人教版七年级数学下册知识点归纳
- 格式:docx
- 大小:17.01 KB
- 文档页数:4
人教版新教材七年级下册数学复习重难点(考前必背)本文档旨在为七年级下册数学考试前的复提供重要知识点的梳理和总结,帮助学生有针对性地复,并提高考试成绩。
一、整数的加减运算1. 整数加法的规律:- 两个正整数相加,结果仍为正整数。
- 两个负整数相加,结果仍为负整数。
- 正整数与负整数相加,结果的符号由绝对值较大的整数决定。
2. 整数减法的规律:- 正整数减去正整数,结果可能为正整数、零或负整数。
- 负整数减去负整数,结果可能为正整数、零或负整数。
- 正整数减去负整数,结果的符号由绝对值较大的整数决定。
二、倍数与约数1. 倍数:- 若整数A能被整数B整除,那么A是B的倍数。
- 若整数n是整数m的倍数,那么m是n的约数。
2. 最大公约数:- 两个或多个整数公有的约数中最大的一个称为最大公约数。
3. 最小公倍数:- 两个或多个整数公有的倍数中最小的一个称为最小公倍数。
三、平方与阶乘1. 平方:- 一个数的平方是指该数与自身相乘的运算。
- 求一个数的平方可以使用乘法运算符(*)。
2. 阶乘:- 一个正整数n的阶乘是指小于等于n的所有正整数相乘的结果,用n!表示。
- 求一个数的阶乘可以使用循环结构。
四、分数的加减乘除运算1. 分数的相加、相减:- 分子相乘后相加(减),分母保持不变。
2. 分数的相乘:- 分子相乘,分母相乘。
3. 分数的相除:- 分子相乘,分母相乘。
五、平行线与相交线1. 平行线:- 两条直线永远不会相交的线称为平行线。
- 平行线上的任意一对夹角相等。
2. 相交线:- 两条直线在空间某一点相交而形成的角称为相交线。
- 相交线上的任意一对夹角互补,即相加为180°。
以上是人教版新教材七年级下册数学考前复习的重难点,请同学们针对这些知识点进行复习,并多做练习题,加深对知识的理解和掌握。
祝大家取得优异的考试成绩!。
新人教版七年级数学下册《实数》考点归纳及常有考题【知识重点】1、算术平方根:正数 a 的正的平方根叫做 a 的算术平方根,记作“a” .2、假如 x2 =a,则 x 叫做 a 的平方根,记作“±a”( a 称为被开方数) .3、正数的平方根有两个,它们互为相反数;0 的平方根是 0;负数没有平方根 .4、平方根和算术平方根的差别与联系:差别:正数的平方根有两个,而它的算术平方根只有一个.联系:( 1)被开方数一定都为非负数;( 2)正数的负平方根是它的算术平方根的相反数,依据它的算术平方根可以马上写出它的负平方根 .( 3) 0 的算术平方根与平方根同为 0.335、假如 x =a,则 x 叫做 a 的立方根,记作“a”( a 称为被开方数) .7、求一个数的平方根(立方根)的运算叫开平方(开立方).8.立方根与平方根的差别:一个数只有一个立方根,而且符号与这个数一致;只有正数和0 有平方根,负数没有平方根,正数的平方根有 2 个,而且互为相反数, 0 的平方根只有一个且为 0.9、一般来说,被开放数扩大(或减小)n 倍,算术平方根扩大(或减小)n 倍,比方25 5, 2500 50 .10、平方表:(自行完成)12= 62= 112= 162= 212 = 22= 72= 122= 172= 222 = 32= 82= 132= 182= 232 = 42= 92= 142= 192= 242 = 52= 102= 152= 202= 252 =题型规律总结:1、平方根是其自己的数是0;算术平方根是其自己的数是0 和 1;立方根是其自己的数是0 和± 1.2、每一个正数都有两个互为相反数的平方根,此中正的那个是算术平方根;任何一个数都有独一一个立方根,这个立方根的符号与原数同样.3、a自己为非负数,有非负性,即a≥ 0;a有意义的条件是 a≥ 0.、公式:⑴( a 2(≥);⑵ 3 a 3 a(a 取任何数) .4 ) =a a 0 =1 / 55、划分 (a)2=a(a≥0),与a2=a6.非负数的重要性质:若几个非负数之和等于 0,则每一个非负数都为 0【典型例题】1. 以下语句中,正确的选项是()A .一个实数的平方根有两个,它们互为相反数B.负数没有立方根C.一个实数的立方根不是正数就是负数D.立方根是这个数自己的数共有三个2. 以下说法正确的选项是()A .-2 是( -2) 2 的算术平方根B.3 是-9 的算术平方根C.16 的平方根是± 4 D. 27 的立方根是± 33. 已知实数 x, y 满足x 2+(y+1) 2=0,则 x-y 的值为多少?4.求以下各式的值9( 1)81;( 2)16;( 3)25 ;(4)( 4)25.已知实数x,y满足x 2+(y+1)2=0,则x-y等于6.计算( 1) 64 的立方根是.( 2)以下说法中:①3都是 27 的立方根,② 3 y3y,③ 64 的立方根是 2,④382 4 . 此中正确的有()A、1个 B 、2个 C 、3个 D 、4个7.易混淆的三个数(自行解析它们)223 3( 1)a(2)( a ) ( 3) a综合演练一、填空题1、()2的平方根是2、若a2 =25, b =3,则 a+b=3、已知一个正数的两个平方根分别是2a﹣2 和 a﹣ 4,则 a 的值是、34 = ___________ 5、若 m、 n 互为相反数,则m5 n =4_________ 、若 a 2 a,则 a______0 7 、若3x 7有意义,则 x 的取值范围是6 2,小于 10的整数有个、当 x _______ 时,x 3 有意义8、大于 - . 