图像复原方法综述
- 格式:doc
- 大小:546.50 KB
- 文档页数:11
图像处理中的图像复原算法综述与比较图像复原是图像处理中一个重要的领域,主要目标是通过一系列的数学和算法方法来恢复损坏、模糊、噪声干扰等情况下的图像。
图像复原算法旨在提高图像质量,使图像在视觉上更加清晰、可辨识。
本文将综述图像处理中的图像复原算法,并对这些算法进行比较。
1. 经典算法1.1 均值滤波均值滤波是一种最简单的图像复原算法,其基本原理是用一个滑动窗口在图像上进行平均值计算,然后用平均值代替原像素值。
均值滤波的优点是简单易实现,但对于噪声较多的图像效果较差。
1.2 中值滤波中值滤波是一种非线性滤波算法,常用于去除椒盐噪声。
其基本原理是用滑动窗口中像素的中值代替原像素值。
中值滤波适用于去除随机噪声,但对于模糊图像的复原效果不佳。
1.3 Sobel算子Sobel算子是基于图像边缘检测的算法,常用于图像增强。
Sobel算子通过计算像素点的梯度值来检测边缘。
边缘检测可以使图像的边缘更加清晰,但对于图像的整体复原效果有限。
2. 基于模型的方法2.1 傅里叶变换傅里叶变换是一种基于频域的图像处理方法,将图像从空间域转换到频域,通过频域滤波降低噪声。
傅里叶变换适用于周期性噪声的去除,但对于非周期性噪声和复杂噪声的去除效果有限。
2.2 小波变换小波变换是一种多尺度分析方法,将图像分解为不同尺度的频率成分。
通过舍弃高频噪声成分,然后将分解后的图像重构,实现图像复原。
小波变换适用于复杂噪声的去除,但对于图像的细节保留较差。
2.3 倒谱法倒谱法是一种基于线性预测的图像复原算法,通过分析图像的高阶统计特性实现噪声的去除。
倒谱法适用于高斯噪声的去噪,但对于非高斯噪声的复原效果有限。
3. 基于深度学习的方法3.1 卷积神经网络(CNN)卷积神经网络是一种广泛应用于图像处理的深度学习方法,通过多层卷积和池化操作提取图像的特征,进而实现图像的复原和增强。
CNN适用于各种噪声和模糊情况下的图像复原,但需要大量的训练数据和计算资源。
图像复原技术研究国内外文献综述作为日常生活中广泛使用的技术,图像修复技术汇集了国内外许多重要技术。
实际上,图像复原分为三种标准:首先是搭建其劣化图像的图像模型;其次去研究和筛选最佳的图像复原方法;最后进行图像复原。
所有类型的成像模型和优化规则都会导致应用于不同领域的不同图像恢复算法。
我们对现有的图像复原方法大致做了总结,如利用线性代数知识的线性代数复原技术、搭建图像退化模型的去卷积图像恢复技术以及不考虑PSF的图像盲解卷积算法等。
其中,去卷积方法主要包括功率谱均衡、Wiener滤波和几何平均滤波等,然而这些方法需要许多预信息和噪声稳定假设,这在现实当中我们不可能利用计算机去做到的的事情,因此它们只适用于线性空间不变的理想系统,仅当噪声与信号无关时才能达到很好的效果。
但是在一些条件恶化的情况下,就不能满足图像修复的效果了。
在图像恢复领域当中,另一个重要且常见的方法是盲去卷积复原法。
它的优势是在没有预先了解退化函数和实际信号的知识前提下,可以根据劣化图像直接估计劣化函数和初始信号。
实际上,现在有几个算法通过不充分的预测信息来恢复劣化图像。
由于我们需要对图像和点扩展函数的一些相关信息进行假设和推导,所以这就导致图像恢复的解通常并不存在唯一性,并且我们已知的初始条件和对附加图像假设的选择也会对解的优劣产生很大的关系。
与此同时,由于信道中不可避免的加性噪声的影响,会进一步导致盲图像的复原变差,给图像复原造成许多困难。
也就是说,如果我们直接利用点扩展函数进行去卷积再现初始图像,则一般会导致高频噪声放大,导致算法的性能恶化,恢复不出清晰的图像。
因此,我们要尽可能的提高图像的信噪比,从而提高图像复原的效果。
基于已知的降质算子和加性噪声的某些统计性质从而恢复清晰的图像,我们将这种方法叫做线性代数恢复方法,并且这种线性代数恢复方法在一定程度上提出了用于恢复滤波器的数值计算从而使得模糊图像恢复到与清晰图像一致的新的设计思想。
论基于深度学习的图像复原技术研究一、引言随着数字摄影技术的发展,现在人们通过智能手机和相机拍摄大量图片。
虽然这些图片很美丽,但是由于各种原因,有时候会导致图像失真。
例如,由于光照问题、手震、焦距问题等原因,图像可能模糊或者噪声较大。
这些问题会影响图像的质量和美观度。
为了解决这个问题,研究人员们一直在探索图像复原技术。
深度学习技术的发展,为图像复原技术的研究提供了新的思路和方法,本文将围绕基于深度学习的图像复原技术展开探讨。
二、图像复原技术概述图像复原指的是将失真的图像进行恢复的过程。
图像复原技术可根据其目的划分为以下几类:去模糊、去噪、超分辨率重建。
