数字图像复原技术综述
- 格式:doc
- 大小:557.00 KB
- 文档页数:11
图像复原技术研究国内外文献综述作为日常生活中广泛使用的技术,图像修复技术汇集了国内外许多重要技术。
实际上,图像复原分为三种标准:首先是搭建其劣化图像的图像模型;其次去研究和筛选最佳的图像复原方法;最后进行图像复原。
所有类型的成像模型和优化规则都会导致应用于不同领域的不同图像恢复算法。
我们对现有的图像复原方法大致做了总结,如利用线性代数知识的线性代数复原技术、搭建图像退化模型的去卷积图像恢复技术以及不考虑PSF的图像盲解卷积算法等。
其中,去卷积方法主要包括功率谱均衡、Wiener滤波和几何平均滤波等,然而这些方法需要许多预信息和噪声稳定假设,这在现实当中我们不可能利用计算机去做到的的事情,因此它们只适用于线性空间不变的理想系统,仅当噪声与信号无关时才能达到很好的效果。
但是在一些条件恶化的情况下,就不能满足图像修复的效果了。
在图像恢复领域当中,另一个重要且常见的方法是盲去卷积复原法。
它的优势是在没有预先了解退化函数和实际信号的知识前提下,可以根据劣化图像直接估计劣化函数和初始信号。
实际上,现在有几个算法通过不充分的预测信息来恢复劣化图像。
由于我们需要对图像和点扩展函数的一些相关信息进行假设和推导,所以这就导致图像恢复的解通常并不存在唯一性,并且我们已知的初始条件和对附加图像假设的选择也会对解的优劣产生很大的关系。
与此同时,由于信道中不可避免的加性噪声的影响,会进一步导致盲图像的复原变差,给图像复原造成许多困难。
也就是说,如果我们直接利用点扩展函数进行去卷积再现初始图像,则一般会导致高频噪声放大,导致算法的性能恶化,恢复不出清晰的图像。
因此,我们要尽可能的提高图像的信噪比,从而提高图像复原的效果。
基于已知的降质算子和加性噪声的某些统计性质从而恢复清晰的图像,我们将这种方法叫做线性代数恢复方法,并且这种线性代数恢复方法在一定程度上提出了用于恢复滤波器的数值计算从而使得模糊图像恢复到与清晰图像一致的新的设计思想。
什么是计算机像复原请解释几种常见的像复原算法像复原是指通过特定的算法和技术,把受损或失真的图像恢复到原本的清晰状态的过程。
计算机像复原算法是图像处理领域的一个重要研究方向,可以应用于医学影像、数字摄影、视频处理等领域。
常见的像复原算法包括插值算法、去噪算法、超分辨率算法等。
下面将对这几种常见的像复原算法进行解释。
1.插值算法插值算法是最基础的像复原算法之一,它通过在像素之间进行插值操作来增加像素数量和提高图像的分辨率。
常见的插值算法包括最邻近插值、双线性插值、双三次插值等。
最邻近插值是一种简单的插值算法,它通过找到离目标像素位置最近的原始像素值来确定目标像素的值。
双线性插值则是在四个最近的原始像素值之间进行插值操作,从而获得更平滑的图像。
双三次插值在此基础上进行了更复杂的插值操作,可以得到更加清晰的图像。
2.去噪算法图像在传输和处理过程中往往会受到噪声的影响,导致图像失真和质量下降。
去噪算法旨在消除这种噪声,恢复图像的清晰度和细节。
常见的去噪算法包括高斯滤波、均值滤波、中值滤波等。
高斯滤波是一种线性滤波算法,通过对像素周围的邻域进行加权平均来减少噪声。
均值滤波则是对像素邻域内的像素值进行平均操作,用平均值代替当前像素值。
中值滤波则是将像素周围的像素值进行排序,取中间值作为当前像素值,从而消除脉冲噪声等。
3.超分辨率算法超分辨率算法是一种能够通过利用图像本身的信息来增加图像分辨率的算法。
在数字图像处理中,超分辨率是指通过一系列的算法来使图像的分辨率提高至原来的几倍。
常见的超分辨率算法包括基于插值的方法、基于深度学习的方法等。
基于插值的方法是通过对低分辨率图像进行插值操作来增加图像的分辨率。
基于深度学习的方法则是通过训练深度神经网络来学习图像之间的高频信息,从而实现超分辨率处理。
总的来说,像复原算法是一种重要的图像处理技术,能够帮助用户在图像受损或失真的情况下恢复清晰的图像。
通过插值算法、去噪算法、超分辨率算法等常见的像复原算法,可以使图像在保持细节清晰度的同时降低噪声和失真,提高图像的质量和视觉效果。
