图像复原基本原理
- 格式:ppt
- 大小:4.96 MB
- 文档页数:75
全变差正则化模型的噪声图像复原算法全变差正则化模型的噪声图像复原算法摘要:噪声图像复原是数字图像处理领域的重要任务之一。
在实际应用中,图像往往会受到各种噪声的干扰,降低图像质量和视觉效果。
全变差正则化模型是一种常用的图像复原方法,它通过最小化图像的总变差来以很好地去除噪声。
本文将介绍全变差正则化模型的基本原理和算法,并结合具体的噪声图像复原实例进行实验,验证全变差正则化模型的有效性和性能。
一、引言随着图像传感器和图像采集设备的不断进步,数字图像的应用越来越广泛。
然而,由于各种原因,如信号传输过程中的干扰、传感器质量问题等,图像往往会受到不同程度的噪声污染。
图像上的噪声会扭曲图像的细节和轮廓,降低图像的清晰度和质量。
图像复原是指通过对噪声图像进行处理,恢复原始图像的过程。
在图像复原的方法中,全变差正则化模型被广泛应用。
全变差正则化模型的基本思想是通过最小化图像的总变差来达到去噪的目的。
总变差描述了图像的边缘平滑度,对图像中的高频噪声具有较强的抑制作用。
因此,全变差正则化模型能够有效地去除噪声,提升图像的质量和细节。
二、全变差正则化模型的原理全变差正则化模型的核心思想是通过最小化图像的总变差来降低噪声的影响。
图像的总变差是指图像中相邻像素间的灰度差的绝对值之和。
设图像为$u(x, y)$,则总变差$TV(u)$可以定义为:$$TV(u)=\sum_{x, y}|\nabla u(x, y)|$$其中,$\nabla u(x, y)=(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y})$是图像在$(x, y)$处的梯度。
全变差正则化模型的优化目标是最小化如下的能量函数:$$\min_u\{E(u) + \lambda TV(u)\}$$其中,$E(u)$表示图像的损失函数,$\lambda$是正则化参数,用于调节总变差的重要性。
全变差正则化模型的求解通常采用迭代算法,如次梯度法、投影梯度法等。
基于MTFC的图像复原结果对比分析聂荣娟;刘丹丹;张晓迪【摘要】地物在成像过程中,由于受到光学成像系统作用、地物周边环境等影响,会使得到的地物影像存在噪声、模糊等各种影像质量下降的问题,这种现象就是图像退化.根据影像退化机制,利用调制传递函数补偿(Modulation Transfer Function Compensation,MTFC)原理复原图像,提高航空面阵成像系统的成像质量,使航空面阵影像更便于判读解译.采用调制传递函数补偿(MTFC)原理进行图像复原.复原图像与原始影像相比在一定程度上边缘更加清晰,更利于判读解译,但在复原过程中也不可避免的添加了噪声.通过复原图像评价指标对比发现,利用航线方向MTF得到的复原图像效果较差,这与成像系统航线方向成像性能偏低有关.【期刊名称】《北京测绘》【年(卷),期】2019(033)001【总页数】4页(P116-119)【关键词】影像退化;调制传递函数补偿;图像复原【作者】聂荣娟;刘丹丹;张晓迪【作者单位】山东科技大学测绘科学与工程学院,山东青岛266590;山东科技大学测绘科学与工程学院,山东青岛266590;山东科技大学测绘科学与工程学院,山东青岛266590【正文语种】中文【中图分类】P2370 引言图像复原是图像退化的逆过程,是利用一些手段方法、先验知识,从退化的图像中恢复出原始的图像。
对遥感图像进行图像复原能提高遥感图像数据的真实性、适用性及精确性。
图像复原技术作为遥感图像处理中一项基础的预处理技术,成为遥感图像处理工作中重要的组成部分,对后续的图像处理及图像数据应用有着重要的作用,对于遥感技术的发展具有非常重要的意义[1]。
其中,调制传递函数补偿(Modulation Transfer Function Compensation,简称MTFC)是利用获取到的成像系统的MTF进行图像复原,从退化的遥感影像中估算出原始地物场景影像,以提高遥感影像的清晰度、可解析度及可利用度,使得遥感影像的MTF数值得到提高,使光学成像系统的总体MTF数值能够达到较为理想的水平,能够有效地改善遥感影像质量[2]。
图像的处理原理图像处理的原理是指通过一系列的算法和技术对图像进行分析、增强、编码、压缩等操作,以提取图像信息,改善图像质量,实现对图像的特定处理和应用。
图像处理的基本原理可以概括为以下几个方面:1. 图像获取图像的获取是图像处理的第一步,常见的图像获取方式包括数码相机、摄像机、扫描仪等设备。
通过这些设备,可以将现实世界中的光学信息转换为数字化的图像信息,形成数字图像。
2. 图像采样和量化图像采样是指将连续的图像信号离散化为离散的像素点阵,采集图像在空间上的信息。
采样的方式包括点采样、区域采样等。
图像量化是指将图像的每个像素点的灰度值等离散化为有限的取值范围,常见的灰度值量化范围为0~255。
3. 图像增强图像增强是指利用各种技术和方法,改善图像的质量、增强图像的可视性和可识别性。
