20g(准至±0.0001g)于沸水浴上蒸干后,再于95~105℃干燥,研细,全部移入滤纸筒内。蒸发皿及附有样品的玻棒,均用沾有乙醚的脱脂棉擦净,并将棉花放入滤纸筒内。 6.2萃取 将滤纸筒放入脂肪萃取器的样品室内,连接已干燥至恒重的收集瓶,从萃取器冷凝管上端加入无水乙醚或石油醚至瓶内容积的2/3处,于水浴上加热,使乙醚或石油醚不断回流提取1~1.5h,一般在条件允许的情况下提取6~12h . 6.3称量

取下收集瓶,回收乙醚或石油醚,待收集瓶内乙醚剩1~2mL时在水浴上蒸干,再于95~1℃干燥20min,放干燥器内冷却0.5h后称量m总’。 7数据记录 7.1原始数据 7.2可疑值弃留 实验测得数据均符合一般规律,无可疑值。 7.3整理数据 m样(g)m瓶(g)m总’(g) 2.0000 114.4616 114.7979 8计算 m总’- m瓶 X = —————————× 100 m样 式中:X —样品中脂肪含量,% m瓶—收集瓶的质量,g m样—样品的质量(如果是测定水分后的样品,应按测定水分前的湿润样品质量计),g m总’—收集瓶和脂肪的质量,g m总’- m瓶114.7979– 114.4616 X = —————————× 100 = —————————× 100 = 16.81% m样 2.000

多环芳烃(PAHs)的形成和分布来自煤层燃烧:

多环芳烃(PAHs)的形成和分布来自煤层燃烧: 内蒙古乌兰察布褐煤为例,中国北方 刘淑琴a,?, 王改红a, 张尚军a, 梁杰a, 陈峰b, 赵柯a a 中国矿业大学和科技(北京), 化学和环境工程北京100083,中国 b国家重点实验室的燃煤的碳能源,廊坊065001,中国 摘要 煤田火灾是危害环境和人类健康结果的释放多环芳烃化合物。在实验室用管式炉模拟中国北方内蒙古乌兰察布煤田的褐煤在不完全燃烧过程,以及16名美国环境保护机构的优先污染物多环芳烃的烟气进行吸收和分析。结果表明,在与其他燃烧方法PAH 排放明显增加,燃烧不完全的结果:这是归因于两个和三个苯环的物种形成,如萘,苊,和苊。苯并[a]芘,二苯并[a,h]蒽,和二苯并(a, n)蒽做出大的贡献的毒性当量(TEQ),虽然他们占PAHs的一小部分。随温度增加,总的PAH产量的峰值出现在800°C在1立方米/公斤空气/煤比的产量为923.41毫克/公斤。当空气/煤比的增加,多环芳烃的量随氧含量变化。在2立方米/公斤,486.07毫克/公斤的最小的PAH产量发生在800°C 的最大浓度最有毒的物种,苯并[a]芘,二苯并[a,h]蒽,被发现。提高煤粒从0.25到20毫米的结果无论在产量和的PAH物种的毒性当量显著增长量。 关键词:多环芳香烃不完全燃烧褐煤煤田火灾毒性当量值 1 介绍 中国仍然是一个最大的煤炭生产商和用户在世界(Dai等人。,2011)。高的煤炭生产量 在中国煤炭的使用导致了对大量的关注煤的燃烧和使用有毒物质释放(傣族任,2006;

戴等人,2011)。煤田火灾是重大灾害中国。每年,在煤田煤层自燃火灾不仅造成煤炭资源的巨大损失,而且给引发许多环境问题,包括空气污染,水质量恶化,生态灾害(elick奥基夫,2011;等人。,2011;席尔瓦等人,2011)。 煤田火灾有很大的不良影响空气污染,和影响空气变得严重一旦火灾成为表面火灾。破碎地层作为烟囱,污染气体的排放到环境中。从煤田火灾释放的污染物主要由气体如CO、CO2、SO2、NOx、饱和和不饱和碳氢化合物、氢硫化物和其他光敏氧化剂和悬浮粉尘的重要问题(豪尔等人,2011;元和史密斯,2011)。 悬浮颗粒物来自煤炭燃烧或煤的形成植物冷杉可能包含一些有毒的微量元素,矿物质,或有毒的有机化合物,在上述的阈值限制水平这对人类的健康造成不良影响(Dai 等人,2005;pone et al等人。2007;stracher和泰勒,2004;田等人,2008)。火灾区域有高硫酸化和降尘率。在冬季燃煤形成烟雾和微粒影响能见度。煤田火灾的大量由于燃烧煤排放CO和CO2(卡拉等人,2009;豪尔等人,2011;kuenzer等人,2007;奥基夫等人,2011)。由于穷人住宅区取暖的不完全燃烧煤产生的CO,有毒气体具有停留时间长和高扩散性。如CO,H2,乙烯气体的生产,和丙烯在很大程度上取决于燃烧温度,和这些气体可以作为在一个煤矿火灾状态指示器。二氧化硫和三氧化硫硫氧化物的排放占主导地位从火灾区。产生有害硫氧化物,对结合颗粒湿度有影响。SO2的释放量取决于煤的硫含量,一般是较高的地区火灾增加了黄铁矿氧化而比火灾的。SO2具有低停留时间和可能有助于经典的烟雾酸雨的形成。氮氧化物形成的煤的高温氧化。在所有的氮氧化物,90–95%是没有,这是相当稳定,但能在空气中够与碳氢化合物的光化学反应自由基,形成1 -(2-吡啶偶氮)-2-萘酚(PAN)和烟雾。另外,不可与空气中的湿气反应形成硝酸。 煤炭燃烧产生大量的饱和与不饱和碳氢化合物。在高温下,各种各样的碳氢化合物