9 .______10、一个正数 x 的两个平方根分别是a+2 和 a-4 ,则 a= , x=.2 / 5111、当 x _______ 时, 2x3有意义.12、当 x _______ 时,1 x有意义 .二、选择题1. 9 的算术平方根是( )A .-3B .3C .±3D .812.以下计算正确的选项是( )A. 4=±2B .( 9)281=9 C.366D.9293.64 的平方根是( )A .±8B .±4C.± 2D .± 2 4.4 的平方的倒数的算术平方根是( )111A .4B .8C .-4D .4三、利用平方根解以下方程.1、( 1)( 2x-1 )2-169=0 ;(2)4(3x+1)2-1=0 ;四、解答题1、求 27的平方根和算术平方根 .2、计算 327164389的值4、若 a5、、 b 、 c 满足 a 3(5 b)2b cc 1 0,求代数式 a的值 .一、填空题: (每题 3 分,共 30 分 )1、如图 1,计划把河水引到水池 A 中,可以先引 AB ⊥CD ,垂足为 B ,而后沿 AB 开渠,则 能使所开 的渠最短,这样设计的依照是 ________________.2、如图 2,AB ∥CD ,∠ 1=39°,∠ C 和∠ D 互余,则∠ D=________,∠ B=________.3、如图3,直线 ba,与直线 c 订交,给出以下条件:①∠1=∠ 2;②∠ 3=∠ 6;③∠ 4+∠7=180°;④3 / 5∠5+∠ 3=180°,此中能判断 a∥ b 的是 _______________(填序号 ).4、把命题“等角的余角相等”改写成“假如 ,, ,那么 ,, ”的形式是 .5、如图 4,已知 AB ∥CD,直线 EF 分别交 AB 、CD 于点 E 、F,EG 均分∠ BEF ,若∠ 1=50°,则∠ 2 的度数为 _______________.6、定点 P 在直线 AB 外,动点 O 在直线 AB 上挪动,当 PO 最短时,∠ POA=_______,这时线段 PO所在的直线是AB 的___________,线段 PO 叫做直线 AB 的______________.7、如图 5,EF⊥AB 于点 F,CD⊥AB 于点 D, E 是 AC 上一点,∠ 1=∠ 2,则图中相互平行的直线是____________________.8、如图 6,已知 AB ∥CD∥ EF,则∠ x、∠ y、∠ z 三者之间的关系是 ___________.9、在以下说法中:⑴△ ABC 在平移过程中,对应线段必定相等;⑵△ ABC 在平移过程中,对应线段必定平行;⑶△ ABC 在平移过程中,周长保持不变;⑷△ ABC 在平移过程中,对应边中点的连线段的长等于平移的距离;⑸△ ABC 在平移过程中,面积不变,此中正确的有( )A 、⑴⑵⑶⑷B、⑴⑵⑶⑷⑸C、⑴⑵⑶⑸D、⑴⑶⑷⑸10、假如∠α与∠β的两边分别平行,∠α与∠β的 3 倍少 36°,则∠α的度数是 ( )A 、18°B、 126°C、18°或 126°D、以上都不对11、完成下边的证明:已知,如图, AB ∥ CD∥ GH,EG 均分∠ BEF, FG 均分∠ EFD 求证:∠ EGF=90°4 / 55 / 5。
人教版七年级数学下册知识点汇总第五章相交线与平行线相交线相交线垂线同位角、内错角、同旁内角平行线:在同一平面内,不相交的两条直线叫平行线定义:___________________________________________判定1 :同位角相等,两直线平行平行线及其判定平行线及其判定平行线的判定判定2 :内错角相等,两直线平行判定3 :同旁内角互补,两直线平行判定4 :平行于同一条直线的两直线平行性质1:两直线平行,同位角相等性质2:两直线平行,内错角相等平行线的性质性质3:两直线平行,同旁内角互补性质4:平行于同一条直线的两直线平行命题、定理平移、知识网络结构二、知识要点1、在同一平面内,2、在同一平面内, 两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
不相交的两条直线叫平行线。
如果两条直线只有-可编辑修改-一个公共点,称这两条直线相交;如相交线与平行线的两个角叫同位角。
图3中,共有对同位角:果两条直线没有公共点,称这两条直线平行。
3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的性质:邻补角互补。
如图1所示,与互为邻补角,_____ 与___ 互为邻补角。
____ + _ = 180 ° ;______ +____ = 180 ° ;_____ +____ = 180 ° ;____ +____ = 180 °。
4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。
对顶角的性质:对顶角相等。
如图1所示,与互为对顶角。
= ;=5、两条直线相交所成的角中,如果有一个是直角或90。
时,称这两条直线互相垂直,其中一条叫做另一条的垂线。
如图2所示,当=90。
时,丄o b垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