图像增强技术主要包括直方图均衡化、模糊与锐化、滤波器应用等。
图像增强的目标是提高图像的对比度、亮度、清晰度等视觉效果。
4. 图像复原与去噪图像复原是指通过恢复或近似原始图像的原始信息,以减少图像模糊、失真等质量损失。
图像复原常用的方法有逆滤波、最小二乘法等。
图像去噪是指消除图像中的噪声干扰,提高图像质量。
图像去噪方法有中值滤波、小波去噪等。
5. 图像分割图像分割是将图像分成不同的区域,每个区域具有一定的特征或相似性质。
图像分割的目的是将图像中感兴趣的目标从背景中提取出来,常用的图像分割算法包括阈值法、区域生长法、边缘检测等。
6. 特征提取与识别特征提取是指从图像中提取出包含有用信息的特征,用于下一步的目标识别、分类等应用。
常用的特征提取方法包括边缘检测、纹理特征、颜色特征等。
特征提取后,可以利用机器学习、模式识别等方法进行目标识别。
7. 压缩与编码图像压缩是指通过去除冗余信息,将图像数据从原始表示转换为更紧凑的表示形式,以减少存储空间和传输带宽。
图像压缩方法有无损压缩和有损压缩两种。
图像编码是压缩的一种手段,将图像数据编码为比特流,以实现对图像的存储和传输。
图像处理算法的原理与实现方法分析图像处理算法是计算机视觉领域的重要内容之一,它涉及到对图像的数字化、增强、复原、分割和识别等方面的处理。
本文将针对图像处理算法的原理和实现方法进行详细的分析。
一、图像处理算法的原理1. 图像的数字化图像的数字化是将连续的图像转换为离散的数字图像,主要包括采样、量化和编码三个步骤。
- 采样:将连续图像在时间和空间上进行离散化,获取一系列采样点。
- 量化:采样得到的连续强度值需要转换为离散的灰度级别,常用的量化方法包括均匀量化和非均匀量化。
- 编码:将量化后的灰度值用二进制码表示,常见的编码方法有无损编码和有损编码。
2. 图像增强算法图像增强算法旨在改善图像的视觉效果,提高图像的质量和清晰度。
常用的图像增强算法包括灰度变换、直方图均衡化、滤波和边缘增强等。
- 灰度变换:通过对图像的灰度级进行变换,实现图像的对比度增强和亮度调整。
- 直方图均衡化:通过对图像的像素直方图进行变换,使得图像的像素分布更均匀,增强图像的对比度。
- 滤波:利用滤波器对图像进行平滑处理或者去除噪声,常用的滤波器有均值滤波器、中值滤波器、高斯滤波器等。
- 边缘增强:通过检测图像中的边缘信息,突出图像的边缘部分并增强其边缘对比度。
3. 图像复原算法图像复原算法主要用于修复经过变形、模糊或受损的图像,使其恢复原有的清晰度和细节。
- 噪声去除:通过滤波等方法消除图像中的噪声干扰,常用的去噪方法有中值滤波、小波去噪和自适应滤波等。
- 模糊恢复:对经过模糊的图像进行复原,常用的模糊恢复方法有逆滤波、维纳滤波和盲复原等。
4. 图像分割算法图像分割是将图像划分为若干个具有相似特征的区域或对象的过程,常用于图像识别和目标提取等任务。
- 阈值分割:根据图像中像素的灰度值,将图像划分为不同的区域。
- 区域生长:根据像素的相似性,将具有相似特征的像素进行合并,形成具有连续性的区域。
- 边缘检测:通过检测图像中的边缘信息,将图像分割为不同的物体或区域。
图像融合技术原理1引言图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。
该技术有基本的体系,主要包括的内容有:图像预处理,图像融合算法,图像融合评价,融合结果。
图像融合系统的层次划分为:像素层融合、特征层融合、决策层融合,目前绝大多数融合算法研究都集中在这一层次上。
图像预处理技术主要包括两个方面的任务:图像去噪、图像配准;图像融合算法从最初简单的融合算法(加权、最大值法)发展为复杂多分辨率的算法(金字塔、小波法等);图像融合的性能评价主要有两个大的方面:主观评价及客观评价,由于在实际中不存在理想图源,所以一般采用较易实现的评价标准,结合主观视觉给出最合理的评价。
2图像融合设计2.1 总体设计流程系统的总体设计流程如图1所示:图1多源图像融合系统流程示意图根据待融合图像自身的特点,图像传感器类型以及图像融合的目标,系统总体设计流程如下:①对图像进行预处理,如去除噪声、图像配准等;②确定合适的图像融合算法;③对图像融合的结果进行评估;④如果评估结果不满意,则调整参数,重新进行图像融合,转到步骤3;⑤输出图像融合结果。
2.2图像的预处理在图像融合前,对输入图像进行特征抽取、分割和匹配前所进行的处理。
图像预处理的主要目的是消除图像中无关的信息,恢复有用的真实信息,增强有关信息的可检测性和最大限度地简化数据,从而改进图像融合的效果。
预处理过程一般有数字化,平滑,复原和增强等步骤。
根据所选用的图像传感器类型及图像融合的目标,对待融合图像进行预处理。
主要包括以下几个方面:①数字化一幅原始照片的灰度值是空间变量(位置的连续值)的连续函数。
在M*N点阵上对照片灰度采样并加以量化(归为2b个灰度等级之一),可以得到计算机能够处理的数字图像。