数字媒体下的图像修复与复原技术数字媒体技术的发展带来了我们在生活中各种便利,其中最为突出的就是数字图像的广泛应用。
但是,每个人都知道数字图像处理是一门复杂的学科,其中最基础的就是图像修复与复原技术,本篇文章将讨论数字媒体下的图像修复与复原技术领域。
1. 什么是图像修复与复原技术图像修复与复原技术是一项旨在消除图像中噪声、去除缺陷、恢复丢失的信息和恢复美观度的技术,其意义非常重大,是现实生活中数字图像处理领域的一个重要子领域。
它主要由两种方法来实现,一种是图像修复,另一种是图像复原。
图像修复指的是降噪、消除部分缺陷和修补损坏部分等,主要通过一些数学算法对图像进行修复,从而达到除噪、减模糊等一系列的图像修复技术。
而图像复原的目的是在尽可能不破坏原有的信息的前提下,对已失去信息,降低了分辨率的图像进行纠正,恢复出较优的清晰度和细节等特征。
2. 数字媒体下图像修复技术随着数字媒体技术的发展,各种图像处理软件也应运而生,图像修复的一系列数字算法也不断涌现。
目前,数字媒体技术已经成为实现图像修复技术的主要手段。
可以说,在数字媒体下,图像修复和复原技术的应用范围更加广泛,在各行各业都有不同程度的应用。
目前,图像修复方面主要采用的技术有:基于复制法的修补算法、基于边缘信息的修复算法、基于局部纹理的修复算法、基于全局优化的修复算法等。
特别是在数字艺术领域,如数字合成、数字雕塑等方面,图像修复技术有着广泛的应用。
通过图像的去噪、变形、合成等技术,不仅能够恢复出清晰的图像,还能够创造出惊人的视觉效果,使人眼花缭乱。
3. 数字媒体下图像复原技术数字媒体下图像复原技术的发展走向更加精细化,主要应用于科学、文化遗产、卫星图片、草图和纪实摄影等方面。
其主要原理是利用图像特征和图像域提取方法,以及评估算法和估计方法,在更小的误差率下,实现图像单调和噪声改善和估计。
在图像复原技术中,噪声估计和去噪是最重要的关键点,目前有多种数字去噪算法可供使用。
图像复原方法综述1、摘要图像是人类视觉的基础,给人具体而直观的作用。
图像的数字化包括取样和量化两个步骤。
数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。
图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。
解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。
本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR 算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。
关键词:图像退化、图像复原、维纳滤波、正则滤波、LR 算法、盲区卷积、2、图像复原概述在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。
通常,称由于这些因素引起的质量下降为图像退化。
图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。
由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。
为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1] 。
图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。
简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。
由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。
数字图像复原技术综述
沈峘;李舜酩;毛建国;辛江慧
【期刊名称】《中国图象图形学报》
【年(卷),期】2009(014)009
【摘要】现复原技术的发展趋势与面临的困难.最后,在总结全文的基础上,指出在今后进一步研究中值得关注的7项问题.