多环芳烃的处理方法探究

多环芳烃的处理方法探究 摘要:本文介绍了多环芳烃检测技术的现状,包括分光光度法、反相高效液相色谱法、固相微萃取、超临界流体,介绍了多环芳烃降解技术的方法,最后总结了多环芳烃的污染现状,并对其发展前景进行了展望。 关键词:多环芳烃;灵敏度;降解 Stdy on the processing method of polycyclic aromatic hydrocarbons Abstract:This paper introduces the Polycyclic aromatic hydrocarbons the present situation of detection technology,including spectrophotometry,reverse phase high performance liquid chromatography(HPLC)method,solid phase microextraction and supercritical fluid,this paper introduces the methods of polycyclic aromatic hydrocarbons degradation technology,finally summarizes the pollution status of polycyclic aromatic hydrocarbons,and its development prospect were also discussed. Key words:rate Polycyclic aromatic hydrocarbons;sensitivity;the degradation 多环芳烃(PAHs)是煤,石油,木材,烟草,有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物,迄今已发现有400多种PAHs,其中有相当部分具有致癌性,占被发现致癌物质总数的三分之一。其中16种PAHs(萘、苊烯、苊、芴、菲、蒽、荧蒽、芘、苯并(a)蒽、屈、苯并(b)荧蒽、苯并(k)荧蒽、苯并(a)芘、茚苯(1,2,3-cd)芘、二苯并(a,n)蒽、苯并(ghi)北)由于存在显著的致畸、致癌、致突变作用,被美国环保署列为优先控制污染物。目前,中国只将7种列为优先污染控制物。 多环芳烃大部分是无色或淡黄色的结晶,个别具深色,熔点及沸点较高,蒸气压很小,大多不溶于水,易溶于苯类芳香性溶剂中,微溶于其他有机溶剂中。多环芳烃大多具有大的共扼体系,因此其溶液具有一定荧光。一般说来,随多环芳烃分子量的增加,熔沸点升高,蒸气压减小。多环芳烃的颜色、荧光性和溶解性主要与多环芳烃的共扼体系和分子苯环的排列方式有关。 PAHs的来源包括自然源和人为源两大类。其中,自然源又分为:燃烧类(森林大火和火山喷发);生物合成(沉积物成岩过程、生物转化过程、焦油矿坑内气体)。人为源分为:流动源(交通、香烟);固定源(垃圾焚烧、家庭燃烧、工业活动、其它)。多环芳烃在大气中、水体中、土壤和作物中,食品中和人体中均有相应的分布、迁移与转化。 因此,多环芳烃对于人类健康有着巨大的影响,PHAs的激素作用,造成的致癌、致畸、致突变(肺癌,阴囊癌,呼吸道癌);基因毒性(对DNA合成的抑制作用);对免疫系统的破坏(烹饪油烟冷凝物对小鼠免疫系统的影响,对T淋巴细胞的破坏比B淋巴细胞更明显);破坏造血和淋巴系统(能使脾、胸腺和隔膜淋巴结退化,抑制骨骼的形成,动物实验)。因此,对于多环芳烃进行有效的处理,并对其处理效果进行探究是有着极其重要的。

固相萃取基本原理与操作

一、固相萃取基本原理与操作 1、固相萃取吸附剂与目标化合物之间的作用机理 固相萃取主要通过目标物与吸附剂之间的以下作用力来保留/吸附的1)疏水作用力:如C18、C8、Silica、苯基柱等 2)离子交换作用:SAX, SCX,COOH、NH2等 3)物理吸附:Florsil、Alumina等 2、p H值对固相萃取的影响 pH值可以改变目标物/吸附剂的离子化或质子化程度。对于强阳/阴离子交换柱来讲,因为吸附剂本身是完全离子化的状态,目标物必须完全离子化才可以保证其被吸附剂完全吸附保留。而目标物的离子化程度则与pH值有关。如对于弱碱性化合物来讲,其pH值必须小于其pKa值两个单位才可以保证目标物完全离子化,而对于弱酸性化合物,其pH 值必须大于其pKa值两个单位才能保证其完全离子化。对于弱阴/阳离子交换柱来讲,必须要保证吸附剂完全离子化才保证目标物的完全吸附,而溶液的pH值必须满足一定的条件才能保证其完全离子化。

3、固相萃取操作步骤及注意事项 针对填料保留机理的不同(填料保留目标化合物或保留杂质),操作稍有不同。 1)填料保留目标化合物 固相萃取操作一般有四步(见图1): ?活化---- 除去小柱的杂质并创造一定的溶剂环境。(注意整个过程不要使小柱干涸) ?上样---- 将样品用一定的溶剂溶解,转移入柱并使组分保留在柱上。(注意流速不要过快,以1ml/min为宜,最大不超过5ml/m in) ?淋洗---- 最大程度除去干扰物。(建议此过程结束后把小柱完全抽干) ?洗脱---- 用小体积的溶剂将被测物质洗脱下来并收集。(注意流速不要过快,以1ml/min为宜)

相关主题
文本预览
相关文档 最新文档