暑假补习针对性练习(七八年级知识点+重点章节练习题)第一部分:七八年级知识点人教版数学七、八年级知识点汇总人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容人教版七年级数学下册主要包含了相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据的收集、整理与描述六章内容人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。
人教版八年级下册主要包括了分式、反比例函数、勾股定理、四边形、数据的分析五章内容。
九年级数学(上)知识点人教版九年级数学上册主要包括了二次根式、二元一次方程、旋转、圆和概率五个章节的内容。
人教版九年级数学下册主要包括了二次函数、相似、锐角三角形、投影与视图四个章节的内容。
七年级上册人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容第一章 有理数一、知识框架二、知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数. (2)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.【注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数】(3)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 重点② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;【注意:绝对值的意义是数轴上表示某数的点离开原点的距离】(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;【注意:0没有倒数;若 a ≠0,那么a 的倒数是a1】 若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10、有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数; 【注意:零不能做除数,无意义即0a 】13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 如23叫2的3次幂,其中2是底数,3是指数。
的一元二次方程或不等式,然后求其解.需要注意的是,求解后还得根据题目的实际情况确定适当的值.例3某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?分析:此题只涉及盈利的涨价与否问题,可以设一个未知数(设每千克应涨价x元),涨价x元以后,每千克盈利为(10+x)(元),日销售减少量为x×20=20x(千克),每天可售出量为(500-20x)(千克).此时每天的盈利可表示为(10+x)×(500-20x).题目中指出使顾客得到实惠(即x尽量取较小值),又要保证每天盈利6000元,所以可以转化为求满足(10+x)×(500-20x)≥6000条件的x的最小值问题.解:设每千克应涨价x元,由题意可得每千克盈利:10+x(元),日销售量减少:x×20=20x(千克)日销售量为:500-20x(千克)据题意得(10+x)(500-20x)≥6000,解一元二次不等式得,5≤x≤10.因为题目中要求“使顾客得到实惠”,所以x应当尽量小,故而x=5.答:现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价5元.点评:该题是一元二次方程与不等式的结合问题,设一个未知数x即可,但用含有x 的式子表示其他量时容易出错,特别是涨价x元后每千克盈利是10+x元,而不是10x 元,一定要细心以避免出错.总之,列方程解应用题可以化逆向思维为正向思维,让解题更加容易.列方程解应用题的难点在于设未知数,以及如何用未知数表示其他量,再根据等量关系列出方程求解.最后还要重视方程解完后的检验环节,这样才能确保解题的准确率.相交线与平行线是平面几何的重点内容,是以后深入学习三角形、四边形等几何知识的基础.其中互余和互补的概念、平行线的性质与判定等都是考试中常考的重要内容.现对与相交线与平行线相关的常见考点进行归纳说明.考点一补角与余角的概念如果两个角的和是180°,那么称这两个角互为补角,其中一个角叫做另一个角的补角.类似地,如果两个角的和是90°,那么称这两个角互为余角,其中一个角叫做另一个角的余角.同角或等角的余角相等,同角或等角的补角相等.例1(1)如图1,已知:线段AB,延长线段AB到C,使AC=32AB,反向延长线段AB到D,使AD=2AB,①请画出图形;②若AB=4,计算CD的长度.(2)如图2,已知A、O、E三点在同一条直线上,∠1=∠2,且∠1和∠4互为余角.①∠2和∠3互余吗?为什么?②∠3和∠4有什么关系,为什么?《相交线与平行线》的考点归纳③∠3的补角是哪个角?若∠AOC:∠COE=2:7,请计算这个补角的度数.图1图2解:(1)①画出图形,如图3:D A B C图3②∵AC=32AB,AB=4,∴BC=12AB=2,又∵AD=2AB=8,∴CD=AD+AB+BC=8+4+2=14.