【总页数】12页(P1764-1775)
【作者】沈峘;李舜酩;毛建国;辛江慧
【作者单位】南京航空航天大学能源与动力学院,南京,210016;南京航空航天大学能源与动力学院,南京,210016;南京航空航天大学能源与动力学院,南京,210016;南京航空航天大学能源与动力学院,南京,210016
【正文语种】中文
【中图分类】TP391
【相关文献】
1.数字图像复原技术的原理及在刑事技术中的应用 [J], 廖翔;黎建彬
2.图像复原技术综述 [J], 王兴龙
3.顺序结构的运动模糊图像复原技术综述 [J], 程姝;赵志刚;吕慧显;潘振宽;郝鑫鑫
4.离焦模糊图像复原技术综述 [J], 于春和;祁奇;;
5.离焦模糊图像复原技术综述 [J], 于春和;祁奇
因版权原因,仅展示原文概要,查看原文内容请购买。
2021年第2期0引言图像是最常见的信息形式之一,由于图像处理技术的不断发展,图像修复方法也得到了更多的普及。
随着图像处理工具的改进和数字图像编辑的灵活性,图像修复技术在计算机视觉领域有了重要的应用,图像修复成为图像处理领域一个重要且具有挑战性的研究课题。
1传统的图像修复技术传统的图像修复技术可以分为基于结构的图像修复技术和基于纹理的图像修复技术两大类。
其中,变分偏微分方程模型是基于结构的图像修复技术的典型代表,由变分模型和偏微分方程模型组成。
纹理合成是基于纹理的图像修复技术的典型代表。
传统数字图像修复技术分类如图1所示。
1.1基于结构的图像修复技术21世纪初,Betalmio[1]等人首次提出图像修复技术BSCB模型,该模型通过待修补区域的边界向待修补区域扩散的方法来实现图像修复。
BSCB模型中图像的整体结构决定了图像的修复结果,待修复图像由边界线划分,根据待修复图像区域边界填充相对应的颜色,以此产生修补信息。
基于BSCB算法的TV(全变分)模型可以对图像进行很好的修补,但是和一些基于无纹理的修补方法一样,TV方法适合修补没有纹理结构的图像,结构十分清晰,但是修补的区域一般都会趋于模糊化,没有办法满足主观视觉上对图像连通性的要求。
1.2基于纹理的图像修复技术基于纹理的图像修复技术可以实现图像破损区域较大的修复。
Criminisi等人[2]提出基于块的图像修复技术,该技术通过寻找最优的目标块,并将目标中的像素复制到待填充的区域,以此达到图像的修复。
基于块的图像修复技术比基于像素的图像修复技术速度更快,受到广泛的关注。
Wei等人[3]在优先计算公式时丢弃等照度线方向上的信息,使用垂直方向上的信息,该方法能更好地修复图像中的结构等信息。
非参数采样的纹理合成方法使用基于马尔科夫随机场的方法进行图像修复,在图像中寻找与当前最接近的图像块,然后再估计当前像素的概率分布,通过诸如权重采样等方法生成当前像素。
图像复原方法综述1、摘要图像是人类视觉的基础,给人具体而直观的作用。
图像的数字化包括取样和量化两个步骤。
数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。
图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。
解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。
本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。
关键词:图像退化、图像复原、维纳滤波、正则滤波、LR算法、盲区卷积、2、图像复原概述在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。
通常,称由于这些因素引起的质量下降为图像退化。
图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。
由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。
为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1]。
图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。
简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。
由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。