去模糊是通过消除图像中的模糊信息还原原始图像。
去噪是通过消除图像中的噪声还原原始图像。
超分辨率是指增加图像的分辨率,使图像更清晰、更细腻。
传统的图像复原技术主要基于图像处理理论,例如频域滤波、基于各向同性的扩散滤波、小波变换和CNN等技术。
虽然传统技术在一定程度上可以解决图像失真问题,但是它们在实际过程中仍然存在很多问题。
例如,频域滤波会引入伪影,扩散滤波往往过分模糊,小波变换可能会改变图像的亮度和色彩,而CNN很难处理高分辨率图像。
这些限制阻碍了传统技术的进一步发展。
三、基于深度学习的图像复原技术研究基于深度学习的图像复原技术得到了广泛关注。
深度学习技术可以解决传统技术的限制,可以在不丢失图像质量的情况下还原图像。
在基于深度学习的图像复原技术中,主要采用了四种算法:DNN、CNN、GAN和RNN。
其中,CNN是最常用的模型。
CNN模型是一种卷积神经网络,它能够处理静态和动态图像,并具有良好的缩放性和运行速度。
CNN模型通常包括三个阶段:特征提取、特征映射和重构。
特征提取阶段用于提取图像中的重要特征,特征映射阶段用于将图像映射为低维度空间,重构阶段用于将映射后的图像重构为原始图像。
GAN则采用了对抗性学习的思想,优化两个神经网络模型:生成器和判别器。
图像复原方法综述1、摘要图像是人类视觉的基础,给人具体而直观的作用。
图像的数字化包括取样和量化两个步骤。
数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。
图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。
解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。
本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR 算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。
关键词:图像退化、图像复原、维纳滤波、正则滤波、LR 算法、盲区卷积、2、图像复原概述在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。
通常,称由于这些因素引起的质量下降为图像退化。
图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。
由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。
为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1] 。
图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。
简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。
由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。
复原照片的方法
复原照片的方法可以根据照片的损坏情况和实际情况进行选择。
以下是几种常见的复原照片的方法:
1.数字修复:使用图像编辑软件(如Photoshop)对照片进行修复。
可以使用修复工具或克隆工具修复破损、划痕、污渍等部分,调整色彩、对比度和曝光度等以改善照片质量。
2.老照片修复:对于老旧照片,可以使用专业的扫描设备将其数字化,然后使用图像编辑软件修复细节和损坏部分。
可以采用修复工具、涂抹工具、修复画笔等进行修复。
3.专业修复:如果照片非常重要且损坏较严重,可以考虑寻求专业修复师的帮助。
他们有专业的技术和工具来修复照片,包括去除折痕、修复撕裂或缺损的部分、修复色彩和对比度等。
4.保护和存储:无论使用哪种方法修复照片,都需要注意保护和存储修复后的照片。
可以将修复后的照片打印出来并放置在框架或相册中,或使用专业的照片存储盒或袋子进行妥善保存。
无论选择哪种方法,都需要小心处理照片并确保在修复过程中保持原始照片的备份。
此外,记得在修复照片之前对其进行彻底的清洁,以确保修复结果更好。
图像复原方法综述图像复原方法综述1、摘要图像是人类视觉的基础,给人具体而直观的作用。
图像的数字化包括取样和量化两个步骤。
数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。
图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。
解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。