(2)①∠2与∠3互余,∵∠1+∠4=90°,∴∠2+∠3=180°-(∠1+∠4)=90°,即∠2与∠3互余,②∠3=∠4,∵∠1+∠4=90°,∠1=∠2,由①∠2+∠3=90°,即∠3=∠4(等角的余角相等),③∠3的补角是∠AOD,若∠AOC:∠COE=2:7,又∵∠AOC+∠COE=180°,∴∠AOC=40°,∠COE=140°,又∵∠1=∠2=12∠AOC=20°,∴∠4=90°-∠1=70°(∠1与∠4互为余角),又∵∠AOD+∠4=180°,即∠AOD=180°-∠4=180°-70°=110°.评注:本题考查了余角、补角和两点间的距离以及角与角之间的关系.解答这类题目时,我们要熟悉线段和角的概念.考点二对顶角的定义及其性质若两个角有公共顶点,且它们的两边互为反向延长线,则这两个角互为对顶角.对顶角是两条直线相交所成的角,它们是成对出现的,若∠1和∠3为对顶角,则必有∠1=∠3;但反过来,若∠1=∠3,则∠1和∠3不一定是对顶角.例2如图4所示,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,则∠AOF等于().A.130°B.120°C.110°D.100°解:设∠BOE=α,∵∠AOD:∠BOE=4:1,∴∠AOD=4α,∵OE平分∠BOD,∴∠DOE=∠BOE=α,∴∠AOD+∠DOE+∠BOE=180°,∴4α+α+α=180°,∴α=30°,∴∠AOD=4α=120°,∴∠BOC=∠AOD=120°,∵OF平分∠COB,∴∠COF=12∠BOC=60°,∵∠AOC=∠BOD=2α=60°,∴∠AOF=∠AOC+∠COF=120°,故选B项.评注:解本题的关键是找到角与角之间的关系,然后运用方程思想解题.考点三垂线的性质两条直线相交所成的角中,若有一个为直角,则这两条直线互相垂直,其中一条叫做另一条的垂线,这两条直线互相垂直的交点叫垂足.垂线具有如下性质:①一条线段有无数条垂线;②连接直线外一点与直线上各点的所有线段中,垂线段最短;③经过直线或直线外一点,有且只有一条直线与已知直线垂直.例3在直线AB上任取一点O,过点O 作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是().A.60°B.120°C.60°或90°D.60°或120°分析:本题没有图形,OC、OD的位置不BAFEOCD图4确定,存在两种情况,画出图形,再分类讨论才能解题.O B AOBADDC C (1)(2)图5解:如图5(1)所示,∵OC ⊥OD ,∴∠COD =90°,∵∠AOC =30°,∴∠AOD =120°,∴∠BOD =60°;如图5(2),∵OC ⊥OD ,∴∠COD =90°,∵∠AOC =30°,∴∠AOD =90°-∠AOC =60°,∴∠BOD =120°.故答案选D 项.评注:正确画出示意图,灵活运用分类讨论思想及垂线的性质,才能顺利解答此题.考点四平行线的性质在同一平面内,两条直线若没有公共点,则这两条直线必为平行线.过直线外一点有且只有一条直线和已知直线平行.平行线具有如下性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补.例4如图6,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C =50°,则∠AED =().A.65°B.115°C.125°D.130°解:∵AB ∥CD ,∴∠C +∠CAB =180°,∵∠C =50°,∴∠CAB =180°-50°=130°,∵AE 平分∠CAB ,∴∠EAB =65°,∵AB ∥CD ,∴∠EAB +∠AED =180°,∴∠AED =180°-65°=115°,故选B 项.评注:本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图是解题的关键.考点五平行线的判定当两条直线被第三条直线所截,要判定这两条直线为平行线,可借助如下方法:①同一平面内,垂直于同一条直线的两条直线互相平行;②若同位角相等,则这两条直线平行;③若内错角相等,则这两条直线平行;④若同旁内角互补,则这两条直线平行.例5如图7所示,DE 、BE 分别为∠BDC ,∠DBA 的角平分线,且∠DEB =∠1+∠2.求证:(1)AB ∥CD ;(2)∠DEB =90°.D CABF E21图7证明:(1)以点E 为顶点,DE 为一边,在∠DEB 的内部作∠DEF =∠2.∵DE 为∠BDC 的平分线,∴∠2=∠EDC ,∴∠FED =∠EDC ,∴EF ∥CD ,∵∠FEB =∠DEB -∠DEF =∠DEB -∠2,∠1+∠2=∠DEB ,∴∠FEB =∠1,∵∠1=∠ABE ,∴∠FEB =∠ABE ,∴EF ∥AB ,又∵EF ∥CD ,∴∠CDF +∠DFE =180°,∴∠CDF +∠FBA =180°,∴AB ∥CD ;(2)∵AB ∥CD ,∴∠BDC +∠DBA =180°,又∵∠1=12∠DBA ,∠2=12∠BDC ,∴∠1+∠2=90°,∵∠1+∠2=∠DEB ,∴∠DEB =90°.评注:解答第(1)题时,平行线的性质和判定定理可以帮助我们转化角或找到角与角之间的关系,也有利于我们确定两条直线的位置关系;解答第(2)题时,我们要对条件进行综合分析,对结论进行转化.这是找寻思路、顺利解题的一般方法.6。