为了使数字图像能重建原来的图像,对M N和b值的大小就有一定的要求。
在接收装置的空和灰度分辨能力范围内,M N和b的数值越大,重建图像的质量就越好。
当取样周期等于或小于原始图像中最小细节周期的一半时,重建图像的频谱等于原始图像的频谱,因此重建像与原始图像可以完全相同。
实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用和意义;4、观察图像点运算和几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。
三、实验原理1、图像灰度直方图、点运算和几何变换的基本原理及编程实现步骤图像灰度直方图是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。
图像点运算是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。
点运算可以看作是“从象素到象素”的复制操作,而这种复制操作是通过灰度变换函数实现的。
如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值和输出灰度值之间的转换关系。
一旦灰度变换函数确定,该点运算就完全确定下来了。
另外,点运算处理将改变图像的灰度直方图分布。
点运算又被称为对比度增强、对比度拉伸或灰度变换。
点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸和均衡等。
图像几何变换是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放和图像旋转等,其理论基础主要是一些矩阵运算,详细原理可以参考有关书籍。
实验系统提供了图像灰度直方图、点运算和几何变换相关内容的文字说明,用户在操作过程中可以参考。
下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法和频域法,点运算和几何变换属于空域法。
医学图像处理教案第一章:医学图像处理概述1.1 医学图像的类型与来源1.2 医学图像处理的重要性1.3 医学图像处理的基本流程1.4 医学图像处理的发展趋势第二章:医学图像处理基本原理2.1 图像数字化2.2 图像增强2.3 图像复原2.4 图像分割2.5 特征提取与表示第三章:医学图像处理方法3.1 灰度处理方法3.2 彩色处理方法3.3 形态学处理方法3.4 滤波处理方法3.5 机器学习与深度学习方法第四章:医学图像分析与应用4.1 医学图像分析概述4.2 医学图像配准4.3 医学图像重建4.4 医学图像分割在临床应用中的实例4.5 医学图像处理在科研中的应用第五章:医学图像处理软件与工具5.1 医学图像处理软件概述5.2 Photoshop医学图像处理应用实例5.3 MATLAB医学图像处理工具箱5.4 ITK医学图像处理软件库5.5 医学图像处理与分析在实际应用中的选择策略第六章:医学图像的预处理6.1 图像标准化6.2 图像归一化6.3 图像配准6.4 图像滤波6.5 图像预处理在医学图像分析中的应用第七章:图像增强技术7.1 图像增强的目的与方法7.2 直方图均衡化7.3 对比度增强7.4 锐化技术7.5 伪彩色增强7.6 图像增强算法的评估第八章:图像复原技术8.1 图像退化的模型8.2 线性滤波器8.3 非线性滤波器8.4 图像去噪8.5 图像去模糊8.6 图像复原技术的应用实例第九章:图像分割技术9.1 阈值分割9.2 区域增长9.3 边缘检测9.4 基于梯度的分割方法9.5 聚类分割9.6 图像分割的评价指标第十章:特征提取与表示10.1 特征提取的重要性10.2 基于几何的特征提取10.3 基于纹理的特征提取10.4 基于形状的特征提取10.5 特征选择与降维10.6 特征表示技术第十一章:医学图像配准技术11.1 图像配准的概念与意义11.2 基于互信息的图像配准11.3 基于特征的图像配准11.4 基于变换模型的图像配准11.5 医学图像配准的应用实例11.6 图像配准技术的评估与优化第十二章:医学图像重建技术12.1 图像重建的基本原理12.2 计算机断层扫描(CT)图像重建12.3 磁共振成像(MRI)图像重建12.4 正电子发射断层扫描(PET)图像重建12.5 单光子发射计算机断层扫描(SPECT)图像重建12.6 医学图像重建技术的应用与挑战第十三章:医学图像分割在临床应用中的实例分析13.1 胸部X光图像分割13.2 磁共振成像(MRI)脑部图像分割13.3 超声图像分割在腹部器官检测中的应用13.4 计算机断层扫描(CT)图像分割在肿瘤诊断中的应用13.5 医学图像分割在手术规划与导航中的应用第十四章:医学图像处理在科研中的应用案例分析14.1 医学图像处理在生物医学研究中的应用14.2 医学图像处理在药理学研究中的应用14.3 医学图像处理在神经科学研究中的应用14.4 医学图像处理在心脏病学研究中的应用14.5 医学图像处理在其他领域的研究应用第十五章:医学图像处理与分析的未来趋势15.1 与机器学习在医学图像处理中的应用15.2 深度学习技术在医学图像诊断与分析中的应用15.3 增强现实(AR)与虚拟现实(VR)在医学图像教学与培训中的应用15.4 云计算与大数据在医学图像处理与分析中的挑战与机遇15.5 跨学科研究与国际合作在医学图像处理领域的进展重点和难点解析重点:1. 医学图像的类型与来源,及其在医疗领域的重要性。