本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR 算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。
关键词:图像退化、图像复原、维纳滤波、正则滤波、LR 算法、盲区卷积、2、图像复原概述在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。
通常,称由于这些因素引起的质量下降为图像退化。
图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。
由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。
为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1] 。
图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。
简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。
由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。
图像恢复盲解卷积之文献综述摘要:本文对近20年图像恢复的相关算法做了综述,最后寻找一种更适合针对大气湍流造成的图像质量退化的图像进行复原的方法,在处理效果上更进一步,并且能针对多帧图像进行修复。
关键词:图像恢复盲解卷积PSF1 课题的研究意义由于大气湍流扰动的影响,使得探测器(如地基天文望远镜、卫星成像探测装置等)获取的图像质量退化,甚至严重影响对目标的识别和检测。
为了解决因大气湍流造成的图像退化问题,近几十年来已发展了多种技术方法,主要包括空间望远镜、自适应光学和事后处理等三种方法。
目前检索的国外资料以天文望远镜应用居多,用于解决大气扰动对成像观测的影响。
由于原理相同,图像解卷积方法同样可应用于空间对地遥感领域,以解决环境扰动或自身形变对成像观测的影响。
由于大气湍流扰动以及成像设备分辨率的限制,使得探测器获取的图像质量退化,甚至严重影响对遥感影像的识别和判读。
但是,通常人们很难获得遥感影像获取时刻成像过程的点扩散函数,并且,在当前的技术条件下,大气湍流被认为是高度随机的,很难建立一个准确的数学模型。
因此,采用盲解卷积的方法来获取高清晰的遥感影像就成为一种常用方法。
通常图像恢复方法均在PSF已知下进行,实际上它通常是未知的。
盲解卷积算法恢复是利用原始模糊图像,同时估计PSF和清晰图像的一种图像恢复方法。
盲解卷积并不是真的“盲”,通常还需要一些额外的信息,例如一些约束条件,能量约束,非负约束等。
利用仅有的一些信息,进行最优化运算,获得目标图像。
2 盲解卷积算法盲解卷积算法主要有两大类。
第一大类是先对点扩展函数PSF进行估计,然后再用传统的图像恢复方法对图像进行恢复。
这种方法的最大优点是计算比较简单。
第二大类是将估计与算法合并,同时获得估计的PSF和目标图像值。
该方法的应用面较之第一种方法要广,但计算比较复杂。
经搜索资料知,现有的盲解卷积算法比较多,主要有:空间域迭代盲目去卷积、利用傅里叶变换的迭代盲目去卷积、最大似然估计方法、模拟退火方法以及最小熵方法等。
图像恢复技术的研究与应用引言图像恢复技术是在数字图像处理领域中被广泛应用的一种技术。
在数字图像采集和处理过程中,由于种种原因,图像会出现一些不可避免的问题,例如模糊、失真和噪声等,这时需要使用图像恢复技术进行修复。
本文将从图像恢复技术的定义、常用方法以及应用等几个方面进行详细探讨。
一、图像恢复技术的定义图像恢复技术,是指通过恢复图像中被损坏或丢失的信息,对模糊、失真等影响图像质量的因素进行处理,使图像得以提高清晰度、增强对比度、减少噪声等,从而更好地满足人们的视觉识别要求。
图像恢复技术主要包括图像复原、图像去模糊、图像去噪等多种方法。
二、图像恢复技术的常用方法1、图像复原技术图像复原技术是一种能够对受到损害的图像进行恢复处理的方法。
它利用数学模型和算法对图像进行复原,重建出尽可能原始的图像。
图像复原技术主要分为时间域复原和频域复原两种。
其中,时间域复原主要指利用卷积和滤波等方法进行图像恢复,而频域复原技术则借助离散傅里叶变换及其逆变换来进行图像修复。
时间域复原可以适应大部分的情况,而频域复原则可以更好地处理周期性、重复性的图像信号。
2、图像去模糊技术图像去模糊技术是在图像处理领域中常用的一种技术,它可用于处理由于拍摄时手持不稳定、物体运动或光线变化等因素导致的图像模糊问题。