Ⅶ、假设a>0,b<0,a+b>0,那么a、-a、b、-b的大小关系是〔〕A、-a<b<-b<aB、-a<-b<b<aC、-b<a<-a<bD、-b<-a<a<bⅧ、当-1<a<0时,那么有〔〕A、1/a>aB、∣-a3∣>-a3C、-a>a2D、a3<-a2Ⅸ、如果x>2,那么以下四个式子中:①x2>2x②xy>2y③2x>x④1/x<1/2正确的个数是〔〕A、4个B、3个C、2个D、1个Ⅹ、假设x+y>x-y,y-x>y,那么以下式子正确的选项是〔〕A、x+y>0B、y-x<0C、xy<0D、y/x>0Ⅺ、如果关于x的方程x+2m-3=3x+7的解为不大于2的非负数,那么〔〕A、m=6B、m等于5,6,7C、5<m<7D、5≤m≤7Ⅻ、-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对任意的a、b,对应的代数式的值最大的是〔〕A、a+bB、a-bC、a+b2D、a2+b4、运用不等式的性质比较大小:例:ⅰ、制作某产品有两种用料方案:方案1是用5X A型钢板,7X B型钢板;方案2是用3X A型钢板,9X B型钢板。
A型钢板比B型钢板的面积大,从省料的角度考虑,应选哪种方案?〔用求差法比较大小〕ⅱ、设a>2,b>3,c>6,令M=abc,N=ab+bc+ac,那么M、N的大小关系是〔〕<提示:用作商比较法>A、M>NB、M<NC、M=ND、以上三种情况都有可能ⅲ、甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条〔a+b〕/2的价格把鱼全部卖出去,结果发现亏了钱,原因是〔〕A、a>bB、a<bC、a=bD、与a、b的大小无关ⅳ、a、b、c、d都是正实数,且a/b<c/d,比较b/(a+b)和d/(c+d)的大小。
〔提示:用求倒数法〕5、不等式与方程、方程组的结合:2x+y=1+3m例:ⅰ、方程组满足x+y<0,那么〔〕A、m>-1B、m>1C、m<-1D、m<1x+2y=1-mⅱ、方程x+2k=4(x+k)+1的解是正数,求k的取值X围。
第九章 不等式与不等式组一、知识结构图 二、知识要点 (一、)不等式的概念 1、不等式:一般地,用不等符号(“<”“>"“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。
不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围).4、解不等式:求不等式的解集的过程,叫做解不等式.5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。
规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。
(二、)不等式的基本性质⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。
用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。
用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 .用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式.(注:①传递性:若a >b ,b >c ,则a >c 。
一:人教版七年级数学知识点归纳(上册)第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a >⇔= ; 0a 1a a<⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
一、选择题1.下列各式计算正确的是( )A B = ±2 C = ±2 D . A 解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A 计算正确;故选:A .【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.2.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.3.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….4.下列实数220.010*******;; (相邻两个1之依次多一个0);2,其中无理数有( )A .2个B .3个C .4个D .5个B解析:B【分析】根据无理数、有理数的定义即可判定选择项.【详解】4=-,是有理数;3.14是有限小数,是有理数;227是分数,是有理数;,0.010010001(相邻两个1之依次多一个0)2,是无理数,共3个,故选:B .【点睛】本题考查了无理数的定义,注意无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.在0.010010001,3.14,π,1.51,27中无理数的个数是( ). A .5个B .4个C .3D .2个D解析:D【分析】 根据无理数的概念解题,找出无理数的个数即可,无限不循环小数称为无理数;【详解】在0.010010001,3.14,π,1.51,27中无理数有π共2个, 故选D .【点睛】本题考查了无理数的概念,正确掌握无理数的概念是解题的关键;6 )A .8B .8-C .D .± D 解析:D【分析】8=,再根据平方根的定义,即可解答.【详解】8=,8的平方根是±故选:D .【点睛】8=.7.