数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
超分辨率图像重建算法的研究与改进随着现代科技的发展和应用场景的需要,图像处理技术在各行各业得到了广泛的应用。
而在图像处理领域中,超分辨率图像重建算法是一项非常重要的技术,它可以将低清晰度的图像转化为高清晰度的图像,以满足各种应用场景的需要。
本文将从算法原理、现有技术和改进方法等方面探讨超分辨率图像重建算法的研究与改进。
一、算法原理超分辨率图像重建算法的基本思路是通过多个低分辨率图像合成一个高分辨率图像。
它的主要原理是在图像处理中采用插值和重采样技术,将具有不同相位的多个低分辨率图像融合起来,就可以得到一个高分辨率的图像。
该算法的难点在于如何将低分辨率图像合成一个高分辨率图像,这需要利用一定的数学模型和算法来实现。
二、现有技术在现有的技术中,常用的超分辨率图像重建算法主要有基于插值的方法、基于最小二乘问题的方法和基于深度学习的方法等。
1. 基于插值的方法基于插值的超分辨率图像重建算法是一种基于像素的重建方法。
其基本思路是根据已知数据点之间的平均值来预测未知像素的值,从而达到图像增强的目的。
该方法难点在于如何选择一个合适的插值函数,以保证图像复原的效果和准确性。
2. 基于最小二乘问题的方法基于最小二乘问题的超分辨率图像重建算法是一种基于矩阵操作的方法。
它的基本原理是利用已知的低分辨率图像和对应的高分辨率图像建立一个线性模型,然后通过最小二乘法来求解图像的重建参数,从而得到一个高分辨率的图像。
该方法的优点是容易使用和理解,但其重建精度受到矩阵求逆的影响。
3. 基于深度学习的方法基于深度学习的超分辨率图像重建算法是一种比较新兴的方法。
它主要是通过训练一个深度卷积神经网络,然后将其应用于图像重建。
该方法的优点是具有很高的准确性和较强的鲁棒性,但其缺点是需要大量的数据和计算资源来完成训练和操作。
三、改进方法目前,针对超分辨率图像重建算法的改进方法主要包括以下几种:1. 引入时空信息针对基于最小二乘问题的算法,可以通过引入时空信息来提升算法的精度。
红外运动模糊图像复原技术杨晓冬;刘俊;张倩倩【摘要】该文分析了红外图像运动模糊产生的原理,建立运动模糊及复原数学模型.复原过程分包括构建点扩散函数和维纳滤波两部分.采用方向微分,双线性插值法求取模糊方向,通过微分自相关函数估算模糊尺度,从而构建最为近似的二维匀速直线运动的点扩散函数,并对运动模糊图像进行维纳滤波的复原.实验结果表明,针对有噪声的图像运动模糊复原,维纳滤波复原图像效果好,抗噪能力强.【期刊名称】《杭州电子科技大学学报》【年(卷),期】2012(032)004【总页数】4页(P144-147)【关键词】图像复原;运动模糊;点扩散函数;方向微分;维纳滤波【作者】杨晓冬;刘俊;张倩倩【作者单位】杭州电子科技大学信息与控制研究所,浙江杭州310018;杭州电子科技大学信息与控制研究所,浙江杭州310018;杭州电子科技大学信息与控制研究所,浙江杭州310018【正文语种】中文【中图分类】TP391.40 引言经过多年的发展,图像复原这一领域出现很多有效的算法和方法,如功率谱均衡滤波、约束最小二乘、最大熵等等,而现实条件复杂多变,并不是所有的复原方法都适用在任何条件下。
因此,在实际运用中,要根据实际情况,选择合适的复原方法。
仔细分析运动模糊模糊的过程,建立起运动模糊的点扩散函数。
运动模糊退化模型主要由两个参数组成,即模糊角度和模糊尺度。
因此,现今很多运动模糊复原的问题都归结于对两种运动模糊参数的估计。
本文采用方向微分算法估算出点扩散函数的模糊方向,以及利用二阶微分自相关法求得模糊尺度,从而构建点扩散函数的模糊参数,通过维纳滤波方法,消除了红外图像运动模糊。
1 运动模糊图像复原基本原理在获取图像的瞬间,所拍摄的目标与相机发生相对运动,称为运动模糊。
在所有的运动模糊中,由匀速直线运动造成图像模糊的复原问题更具有一般性和普遍意义。
非匀速直线运动可近视为匀速直线运动,或者可以分解为多个匀速直线运动。
逆滤波复原的基本原理逆滤波复原是一种信号复原方法,通过反演被模糊的信号,以尽可能还原原始信号。
逆滤波复原的基本原理是使用滤波器将受损信号与逆滤波器进行卷积,从而得到原始信号。
在信号处理领域,经常会遭受到信号受损的情况,例如图像模糊、音频失真等。
这些情况会导致信号传输时发生了失真操作,而且当这种失真发生的情况较为严重时,就有可能使得信号难以进行有效的分析和处理。