图像去模糊主要有盲模糊恢复和非盲模糊恢复两种,盲模糊恢复是指不知道模糊核的情况下进行恢复,而非盲模糊恢复则是对于已知模糊核的情况进行恢复。
3、图像去噪技术图像去噪技术是为了消除数字图像中的噪声而出现的一种技术,它的主要目的是使图像表现出尽可能逼真的细节和颜色。
图像去噪技术主要分为基于统计学方法的去噪算法和基于特征域的去噪算法。
其中,基于统计学方法的去噪算法需要对图像噪声的统计特性进行分析、建立模型并加以处理,而基于特征域的去噪算法则是针对图像内容设置模型来消除噪声。
三、图像恢复技术的应用1、医学影像医生们在进行影像分析和诊断时,需要对病人的图像进行恢复处理,以便更好的进行准确的诊断。
图像复原技术综述图像复原技术综述摘要:数字图象处理研究有很大部分是在图象恢复方面进行的,包括对算法的研究和针对特定问题的图象处理程序的编写。
数字图象处理中很多值得注意的成就就是在这个方面取得的。
在图象成像的过程中,图象系统中存在着许多退化源。
一些退化因素只影响一幅图象中某些个别点的灰度;而另外一些退化因素则可以使一幅图象中的一个空间区域变得模糊起来。
前者称为点退化,后者称为空间退化。
此外还有数字化、显示器、时间、彩色,以及化学作用引起的退化。
总之,使图象发生退化的原因很多,但这些退化现象都可用卷积来描述,图象的复原过程就可以看成是一个反卷积的问题。
反卷积属于数学物理问题中的一类“反问题”,反问题的一个共同的重要属性是其病态,即其方程的解不是连续地依赖于观测数据,换句话说,观测数据的微小变动就可能导致解的很大变动。
因此,由于采集图象受噪声的影响,最后对于图象的复原结果可能偏离真实图象非常远。
由于以上的这些特性,图象复原的过程无论是理论分析或是数值计算都有特定的困难。
但由于图象复原技术在许多领域的广泛应用,因而己经成为迅速兴起的研究热点。
关键词:图像复原;盲复原;逆滤波;神经网络复原1 图像退化及复原模型1.1 图像降质的数学模型图像复原处理的关键问题在于如何建立退化模型。
假定输入图像f(x,y)经过某个退化系统后输出的是一幅退化的图像。
为了方便讨论,把噪声引起的退化(即噪声)对图像的影响一般作为加性噪声考虑,这也与许多实际应用情况一致,如图像数字化时的量化噪声、随机噪声等就可以作为加性噪声,即使不是加性噪声而是乘性噪声,也可以用对数方式将其转化为相加形式。
原始图像f(x,y)经过一个退化算子或系统H(x,y)的作用,然后和噪声n(x,y)进行叠加,形成退化后的图像g(x,y)。
图像退化的过程可以用数学表达式写成如下的形式:g(x,y)=H[f(x,y)]+n(x,y)n(x,y)是一种统计性质的信息下图表示退化过程的输入和输出的关系,其中H(x,y)包含了退化系统的物理过程,即所要寻找的退化数学模型。
非盲图像复原综述作者:肖宿来源:《电脑知识与技术》2013年第07期摘要:作为目前图像处理领域的研究重点,图像复原可移除图像中的模糊与噪声,具有重要的理论价值和广阔的应用前景。
为使图像复原的研究被人们所了解,该文首先对图像复原做了简单的描述,接着介绍了近年来出现的一些非盲图像复原算法,包括基于总变分模型的算法、基于Bregman迭代的算法和基于稀疏表示的算法等,最后基于对现有算法的了解与分析,总结了图像复原研究的难点与趋势。
关键词:图像复原;总变分模型; Bregman迭代;稀疏表示;优化问题中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)07-1642-03由于噪声、模糊等不利因素的影响,数字图像的质量通常难以令人满意,无法对其进一步进行研究和利用。
观测到的退化与理想的原始图像之间的关系可表示为:式中,y表示观测图像;A表示模糊算子;x表示原始图像;n表示加性噪声。
因此,图像复原的目的是在模型(1)的框架下,估计最优的原始图像x,这是一种典型的线性逆问题。
图像复原已成为图像处理领域乃至计算机领域的研究热点,其研究可追溯到上个世纪六十年代,经过逾半个世纪的发展,不断有新的算法和技术涌现。
目前,图像复原算法主要分为非盲(non-blind)图像复原算法和图像盲复原算法两大类。
当模型(1)中的模糊算子A是已知的,图像复原被称为非盲的图像复原。
非盲图像复原算法主要有:基于总变分(TV,total variation)模型的算法、基于Bregman方法的算法和基于稀疏表示的算法等。
1 基于TV模型的图像复原算法TV模型亦称ROF模型,可表示为:由L. I. Rudin、S. Osher和E. Fatemi提出[1],其最突出的优点是抑噪的同时可保留图像边缘等重要信息,该模型已成为图像复原、图像去噪[2]和图像修复[3]等领域使用最广泛的先验模型之一。
