UVVis原理及应用概述
- 格式:ppt
- 大小:4.81 MB
- 文档页数:139
紫外可见分光光度法实例解析一、原理分析UV-VIS依据电子跃迁光谱,通常分子轨道基态外层电子处在,当分子外层吸收紫外或者可见辐射后,从基态向激发态跃迁。
其中紫外光谱:200~400nm,可见400~780nm。
其定性依据是不同物质对不同波长吸光度不同,定量依据是朗伯比尔定律A= εbc 吸光度分子二、适用范围一般适用于有机物,尤其是含有发色光能团、大共轭体系如含有苯环的有机物的测定三、特点:灵敏度高、选择性好、准确度好、通用性强、操作简单、价格低廉缺点:远不如红外光谱好,很多化合物在紫外没有吸收或者吸收很弱,而且紫外光谱特征性不强。
可以用来检验一些具有大的共轭体系或者发色官能团,并作为其他方法的补充。
四、仪器组成:光源——单色器——狭缝——样品池——检测器五、准备工作实验开始前查相关文献确定显色剂,显色剂:将待测组分形成有色化合物反应类型:络合反应氧化还原反应取代反应缩合反应显色剂选择条件:(1)灵敏度(2)选择性(3)生色物质稳定(4)组成恒定(5)显色剂在测定波长处无明显吸收,有色化合物与显色剂颜色对比大六、实验仪器前期设定:由待测物质查阅相关文献,确定使用可见区还是紫外区,确定光源钨丝或者氢、氘。
由待测物质确定样品池采用紫外区的石英池或者可见区的玻璃池检测器选用光电倍增管达到最佳检测效果七、配置标准检测液、显色剂溶液、参比溶液、标准溶液标准溶液:由分析纯的待测物质配置而成的溶液参比溶液:若仅待测组分和显色剂反应产物有吸收,其他试剂无吸收,用水做参比若显色剂和其他试剂略有吸收,试液本身无吸收,用“试剂空白”(不加试样溶液)参比若待测试液有吸收,而显色剂无吸收,则用“试样空白”(不加显色剂)做参比一般都选用试剂空白,即八、样品前处理,制成相应的溶液,如果其中有干扰离子,则加入掩蔽剂进行掩蔽或者采用化学方法分离出干扰离子九、实验条件确定:(1)最大吸收波长确定取1ml的标准溶液,1ml显色剂配制成溶液,稀释、定容、差文献确定谱线大致范围,多次测定,选择有最大吸收时的波长定为最大吸收波长,并且和标线对比,确定其误差是否在允许范围内,适当控制吸光度在最适范围(2)显色剂用量确定分别取1ml标准液,不同体积显色剂配成溶液,稀释、定容、多次测定得到吸光度-显色剂用量曲线,选择使得曲线平缓的最低用量再增加0.5ml为最佳显色剂用量(设为a ml)(3)显色温度确定取分别取1ml标准液、和a ml的显色显色液,稀释定容,测量在相同时间,不同温度下的吸光度显色时间曲线,得到最适温度T0(4)显色时间的确定分别取1ml标准液、和a ml的显色显色液,稀释定容,恒温T0测量,分在测量得到吸光度-显色时间曲线。
紫外可见分光光度法的英文缩写紫外可见分光光度法的英文缩写是UV-Vis spectroscopy。
以下是一篇生动、全面且具有指导意义的文章,介绍紫外可见分光光度法(UV-Vis spectroscopy)的原理、应用以及实验步骤。
紫外可见分光光度法(UV-Vis spectroscopy)是一种常用的分析技术,旨在测量样品在紫外和可见光区域的吸收和透射。
通过测量样品溶液对特定波长的光的吸收程度,可以推断样品的化学组成、浓度和结构。
这项技术在化学、生物化学、环境科学等领域有着广泛的应用。
在UV-Vis分光光度法中,常用的仪器是UV-Vis分光光度计。
该仪器包括一个光源、一个样品室和一个光检测器。
光源通常是一种白炽灯或者氘灯,可以发射出可见光和紫外光。
样品室通常是一个透明的玻璃或石英池,用于容纳样品溶液。
光检测器可以测量样品溶液对光的吸收程度。
UV-Vis分光光度法的原理是根据比尔-朗伯-兰伯特定律(Beer-Lambert Law)。
该定律表明,在理想条件下,物质溶液吸光度与浓度成正比。
当光通过样品溶液时,物质吸收特定波长的光,吸收量与物质的浓度和路径长度成正比。
通过测量吸收量,可以得到样品溶液的浓度。
UV-Vis分光光度法可用于定量分析和定性分析。
在定量分析中,可以利用已知浓度的标准溶液构建标准曲线,从而确定未知样品的浓度。
在定性分析中,可以通过样品在不同波长下的吸收特性,判断样品的成分和结构。
进行UV-Vis分光光度法实验时,需要注意一些步骤。
首先,准备样品溶液,确保样品溶解彻底。
然后,调节分光光度计使其在零吸光度下进行基准校准。
接下来,将样品溶液装入样品室,并通过选择适当的波长和路径长度,测量吸光度,并记录数据。
最后,根据标准曲线或其他定量方法,计算样品的浓度。
UV-Vis分光光度法在各个领域有着广泛的应用。
在化学领域,它可用于分析有机化合物、无机化合物和金属离子的浓度。
在生物化学领域,它可用于研究蛋白质、核酸和酶等生物大分子的结构和浓度。