逆滤波复原正是一个重要的方法用于解决这样的问题。
逆滤波复原的基本原理可以描述为:我们需要对原始信号进行滤波处理,即使用一种特定的滤波器来滤除不必要的噪声。
然后,我们需要对经过滤波处理的信号进行卷积运算,与逆滤波器进行卷积,以得到原始信号。
逆滤波的大致思路是首先对原始信号进行傅里叶变换,得到频域信息,再通过滤波器进行滤波,滤去干扰信号,得到滤波后的信号频谱信息,然后将该频谱信息与滤波器的倒数(即逆滤波器)进行卷积,并进行逆傅里叶变换,得到复原的原始信号。
逆滤波的成功与否,关键在于是否能得到逆滤波器。
逆滤波器是一个数学模型,该模型以特定的方式描述信号的传播和扩散,可以将受到损伤的信号进行反演,从而得到原始信号。
由于逆滤波器非常灵敏,因此需要对其进行调整和优化,以保证运算的精确性和可行性。
逆滤波复原方法的优点在于,它适用于多种类型的信号受损情况,从图像和音频到视频和生物医学信号处理等等。
无论是噪声、失真还是模糊,逆滤波技术都可以承担起信号的恢复工作,使得信号不仅更加精确,而且更能准确反映信号的本质属性。
逆滤波复原技术是一种理论和实践结合的信号处理方法,其核心思想是通过逆滤波器将受到损害的信号进行可逆反演,以得到原始信号。
逆滤波复原对信号处理领域来说是一个重要的技术,可以应用到多种领域和行业当中,具有广泛的应用前景。
除了基本原理之外,逆滤波复原还有一些重要的注意事项需要我们注意。
其中最重要的就是在逆滤波复原过程中会引入一些噪声。
因为任何一个系统都会有噪声,而输入信号和系统响应之间的噪声是无法消除的,因此逆滤波会将这些噪声放大,导致信号的恢复质量下降。
CT断层图像重建算法研究专业:通信工程姓名:刘明帅指导教师:骆岩红摘要CT技术是一种融合了射线光电子学、信息学、微电子学等学科的新兴技术,因为其先进的无损检测技术,所以被广泛地应用于医学、航天、生物等多个领域。
随着科技的进步,图像重建技术开始应用于X射线中,这是数字图像处理的一个重大进步。
如何能重建出高质量的图像,取决于所采用的重建算法。
从图像重建的角度来看,主要分为解析法与迭代法。
解析法是利用解析、变换重建公式来构建重建图像。
它具有容易实现,速度较快,且能重建出高质量的图像的特点,但是对投影数据完备性要求高。
迭代法是利用求解线性方程组来重建图像,它能够在投影数据信噪较低条件下,获得高质量图像。
本文将从原理、应用、与优缺点的角度来分析两种算法,重点对解析法中的滤波反投影算法从平行束与扇束投影方式进行研究,最后通过Visual C++与MATLAB软件相结合的方式对图像重建,并分析各参数对重建图像的影响。
关键字:CT技术图像重建算法滤波反投影算法AbstractCT technology is a emerging technology that blend of the Ray optoelectronics, microelectronics and informatics subject. Because of its advanced nondestructive testing technology, it is widely used in medical, aerospace, biological and otherfields. With the progress of science and technology, Image reconstruction technology is applied to the X ray, This is a major progress of digital image processing. How to rebuild the high quality images, depends on the reconstruction algorithm you adopt. From the perspective of image reconstruction, it mainly divided into the analytical method and iteration method.Analytical method use the analysis and transform formula to build image reconstruction.It has the characteristics of implementating easily and fast,and reconstructing out high quality images,but the demand of the projection data is high. Iterative method is used to solve the linear system of equations to reconstruction image, the projection data under the condition of low