由于TV模型是不可微分的,基于TV模型的算法需重点考虑图像复原的数值解问题。
图像处理技术综述图像处理技术是指通过对图像进行采集、处理和分析,来提取有价值的信息或改变图像的质量或特征的一系列技术。
随着计算机视觉的发展和应用的广泛,图像处理技术变得日益重要。
本文将对图像处理技术进行综述。
图像处理技术主要包括图像采集、图像增强、图像复原、图像压缩、图像分析和图像识别等多个方面。
图像采集是图像处理的第一步,是指通过摄像机或其他设备获取图像数据。
图像采集技术包括光学成像、电子成像、红外成像、超声成像等。
光学成像是最常用和最常见的图像采集方式,它通过摄像机的镜头将光信号转换为电信号。
电子成像技术则是通过电子感光元件来转换光信号为电信号。
图像增强是指通过增加图像的对比度、清晰度或改善图像的质量来提高图像的可视化效果。
图像增强技术包括灰度变换、直方图均衡化、滤波等。
灰度变换是一种对图像的亮度或对比度进行变换的方法,常用的方法有线性变换和非线性变换。
直方图均衡化是将输入图像的直方图变换为均匀直方图的过程,以提高图像的对比度。
滤波则是通过对图像进行空间域或频域滤波来增强或去除噪声。
图像复原是指通过恢复图像的原始信息或去除图像中的噪声或模糊,来提高图像的质量和可视化效果。
图像复原技术包括退化模型、滤波器设计、最小二乘估计等。
退化模型是描述图像退化过程的数学模型,常用的模型有模糊模型、噪声模型等。
滤波器设计是通过设计合适的滤波器来恢复图像的原始信息。
最小二乘估计是一种优化方法,通过最小化残差平方和来估计图像的原始信息。
第四,图像压缩是将图像数据进行编码和压缩,以减少存储和传输的数据量。
图像压缩技术包括有损压缩和无损压缩。
有损压缩是指通过去除图像中的冗余信息或者降低图像的质量,以达到压缩数据量的目的。
无损压缩则是通过编码和解码来压缩和解压缩图像数据,以保留原始图像的质量。
图像分析和图像识别是通过对图像进行特征提取和分类来实现图像的自动分析和理解。
图像分析技术包括边缘检测、特征提取、目标检测等。
边缘检测是通过检测图像中的边缘来提取图像的轮廓和形状信息。
图像复原方法综述1、摘要图像是人类视觉的基础,给人具体而直观的作用。
图像的数字化包括取样和量化两个步骤。
数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。
图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。
解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。
本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。
关键词:图像退化、图像复原、维纳滤波、正则滤波、LR算法、盲区卷积、2、图像复原概述在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。
通常,称由于这些因素引起的质量下降为图像退化。
图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。
由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。
为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1]。
图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。
简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。
由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。
图像复原算法是整个技术的核心部分。
目前,国内在这方面的研究才刚刚起步,而国外却已经取得了较好的成果。
早期的图像复原是利用光学的方法对失真的观测图像进行校正,而数字图像复原技术最早则是从对天文观测图像的后期处理中逐步发展起来的。
其中一个成功例子是NAS A的喷气推进实验室在1964年用计算机处理有关月球的照片。
照片是在空间飞行器上用电视摄像机拍摄的,图像的复原包括消除干扰和噪声,校正几何失真和对比度损失以及反卷积。
另一个典型的例子是对肯尼迪遇刺事件现场照片的处理。
由于事发突然,照片是在相机移动过程中拍摄的,图像复原的主要目的就是消除移动造成的失真[2]。
早期的复原方法有:非邻域滤波法,最近邻域滤波法以及效果较好的维纳滤波和最小二乘滤波等。