图像复原技术在数字图像处理中的应用在数字图像处理领域中,图像复原技术的应用越来越广泛。
它主要是指基于数学模型对图像信号的特定处理方法,旨在消除图像中可能存在的噪声、模糊、失真等质量问题,从而获得更加真实、清晰、准确的图像信息。
本文将探讨图像复原技术的原理、方法和实际应用,并分析其优劣与发展趋势。
一、图像复原技术的原理图像复原技术的主要原理是在图像由信号采样得到的基础上,基于图像信号的统计特征和变化规律,建立适当的数学模型,通过各种特定方法对模型进行处理,以消除图像中可能存在的噪声、模糊、失真等问题。
常见的图像复原技术包括:基于统计模型的复原方法、基于图像滤波的复原方法、基于边缘检测的复原方法、基于小波变换的复原方法等。
二、图像复原技术的方法基于统计模型的复原方法:该方法主要是利用图像信号中存在的统计规律,例如均值、方差、相关系数等,建立数学模型,通过对模型中的参数进行估计和优化,从而消除图像中的噪声。
其中,常用的方法包括线性滤波、均值滤波、中值滤波等。
基于图像滤波的复原方法:该方法主要是通过对图像信号进行滤波,以减少或消除噪声等影响图像质量的因素,从而达到复原图像的目的。
常见的滤波方法包括高斯滤波、中值滤波、双边滤波等。
基于边缘检测的复原方法:该方法主要是利用图像中存在的边缘和纹理特征,通过对这些特征进行提取和分析,从而达到复原图像的目的。
常见的方法包括Canny算子、Sobel算子、Laplacian算子等。
基于小波变换的复原方法:该方法主要是在图像信号的频域中进行分析和处理,通过对图像信号进行小波变换,将其分解为多个频率和尺度的子带,从而达到对图像噪声和细节信息的有效分离和处理。
常见的小波变换方法包括连续小波变换、离散小波变换等。
三、图像复原技术的实际应用图像复原技术在实际应用中有很广泛的应用,包括医学影像、遥感图像、视频监控、卫星图像、数字图书馆等领域。
以医学影像为例,图像复原技术可以对病理学影像进行去除因为成像或者传输而产生的噪声,使得医生看到一个到处清晰的图像,从而更加准确地进行诊断和治疗。
数字像处理中的像恢复算法数字图像处理中的图像恢复算法1. 引言数字图像处理是利用计算机对数字图像进行处理和分析的一门学科。
在数字图像处理过程中,图像恢复算法扮演着关键的角色。
本文将介绍数字图像处理中的图像恢复算法及其应用。
2. 图像恢复算法概述图像恢复算法旨在通过对损坏、噪声干扰或失真的图像进行处理,恢复其原有的信息和质量。
常见的图像恢复算法包括插值算法、滤波算法和去噪算法等。
3. 插值算法插值算法是根据已知的图像信息,通过推断缺失像素的像素值,从而恢复图像。
常见的插值算法有最近邻插值、双线性插值和双立方插值等。
最近邻插值仅根据最近的一个已知像素进行恢复,速度快但可能导致图像锯齿状。
双线性插值通过考虑最近的4个像素,以加权平均的方式进行插值,得到更平滑的图像。
双立方插值将插值过程扩展到16个像素,以更好地处理图像细节。
4. 滤波算法滤波算法通过在图像中应用滤波器来恢复图像。
常用的滤波算法包括均值滤波、中值滤波和高斯滤波等。
均值滤波通过取周围像素的平均值来恢复图像,适用于去除高斯噪声等均值型噪声。
中值滤波通过取周围像素的中值来恢复图像,对于椒盐噪声等脉冲型噪声效果较好。
高斯滤波通过使用高斯核来平滑图像,能够同时去除噪声和保留图像细节。
5. 去噪算法去噪算法是处理噪声污染图像的一种常用方法。
常见的去噪算法有小波去噪、基于总变差的去噪和深度学习去噪等。
小波去噪利用小波变换将图像分解为不同的频带,通过对噪声频带进行阈值处理实现去噪。
基于总变差的去噪通过最小化图像的总变差来平滑图像,适用于去除大面积的噪声。
深度学习去噪利用深度神经网络学习图像的噪声分布和去噪规律,具有较好的去噪效果。
6. 图像恢复算法的应用图像恢复算法在许多领域都有重要的应用。
例如,在医学影像中,图像恢复算法能够去除影像中的噪声和伪影,提高影像质量,从而对疾病的诊断和治疗起到重要的指导作用。
在摄影领域,图像恢复算法能够提高照片的质量和细节,增强图像的视觉效果。
图像复原技术综述图像复原技术综述摘要:数字图象处理研究有很大部分是在图象恢复方面进行的,包括对算法的研究和针对特定问题的图象处理程序的编写。
数字图象处理中很多值得注意的成就就是在这个方面取得的。
在图象成像的过程中,图象系统中存在着许多退化源。
一些退化因素只影响一幅图象中某些个别点的灰度;而另外一些退化因素则可以使一幅图象中的一个空间区域变得模糊起来。
前者称为点退化,后者称为空间退化。
此外还有数字化、显示器、时间、彩色,以及化学作用引起的退化。