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >->B .1a a a >->C .1a a a >>-D .1a a a ->> C 解析:C【分析】可以用取特殊值的方法,因为a >1,所以可设a=2,然后分别计算|a|,-a ,1a ,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a =, ∵2>12>-2, ∴|a|>1a>-a ; 故选:C .【点睛】 此类问题运用取特殊值的方法做比较简单.8.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- D 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.下列等式成立的是( )A .±1B =±2C 6D 3A 解析:A【分析】分别根据算术平方根、立方根的定义逐一判断即可.【详解】A .书写规范,故本选项符合题意;B.算术平方根只能是正数不能是负数,故本选项不合题意;C.立方根与被开方数符号一致,故本选项符合题意;D.33=27,27的立方根才等于3,故本选项不合题意.故选:A .【点睛】本题主要考查了算术平方根与立方根的定义,熟练掌握算术平方根的性质是解答本题的关键.10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误;③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确; ⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误; 故其中错误的说法的个数为6个.故选:B .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.二、填空题11.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-画图见解析【分析】先把各数化简在数轴上表示出各数再根据在数轴上右边的数总比左边的数大把这些数按从大到小的顺序用>连接起来【详解】解:在数轴上表示为:按从大到小的顺序用>连接为:【点睛】本题主要考查了解析:画图见解析,()239201272>-->>-->->- 【分析】先把各数化简,在数轴上表示出各数,再根据“在数轴上,右边的数总比左边的数大”把这些数按从大到小的顺序用“>”连接起来.【详解】解:3273-=-,()22--=,11--=-,93=,224-=-,在数轴上表示为:按从大到小的顺序用>()239201272>-->>-->->-. 【点睛】本题主要考查了实数的大小比较,解题的关键是准确在数轴上表示实数,并利用数轴对实数的大小进行比较.12.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …}, 无理数集合{ …}.见解析【分析】先求出立方根再根据整数负分数正有理数无理数的定义即可得【详解】解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,13.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.14.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3 解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题.15.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-16.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______.169【分析】根据一个正数的两个平方根互为相反数求出a 的值就可以算出这个正数【详解】解:解得∴这个正数是故答案是:169【点睛】本题考查平方根解题的关键是掌握平方根的性质解析:169【分析】根据一个正数的两个平方根互为相反数,求出a 的值,就可以算出这个正数.【详解】解:()27340a a -+-+=,解得3a =-,()23713⨯--=-,∴这个正数是()213169-=. 故答案是:169.【点睛】本题考查平方根,解题的关键是掌握平方根的性质.17.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:ab = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.(1)4a+b ;(2);(3)6a-3b-12【分析】(1)观察得到新运算等于第一个数乘以4加上第二个数据此列式即可;(2)根据新运算分别计算出与即可得到答案;(3)根据新运算分别化简再将ab 的值代解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】(1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算. 【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b )=4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.18.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。