随着数字信号处理和图像处理的发展,新的复原算法不断出现,在应用中可以根据具体情况加以选择。
目前国内外图像复原技术的研究和应用主要集中于诸如空间探索、天文观测、物质研究、遥感遥测、军事科学、生物科学、医学影象、交通监控、刑事侦察等领域。
如生物方面,主要是用于生物活体细胞内部组织的三维再现和重构,通过复原荧光显微镜所采集的细胞内部逐层切片图,来重现细胞内部构成;医学方面,如对肿瘤周围组织进行显微观察,以获取肿瘤安全切缘与癌肿原发部位之间关系的定量数据;天文方面,如采用迭代盲反卷积进行气动光学效应图像复原研究等。
3、图像退化模型图像复原问题的有效性关键之一取决于描述图像退化过程模型的精确性。
要建立图像的退化模型,则首先必须了解、分析图像退化的机理并用数学模型表现出来。
在实际的图像处理过程中,图像均需以数字离散函数表示,所以必须将退化模型离散化[3]。
对于退化图像),(y x g :⎰⎰+∞∞-+∞∞-+--=),(),(),(),(y x n d d y x h f y x g βαβαβα(1)如果上式中f ,h ,n ,g 按相同间隔采样,产生相应的阵列[]AB j i f ),(、[]CD j i h ),(、[]AB j i n ),(、[]AB j i g ),(,然后将这些阵列补零增广得到大小为N M ⨯的周期延拓阵列,为了避免重叠误差,这里1-+≥C A M ,1-+≥D B N 。
由此,当k=0,1,L,M-1;l =0,1,L,N-1时,即可得到二维离散退化模型形式:∑∑-=-=+--=101),(),(),(),(M i N j eeee l k n j l i k h j if l k g(2)如果用矩阵表示上式,则可写为:nHf g +=(3)其中,f ,g ,n 为一个行堆叠形成的1⨯MN 列向量,H 为MN MN ⨯阶的块循环矩阵。
现实中造成图像降质的种类很多,常见的图像退化模型及点扩展函数有如下情景[15]: (1) 线性移动降质在拍照时,成像系统与目标之间有相对直线移动会造成图像的降质。
水平方向线性移动可以用以下降质函数来描述:⎪⎩⎪⎨⎧=≤≤=其他若001),(n and d m dn m h(4)式中,d 是降质函数的长度。
在应用中如果线性移动降质函数不在水平方向,则可类似地定义移动降质函数。
(2) 散焦降质当镜头散焦时,光学系统造成的图像降质相应的点扩展函数是一个均匀分布的圆形光斑。
此时,降质函数可表示为:⎪⎩⎪⎨⎧=+=其他若0R 1),(2222n m R n m h π(5)式中,R 是散焦半径。
(3) 高斯(Gauss)降质Gau ss降质函数是许多光学测量系统和成像系统最常见的降质函数。
对于这些系统,决定系统点扩展函数的因素比较多。
众多因素综合的结果总是使点扩展函数趋于Gau ss 型。
典型的系统可以举出光学相机和CCD 摄像机、γ相机、CT 相机、成像雷达、显微光学系统等。
G aus s降质函数可以表达为:⎩⎨⎧∈+-=其他若0),()](exp[),(22C n m n m K n m h α(6)式中,K 是归一化常数,α是一个正常数,C 是),(n m h 的圆形支持域。
4、几种较经典的复原方法介绍图像复原算法有线性和非线性两类。
线性算法通过对图像进行逆滤波来实现反卷积,这类方法方便快捷,无需循环或迭代,直接可以得到反卷积结果,然而,它有一些局限性,比如无法保证图像的非负性。
而非线性方法通过连续的迭代过程不断提高复原质量,直到满足预先设定的终止条件,结果往往令人满意。
但是迭代程序导致计算量很大,图像复原时耗较长,有时甚至需要几个小时。
所以实际应用中还需要对两种处理方法综合考虑,进行选择[4]。
(1) 维纳滤波法维纳滤波法是由W iene r首先提出的,应用于一维信号处理,取得了很好的效果。
之后,维纳滤波法被用于二维信号处理,也取得了不错的效果,尤其在图像复原领域,由于维纳滤波计算量小,复原效果好,从而得到了广泛的应用和发展。
维纳滤波器寻找一个使统计误差函数}){(22∧-=f f E e(7)最小的估计∧f 。
E是期望值操作符,f 是未退化的图像。
该表达式在频域可表示为),(]),(/),(),(),(),(1[),(22v u G v u S v u S v u H v u H v u H v u F ηη+=∧(8)其中,),(v u H 表示退化函数 ),(),(),(2v u H v u H v u H *=),(v u H *表示),(v u H 的复共轭2),(),(v u N v u S =η表示噪声的功率谱 2),(),(v u F v u S f =表示未退化图像的功率谱比率),(/),(v u S v u S ηη称为信噪功率比。