总之,使图象发生退化的原因很多,但这些退化现象都可用卷积来描述,图象的复原过程就可以看成是一个反卷积的问题。
反卷积属于数学物理问题中的一类“反问题”,反问题的一个共同的重要属性是其病态,即其方程的解不是连续地依赖于观测数据,换句话说,观测数据的微小变动就可能导致解的很大变动。
因此,由于采集图象受噪声的影响,最后对于图象的复原结果可能偏离真实图象非常远。
由于以上的这些特性,图象复原的过程无论是理论分析或是数值计算都有特定的困难。
但由于图象复原技术在许多领域的广泛应用,因而己经成为迅速兴起的研究热点。
关键词:图像复原;盲复原;逆滤波;神经网络复原1 图像退化及复原模型1.1 图像降质的数学模型图像复原处理的关键问题在于如何建立退化模型。
假定输入图像f(x,y)经过某个退化系统后输出的是一幅退化的图像。
为了方便讨论,把噪声引起的退化(即噪声)对图像的影响一般作为加性噪声考虑,这也与许多实际应用情况一致,如图像数字化时的量化噪声、随机噪声等就可以作为加性噪声,即使不是加性噪声而是乘性噪声,也可以用对数方式将其转化为相加形式。
原始图像f(x,y)经过一个退化算子或系统H(x,y)的作用,然后和噪声n(x,y)进行叠加,形成退化后的图像g(x,y)。
图像退化的过程可以用数学表达式写成如下的形式:g(x,y)=H[f(x,y)]+n(x,y)n(x,y)是一种统计性质的信息下图表示退化过程的输入和输出的关系,其中H(x,y)包含了退化系统的物理过程,即所要寻找的退化数学模型。
数字图像处理文献综述摘要数字图像处理是指将数字图像与计算机进行交互,将图像进行数字化处理以获得更好的视觉效果或用于其他应用领域。
本文对数字图像处理近期的研究文献进行综述,探讨数字图像处理的基本理论和在实际应用中的应用情况。
数字图像处理基本理论数字图像通常以灰度或彩色的方式呈现。
在数字图像处理中,基本的操作包括滤波,变换和复原等。
其中,滤波是最常用的操作之一,它用于去除图像中的噪声和其它干扰项。
变换用于将图像从一种形式转换为另一种形式,包括傅里叶变换、小波变换和Hough变换等。
复原则用于恢复由噪声和失真所造成的信息丢失。
数字图像处理的另外一个重要问题是图像分割。
图像分割是将图像分成不同的区域,这些区域可以是同质的,也可以是具有不同特征的。
在数字图像中,图像分割可以用于物体识别、边缘检测和目标跟踪等应用。
数字图像处理的应用场景数字图像处理可以应用于多个领域,如医学、机器人、安全监控、虚拟现实和自动驾驶。
在医学领域,数字图像处理可以用于医学图像的增强、识别和分析。
例如,数字图像处理可以用于诊断肿瘤、分析眼底图像和检查CT扫描图像等。
在机器人领域,数字图像处理可以用于机器人感知和导航。
例如,在自主驾驶汽车中,数字图像处理可以用于识别道路标记和行人,帮助汽车进行自主导航。
在安全监控领域,数字图像处理可以用于识别和跟踪可疑人员或物品。
例如,在机场或车站,数字图像处理可以用于识别和跟踪行李和车站内的人员。
在虚拟现实领域,数字图像处理可以用于增强虚拟世界的真实感和交互性。
例如,数字图像处理可以用于识别用户手势,帮助用户进行更加自然的交互。
数字图像处理的未来发展数字图像处理的未来发展将越来越多地涉及到深度学习和人工智能的技术,这些技术将用于图像识别和分析。
随着机器学习技术的增强,数字图像处理将可以更加准确地识别和分析图像,为实际应用带来更多的价值。
除此之外,数字图像处理的实际应用将与物联网、大数据和云计算等新技术结合在一起,从而开创出更多的可能和机会。
数字图像复原技术综述摘要图像是人类视觉的基础,给人具体而直观的作用。
图像的数字化包括取样和量化两个步骤。
数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。
图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。
解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。
本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。
关键词:图像退化、图像复原、维纳滤波、正则滤波、LR算法、盲区卷积、1 引言数字图像复原技术(以下简称复原技术)是数字图像处理的重要组成部分。
最早的复原技术研究可以追溯到19世纪50至60年代早期美国和前苏联的空间项目。
恶劣的成像环境、设备的振动,飞行器旋转等因素使图像产生不同程度的退化。