初一人教版七年级下册数学完全平方公式知识点归纳总结一、完全平方公式的概念完全平方公式是数学中一种重要的恒等式,它描述了一个二次多项式如何表示为一个平方的形式。
具体地说,完全平方公式是形如a²±2ab+b²=(a±b)²的等式。
其中,a和b 是任意实数或代数式,它们可以是数字、字母、单项式或多项式。
二、完全平方公式的定义完全平方公式可以定义为:一个二次多项式,如果它可以表示为(a±b)²的形式,则称该二次多项式为完全平方公式。
其中,a和b可以是任意实数或代数式。
三、完全平方公式的性质唯一性:对于给定的a和b,完全平方公式(a±b)²是唯一的。
这意味着没有其他形式的二次多项式可以表示为完全平方。
展开性:完全平方公式可以展开为a²±2ab+b²的形式。
这是完全平方公式的一个重要性质,它允许我们将一个看似复杂的二次多项式简化为一个更简单的形式。
对称性:完全平方公式具有对称性,即(a+b)²=(b+a)²和(a-b)²=(b-a)²。
这意味着在完全平方公式中,a和b的位置可以互换而不影响公式的值。
四、完全平方公式的特点平方项:完全平方公式的第一项和最后一项都是平方项,即a²和b²。
这两项代表了公式中的主要部分,它们决定了公式的整体形状。
乘积项:完全平方公式的中间项是a和b的乘积的两倍,即±2ab。
这项是公式中的关键部分,它连接了平方项并使整个公式成为一个整体。
正负号:完全平方公式中的正负号取决于中间项是正是负。
如果中间项是正数,则公式为(a+b)²;如果中间项是负数,则公式为(a-b)²。
五、完全平方公式的规律二次项和一次项的关系:在完全平方公式中,二次项(a ²)和一次项(±2ab)之间存在密切的关系。
人教版七年级数学下册知识点归纳
第五章 平等线与相交线
1、同角或等角的余角相等,同角或等角的补角相等。
2、对顶角相等
3、判断两直线平行的条件:
1)同位角相等,两直线平行。(2)内错角相等,两直线平行。 3)同旁内角互补,两直
线平行。(4)如果两条直线都和第三条直线平行
4、平行线的特征:
(1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。(3)同旁内角互补,
两直线平行。
5、命题:
⑴命题的概念:
判断一件事情的语句,叫做命题。
⑵命题的组成
每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命
题常写成“如
果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”
开始的部分是结论。
6、平移
平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,
平移不改变物体的形状和大小。
(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形
状和大小完全相同。
(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。
连接各组对应点的线段平行且相等。
第六章 平面直角坐标系
1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种
有顺序的两个数组成的数对,叫做有序数对,记作(a,b)
2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。 (1).x轴上的点的
纵坐标为零;y轴上的点的横坐标为零。
(2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、
纵坐标互为相反数。
(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点
的纵坐标相同,则两点的连线平行于横轴。
4.点到轴及原点的距离
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方
再开根号;
在平面直角坐标系中对称点的特点:
1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。
3关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为
相反数。
各象限内和坐标轴上的点和坐标的规律:
第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)
x轴上的点纵坐标为0,y轴横坐标为0。
第七章 三角形
1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。
2、三角形三个内角的和等于180度。
3、直角三角形的两个锐角互余
4、三角形的三条角平分线交于一点,三条中线交于一点;三角形的三条高所在的直线交于
一点。
5、直角三角形全等的条件:
斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
(只要有任意两条边相等,这两个直角三角形就全等)。
6、三角形全等的条件:
(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