在I PT 中维纳滤波使用函数dec onvwn r来实现的。
模拟实验结果如下:(2) 正则滤波法另一个容易实现线性复原的方法称为约束的最小二乘方滤波,在IPT 中称为正则滤波,并且通过函数de convreg 来实现。
在最小二乘复原处理中,常常需要附加某种约束条件。
例如令Q 为f 的线性算子,那么最小二乘方复原的问题可以看成使形式为2∧fQ 的函数,服从约束条件22n fH g =-∧的最小化问题,这种有附加条件的极值问题可以用拉格朗日乘数法来处理。
寻找一个∧f ,使下述准则函数为最小:222)(nfH g fQ f W --+=∧∧∧λ(9)式中λ叫拉格朗日系数。
通过指定不同的Q,可以得到不同的复原目标。
模拟实验结果如下:(3)Lucy-Ri chard son 算法L -R算法是一种迭代非线性复原算法,它是从最大似然公式印出来的,图像用泊松分布加以模型化的。
当下面这个迭代收敛时模型的最大似然函数就可以得到一个令人满意的方程:]),(),(),(),()[,(),(1y x f y x h y x g y x h y x f y x f k k k ∧∧∧+**--= (10)*代表卷积,∧f 代表未退化图像的估计,g和h 和以前定义一样。
在IPT 中,L -R 算法由名为deconvlucy 的函数完成的。
模拟实验结果如下:(4)盲去卷积在图像复原过程中,最困难的问题之一是,如何获得PSF的恰当估计。
那些不以PSF为基础的图像复原方法统称为盲区卷积。
它以MLE为基础的,即一种用被随机噪声所干扰的量进行估计的最优化策略。
工具箱通过函数deconvblind来执行盲区卷积。
模拟实验结果如下:图像分别迭代5次,10次,20次的结果。
5、参考文献[1]罗军辉冯平等。
MATLAB7.0在图像处理中的应用[M],北京:机械工业出版社2006,202~204,257~278。
[2] 刘维一,于德月,王肇圻等。
用迭代法消除数字图像放大后的模糊[J]。
光电子.激光,2002,13(4):398~400。
[3] 陶洪。
数字共焦显微技术及其图像复原算法研究四川大学硕士学位论文CNKI::CDMD:10610.2.2003.6632。
[4]冈萨雷斯等著。
数字图像处理(MATLAB版)[M],电子工业出版社2009。
6、程序附录清单(1) 维纳滤波clcclear allclose allI=imread('C:\DocumentsandSettings\Administrator\桌面\原始图.jpg');ubplot(231);Imshow(I);I=rgb2gray(I);subplot(232);imshow(I);noise=0.1*randn(size(I));PSF=fspecial('motion',21,11);Blurred=imfilter(I,PSF,'circular');BlurredNoisy=im2uint8(Blurred);NP=abs(fftn(noise)).^2;NPOW=sum(NP(:)/prod(size(noise)));NCORR=fftshift(real(ifftn(NP)));IP=abs(fftn(I)).^2;IPOW=sum(IP(:)/prod(size(noise)));ICORR=fftshift(real(ifftn(IP)));ICORR1=ICORR(:,ceil(size(I,1)/2));NSR=NPOW/IPOW;subplot(233);imshow(BlurredNoisy,[]);title('A=Blurred and Noisy');subplot(234);imshow(deconvwnr(BlurredNoisy,PSF),[]);title('deconbwnr(A,PSF,NSR)');subplot(235);imshow(deconvwnr(BlurredNoisy,PSF,NCORR,ICORR),[]);title('deconbwnr(A,PSF,NCORR,ICORR)');subplot(236);imshow(deconvwnr(BlurredNoisy,PSF,NPOW,ICORR1),[]);title('deconbwnr(A,PSF,NPOW,ICORR_1_D)');(2)正则滤波clcclear allcloseallI=imread('C:\Documents and Settings\Administrator\桌面\原始图.jpg');subplot(231);imshow(I);I=rgb2gray(I);subplot(232);imshow(I);PSF=fspecial('gaussian',7,10);V=.01;BlurredNoisy=imnoise(imfilter(I,PSF),'gaussian',0,V);NOISEPOWER=V*prod(size(I));[J