signal-to-noise, it can get high quality image.This article we will be from the point of view of the principle ,application,and the advantages and disadvantages to analysis the two kinds of algorithms, focusing on studying the analytical method of filter back projection algorithm from the parallel beam and fan beam projection methods , finally, combining the software of Visual c + + with MATLAB software to image reconstruction, and analyzes the influence of various parameters on the reconstruction imageKey words: CT technology image reconstruction algorithmFiltered Backprojection Algorithm目录第一章绪论........................................................................................ - 6 -1.1 CT技术与图像重建概述 ...................................................... - 6 -1.2 CT和重建技术的发展及研究现状 ...................................... - 6 -1.3 研究的目的与意义 ............................................................... - 8 - 第二章 CT成像原理和图像重建算法 ................................................ - 9 -2.1 CT成像原理与系统组成 ........................................................ - 9 -2.2 CT成像系统扫描方式的发展 .............................................. - 10 -2.3 CT断层图像原理 .................................................................. - 11 -2.4图像重建算法概述 ................................................................ - 13 -2.4.1解析类方法 .................................................................. - 13 -2.4.2传统迭代类方法 .......................................................... - 13 - 第三章 CT图像重建算法实现原理的研究 ................................ - 14 -3.1图像重建系统中的数学概念及变换 .................................... - 14 -3.1.1 投影与反投影 ............................................................. - 14 -3.1.2 Radon变换及其反变换 .............................................. - 15 -3.1.3傅里叶变换 .................................................................. - 16 -3.1.4中心切片定理 .............................................................. - 16 -3.2解析类重建算法 .................................................................... - 17 -3.2.1直接傅里叶变换算法 .................................................. - 17 -3.2.2反投影重建算法 .......................................................... - 