在当时的技术背景下,这些退化造成了巨大的经济损失。
为此,业内人士围绕着解决退化问题展开了复原技术的研究。
反映复原技术的发展现状和趋势。
考虑到彩色图像复原问题的特殊性,也归人到该部分进行讨论;最后,对复原技术的研究方法进行总结与展望。
2、图像复原概述在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。
通常,称由于这些因素引起的质量下降为图像退化。
图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。
由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。
为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1]。
图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。
简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。
由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。
图像复原算法是整个技术的核心部分。
目前,国内在这方面的研究才刚刚起步,而国外却已经取得了较好的成果。
早期的图像复原是利用光学的方法对失真的观测图像进行校正,而数字图像复原技术最早则是从对天文观测图像的后期处理中逐步发展起来的。
其中一个成功例子是NASA 的喷气推进实验室在1964年用计算机处理有关月球的照片。
照片是在空间飞行器上用电视摄像机拍摄的,图像的复原包括消除干扰和噪声,校正几何失真和对比度损失以及反卷积。
另一个典型的例子是对肯尼迪遇刺事件现场照片的处理。
由于事发突然,照片是在相机移动过程中拍摄的,图像复原的主要目的就是消除移动造成的失真[2]。
早期的复原方法有:非邻域滤波法,最近邻域滤波法以及效果较好的维纳滤波和最小二乘滤波等。
随着数字信号处理和图像处理的发展,新的复原算法不断出现,在应用中可以根据具体情况加以选择。
目前国内外图像复原技术的研究和应用主要集中于诸如空间探索、天文观测、物质研究、遥感遥测、军事科学、生物科学、医学影象、交通监控、刑事侦察等领域。
如生物方面,主要是用于生物活体细胞内部组织的三维再现和重构,通过复原荧光显微镜所采集的细胞内部逐层切片图,来重现细胞内部构成;医学方面,如对肿瘤周围组织进行显微观察,以获取肿瘤安全切缘与癌肿原发部位之间关系的定量数据;天文方面,如采用迭代盲反卷积进行气动光学效应图像复原研究等。
3、图像退化模型图像复原问题的有效性关键之一取决于描述图像退化过程模型的精确性。
要建立图像的退化模型,则首先必须了解、分析图像退化的机理并用数学模型表现出来。
在实际的图像处理过程中,图像均需以数字离散函数表示,所以必须将退化模型离散化[3]。
对于退化图像),(y x g :⎰⎰+∞∞-+∞∞-+--=),(),(),(),(y x n d d y x h f y x g βαβαβα (1)如果上式中f ,h ,n ,g 按相同间隔采样,产生相应的阵列[]AB j i f ),(、[]CD j i h ),(、[]AB j i n ),(、[]AB j i g ),(,然后将这些阵列补零增广得到大小为N M ⨯的周期延拓阵列,为了避免重叠误差,这里1-+≥C A M ,1-+≥D B N 。
由此,当k=0,1,L,M-1;l=0,1,L,N-1时,即可得到二维离散退化模型形式:∑∑-=-=+--=101),(),(),(),(M i N j ee e e l k n j l i k h j if l kg (2) 如果用矩阵表示上式,则可写为:n Hf g += (3)其中,f ,g ,n 为一个行堆叠形成的1⨯MN 列向量,H 为MN MN ⨯阶的块循环矩阵。
现实中造成图像降质的种类很多,常见的图像退化模型及点扩展函数有如下情景[15]:(1) 线性移动降质在拍照时,成像系统与目标之间有相对直线移动会造成图像的降质。
水平方向线性移动可以用以下降质函数来描述:⎪⎩⎪⎨⎧=≤≤=其他若0001),(n and d m d n m h (4) 式中,d 是降质函数的长度。
在应用中如果线性移动降质函数不在水平方向,则可类似地定义移动降质函数。
(2) 散焦降质当镜头散焦时,光学系统造成的图像降质相应的点扩展函数是一个均匀分布的圆形光斑。