(2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
(4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
27、等腰三角形的特征:
(1) 有两条边相等的三角形叫做等腰三角形;
(2) 等腰三角形是轴对称图形;
(3) 等腰三角形顶角的平分线、底边上的中线、底边上的重合(也称“三线合一”),它们所
在的直线都是等腰三角形的对称轴。
(4)等腰三角形的两个底角相等。
(5)等腰三角形的底角只能是锐角。
9.三角形内角和为180°,三角形的一个外交等于与他不相邻的两个内角的和,三角形的一
个外角大于与它不相邻的任何一个内角。
多边形
1.有一些线段首位顺次相接组成的图形叫做多边形
2、多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做
多边形的外角。
3、连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
4、画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,那么这
个多边形就是凸多边形,否则就是凹多边形。
5.各个角都相等,各条边都相等的多边形叫做正多边形。
6、n边形的内角和等于(n-2)*180°
多边形的外角和等于360°
7、如果说四边形的一对角互补,那么另一组角也互补。
镶嵌
1.镶嵌也叫作密铺,指的是:用一些不重叠摆放的多边形把平面的一部分无缝隙的完全覆盖。
第八章 二元一次方程组
1、二元一次方程组的意义:含有两个未知数的方程并且所含未知项的最高次数是1,这样
的整式方程叫做二元一次方程。
把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。
有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的
项的次数都是一次,那么这样的方程组叫做二元一次方程组。
2、 二元一次方程组有两种解法,一种是代入消元法,一种是加减消元法.
代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,
再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分
别相加或向减,就能消去这个未知数,得到一个一元一次方程。
3、三元一次方程组:在3个方程组中,共含有3个未知数,且每个未知数的次数都是1次,
像这样的方程组叫做三元一次方程组.
第九章 不等式与不等式组
1、不等式:用不等号将两个解析式连结起来所成的式子。
2、不等式的最基本性质有:①如果x>y,那么y<x;如果y<x,那么x>y;②如果x>y,
y>z;那么x>z;③如果x>y,而z为任意实数,那么x+z>y+z;④ 如果x>y,z>0,
那么xz>yz;⑤如果x>y,z<0,那么xz<yz。
2、不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac
性质5:如果a>b>0,c>d>0,那么ac>bd. (可乘性)
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.当0
性质7不一定成立,如a取值28,b取值3,c取值19,则c不大于a
4、不等式组:几个含有相同未知数的不等式联立起来,叫做不等式组.
5、解不等式组,可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出来。
以两条不等式组成的不等式组为例,
①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的
解集,此乃“同小取小”
②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的
解集,此乃“同大取大”
③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。若x表示
不等式的解集,此时一般表示为a<x<b,或a≤x≤b。此乃“相交取中”
④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。
此乃“向背取空”
第十章 数据的收集、整理与描述
1、全面调查:考察全体对象的调查叫做全面调查,也叫普查。
2、抽样调查:只抽取一部分对象进行调查,然后根据数据推断全体对象的情况。要考察的
全体对象称为总体,组成总体的每一个考察对象称为个体,被抽取的那些个体组成一个样本,
样本中个体的数目称为样本容量。
3、直方图的绘制方法:①集中和记录数据,求出其最大值和最小值。数据的数量应在100
个以上,在数量不多的情况下,至少也应在50个以上。
②将数据分成若干组,并做好记号。分组的数量在5-12之间较为适宜。
③计算组距的宽度。用组数去除最大值和最小值之差,求出组距的宽度。
④计算各组的界限位。各组的界限位可以从第一组开始依次计算,第一组的下界为最小
值减去组距的一半,第一组的上界为其下界值加上组距。第二组的下界限位为第一组的上界
限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。
⑤统计各组数据出现频数,作频数分布表。
⑥作直方图。以组距为底长,以频数为高,作各组的矩形图。