18 -3.3 迭代类重建算法 ................................................................... - 20 -3.3.1 代数迭代重建算法 ..................................................... - 21 -(1) ART算法 ...................................................................... - 21 -(2)同时代数重建算法 ....................................................... - 22 -3.3.2 影响代数迭代重建算法的因素 ................................. - 22 -3.3.3 ART重建算法与SART ................................................. - 25 -3.3.4 统计迭代重建算法 ..................................................... - 27 -(1)最小二乘图像重建算法 ............... 错误!未定义书签。
第一章绪论1.1 图像拼接技术的研究背景及研究意义图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。
图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。
早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。
近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。
在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。
但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。
使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。
这在红外预警中起到了很大的作用。
微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。
利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。
在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。
这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。
图像复原就是研究如何才能把那些已经由于各种因素变得不再清晰,不在准确的图像,恢复到它最原始的真实本真中来。
也就是要根据已有的模糊图像通过现代科技与手段反演推导出原始图像。
图像复原的关键,是要了解图像退化的过程,并据此采取相反的过程用以得到原始图像。
图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。
简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。
由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。
图像复原算法是整个技术的核心部分。
目前,国内在这方面的研究才刚刚起步,而国外却已经取得了较好的成果。
早期的图像复原是利用光学的方法对失真的观测图像进行校正,而数字图像复原技术最早则是从对天文观测图像的后期处理中逐步发展起来的。
其中一个成功例子是NASA的喷气推进实验室在1964年用计算机处理有关月球的照片。
照片是在空间飞行器上用电视摄像机拍摄的,图像的复原包括消除干扰和噪声,校正几何失真和对比度损失以及反卷积。
另一个典型的例子是对肯尼迪遇刺事件现场照片的处理。
由于事发突然,照片是在相机移动过程中拍摄的,图像复原的主要目的就是消除移动造成的失真[2]。
早期的复原方法有:非邻域滤波法,最近邻域滤波法以及效果较好的维纳滤波和最小二乘滤波等。
随着数字信号处理和图像处理的发展,新的复原算法不断出现,在应用中可以根据具体情况加以选择。
目前国内外图像复原技术的研究和应用主要集中于诸如空间探索、天文观测、物质研究、遥感遥测、军事科学、生物科学、医学影象、交通监控、刑事侦察等领域。
如生物方面,主要是用于生物活体细胞内部组织的三维再现和重构,通过复原荧光显微镜所采集的细胞内部逐层切片图,来重现细胞内部构成;医学方面,如对肿瘤周围组织进行显微观察,以获取肿瘤安全切缘与癌肿原发部位之间关系的定量数据;天文方面,如采用迭代盲反卷积进行气动光学效应图像复原研究等。