此时,降质函数可表示为:⎪⎩⎪⎨⎧=+=其他若0R 1),(2222n m R n m h π (5)式中,R 是散焦半径。
(3) 高斯(Gauss)降质Gauss 降质函数是许多光学测量系统和成像系统最常见的降质函数。
对于这些系统,决定系统点扩展函数的因素比较多。
众多因素综合的结果总是使点扩展函数趋于Gauss 型。
典型的系统可以举出光学相机和CCD 摄像机、γ相机、CT 相机、成像雷达、显微光学系统等。
Gauss 降质函数可以表达为:⎩⎨⎧∈+-=其他若0),()](exp[),(22C n m n m K n m h α (6) 式中,K 是归一化常数,α是一个正常数,C 是),(n m h 的圆形支持域。
4、几种较经典的复原方法介绍图像复原算法有线性和非线性两类。
线性算法通过对图像进行逆滤波来实现反卷积,这类方法方便快捷,无需循环或迭代,直接可以得到反卷积结果,然而,它有一些局限性,比如无法保证图像的非负性。
而非线性方法通过连续的迭代过程不断提高复原质量,直到满足预先设定的终止条件,结果往往令人满意。
但是迭代程序导致计算量很大,图像复原时耗较长,有时甚至需要几个小时。
所以实际应用中还需要对两种处理方法综合考虑,进行选择[4]。
(1) 维纳滤波法维纳滤波法是由Wiener 首先提出的,应用于一维信号处理,取得了很好的效果。
之后,维纳滤波法被用于二维信号处理,也取得了不错的效果,尤其在图像复原领域,由于维纳滤波计算量小,复原效果好,从而得到了广泛的应用和发展。
维纳滤波器寻找一个使统计误差函数}){(22∧-=f f E e (7) 最小的估计∧f 。
E 是期望值操作符,f 是未退化的图像。
该表达式在频域可表示为 ),(]),(/),(),(),(),(1[),(22v u G v u S v u S v u H v u H v u H v u F ηη+=∧ (8) 其中,),(v u H 表示退化函数),(),(),(2v u H v u H v u H *= ),(v u H *表示),(v u H 的复共轭2),(),(v u N v u S =η表示噪声的功率谱2),(),(v u F v u S f =表示未退化图像的功率谱比率),(/),(v u S v u S ηη称为信噪功率比。
在IPT 中维纳滤波使用函数deconvwnr 来实现的。
模拟实验结果如下:(1) 维纳滤波clcclear allclose allI=imread('C:\Documents and Settings\Administrator\桌面\原始图.jpg');ubplot(231);Imshow(I);I=rgb2gray(I);subplot(232);imshow(I);noise=0.1*randn(size(I));PSF=fspecial('motion',21,11);Blurred=imfilter(I,PSF,'circular');BlurredNoisy=im2uint8(Blurred);NP=abs(fftn(noise)).^2;NPOW=sum(NP(:)/prod(size(noise)));NCORR=fftshift(real(ifftn(NP)));IP=abs(fftn(I)).^2;IPOW=sum(IP(:)/prod(size(noise)));ICORR=fftshift(real(ifftn(IP)));ICORR1=ICORR(:,ceil(size(I,1)/2));NSR=NPOW/IPOW;subplot(233);imshow(BlurredNoisy,[]);title('A=Blurred and Noisy');subplot(234);imshow(deconvwnr(BlurredNoisy,PSF),[]);title('deconbwnr(A,PSF,NSR)');subplot(235);imshow(deconvwnr(BlurredNoisy,PSF,NCORR,ICORR),[]);title('deconbwnr(A,PSF,NCORR,ICORR)');subplot(236);imshow(deconvwnr(BlurredNoisy,PSF,NPOW,ICORR1),[]);title('deconbwnr(A,PSF,NPOW,ICORR_1_D)');(2) 正则滤波法另一个容易实现线性复原的方法称为约束的最小二乘方滤波,在IPT 中称为正则滤波,并且通过函数deconvreg 来实现。
在最小二乘复原处理中,常常需要附加某种约束条件。