LAGRA]=deconvreg(BlurredNoisy,PSF,NOISEPOWER);subplot(233);imshow(BlurredNoisy);title('A=Blurred andNoisy');subplot(234);imshow(J);title('[J LAGRA]=deconvreg(A,PSF,NP)');subplot(235);imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA/10));title('deconvreg(A,PSF,[],0.1*LAGRA)');subplot(236);imshow(deconvreg(BlurredNoisy,PSF,[],LAGRA*10)); title('deconvreg(A,PSF,[],10*LAGRA');(3)L-R算法clcclear allcloseallI=imread('C:\Documents and Settings\Administrator\桌面\原始图.jpg');subplot(231);imshow(I);I=rgb2gray(I);subplot(232);imshow(I);PSF=fspecial('gaussian',7,10);V=.0001;BlurredNoisy=imnoise(imfilter(I,PSF),'gaussian',0,V);BlurredNoisy=double(BlurredNoisy);WT=zeros(size(I));WT(5:end-4,5:end-4)=1;J1=deconvlucy(BlurredNoisy,PSF);J2=deconvlucy(BlurredNoisy,PSF,20,sqrt(V));J3=deconvlucy(BlurredNoisy,PSF,20,sqrt(V),WT);subplot(233);imshow(mat2gray(BlurredNoisy));title('A=Blurred and Noisy');subplot(234);imshow(mat2gray(J1));title('deconvlucy(A,PSF)');subplot(235);imshow(mat2gray(J2));title('deconvlucy(A,PSF,NI,DP)');subplot(236);imshow(mat2gray(J3));title('deconvlucy(A,PSF,NI,DP,WT)');(4) 盲去卷积clcclear allclose allI=imread('C:\Documents and Settings\Administrator\桌面\原始图.jpg');subplot(231);imshow(I);I=rgb2gray(I);subplot(232);imshow(I);PSF=fspecial('gaussian',7,10);V=.0001;BlurredNoisy=imnoise(imfilter(I,PSF),'gaussian',0,V);BlurredNoisy=double(BlurredNoisy);WT=zeros(size(I));--WT(5:end-4,5:end-4)=1;INITPSF=ones(size(PSF));FUN=inline('PSF+P1','PSF','P1');[J P]=deconvblind(BlurredNoisy,INITPSF,5,10*sqrt(V),WT,FUN,0);[K P]=deconvblind(BlurredNoisy,INITPSF,10,10*sqrt(V),WT,FUN,0);[LP]=deconvblind(BlurredNoisy,INITPSF,20,10*sqrt(V),WT,FUN,0);subplot(233);imshow(mat2gray(BlurredNoisy));title('A=Blurred and Noisy');subplot(234);imshow(mat2gray(J));title('TruePSF');subplot(235);imshow(mat2gray(K));title('Deblured Image');subplot(236);imshow(mat2gray(L));title('Recovered PSF');----。