柴油加氢工艺流程(精)
- 格式:ppt
- 大小:3.06 MB
- 文档页数:20
加氢工艺流程
《加氢工艺流程》
加氢工艺是一种重要的化工加工技术,用于将石油和天然气中的碳氢化合物加氢,以生产高附加值的产品,如汽油、柴油和润滑油。
加氢技术通过在高温和高压条件下,使氢气和碳氢化合物反应,从而去除其中的不饱和化合物。
加氢工艺的流程可以分为几个主要步骤:预处理、反应、分离和处理。
在预处理阶段,原料石油和天然气需要经过脱硫和脱氮的处理,以去除其中的硫化物和氮化合物,防止对加氢催化剂产生不利影响。
接着是加氢反应阶段,原料经过加热和加压后,与氢气在催化剂的作用下发生反应,产生饱和的碳氢化合物。
这些产物需要经过分离和处理,以得到所需的产品和回收未反应的氢气。
总的来说,加氢工艺流程是一种复杂的化工生产技。
一、装置简介1、装置组成装置组成:装置由反应部分(包括新氢、循环氢联合压缩机组)、分馏部分、干气脱硫部分、公用工程部分组成。
2、生产方案柴油加氢精制装置采用加氢精制催化剂DN200,以直馏柴油和催化裂化柴油混合油为原料,经过催化加氢反应进行脱硫、脱氢、烯烃饱和及部分芳烃饱和,生产精制柴油,保证柴油达到GB2522000轻柴油质量标准。
二、主要工艺技术路线1、原料油过滤为了防止放反应器因进料中的固体颗粒堵塞导致压降过大而造成的非正常停工,在装置内设置自动反冲洗过滤器,脱除原料油中大于25微米的固体颗粒。
2、原料油惰性气体保护因为原料油与空气接触会生成聚合物和胶质,为有效防止结垢,原料油缓冲罐采用脱硫燃料气气封。
3、高压空冷器前注水加氢过程中生成的H2S、NH3,在一定温度下会生成NH4HS结晶,沉积在空冷器管束中,导致系统压降增大。
因此在反应流出物进入空冷器前注入脱盐水来溶解铵盐结晶析出。
4、高压换热器采用双壳程、螺纹锁紧环形式,提高换热效率,减少换热面积,节省投资。
5、从工艺流程的优化、高效换热设备的应用、新型内构件的设计技术应用等多方面考虑,采用综合节能技术,降低装置的能耗。
6、采用炉前混氢方案,提高换热器效率和减缓加热炉结焦程度。
7、采用板焊结构热壁反应器。
反应器内件包括入口扩散器、分配盘、冷氢箱、出口收集器等,使进入反应器中催化剂床层的物流分布均匀,催化剂床层的径向温差小。
8、反应器入口温度通过调节加热炉燃料来控制,第二、第三床层入口温度通过调节急冷氢量来控制。
三、装置工艺流程原则工艺流程图附后,工艺流程叙述如下:1、反应部分原料油自装置外来,首先经原料油/低分油换热器(E1109)与低分油换热,然后通过原料油过滤器(F11101)进行过滤,除去原料中大于25μm的颗粒,过滤后的原料油进原料油聚结器脱水,然后进入原料油缓冲罐(V1101),再经加氢进料泵(P1101A/B)升压后,在流量控制下,与混合氢混合作为混合进料。
生物柴油加氢工艺流程全文共四篇示例,供读者参考第一篇示例:生物柴油是一种由植物油或动物油转化而来的燃料,被广泛应用于交通运输和工业生产中。
在生物柴油生产过程中,加氢工艺是一种重要的技术手段,可以提高生物柴油的品质和性能。
下面我们将介绍生物柴油加氢工艺流程及其原理。
一、生物柴油加氢工艺简介生物柴油加氢是一种通过催化剂作用将生物柴油中的不饱和化合物和杂质转化为饱和烃的过程。
这种工艺可以有效降低生物柴油的凝固点、改善燃烧性能和减少废气排放。
一般来说,生物柴油加氢包括催化裂化、沉淀脱硫、氢解等步骤。
1. 催化裂化催化裂化是生物柴油加氢的第一步,通过将原料与催化剂接触,在高温高压条件下,将大分子链的生物柴油分解为较小的碳氢化合物。
这个过程可以有效减少不饱和烃和杂质的含量,提高生物柴油的质量。
2. 沉淀脱硫沉淀脱硫是生物柴油加氢工艺的第二步,用于去除生物柴油中的硫化物。
硫化物是生物柴油中的一种有害物质,容易损坏催化剂和污染环境。
通过将生物柴油与脱硫剂反应,可以将硫化物转化为不溶于油中的硫酸盐或硫代硼酸盐,然后通过沉淀分离的方式将其去除。
3. 氢解1. 提高生物柴油的品质和性能,减少废气排放。
2. 可以降低生物柴油的凝固点,提高其在低温条件下的流动性。
3. 减少生物柴油的不饱和烃和杂质含量,减少燃料的积炭和系统堵塞。
4. 延长动力系统和催化转化器的使用寿命,降低维护成本。
生物柴油加氢工艺是一种有效的技术手段,可以提高生物柴油的品质和性能,减少废气排放,符合现代工业生产和环境保护的要求。
未来随着生物能源技术的不断发展,生物柴油加氢工艺将在全球范围内得到更广泛的应用。
第二篇示例:生物柴油是一种由植物油或动物油经过一系列化学反应加工而成的燃料,与传统石油燃料相比,生物柴油具有低碳排放、可再生资源等优点,因此备受关注。
而加氢工艺是生物柴油生产过程中的关键环节,通过加氢反应可以改善生物柴油的质量,提高其燃烧效率,减少有害物质排放。
中国石化股份有限公司荆门分公司企业标准100万吨/年柴油加氢装置工艺技术操作规程Q/JSH J0401·XX—20051 范围本规程主要规定了荆门分公司100万吨/年柴油加氢精制装置的工艺原理、流程、开停工操作法、岗位操作法及事故处理方案等内容。
本规程适用于荆门分公司100万吨/年柴油加氢精制装置的生产操作。
2 引用标准下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
Q/JSH G1101·01—2003 工艺技术操作规程管理标准3 工艺概述3.1 加氢精制的工艺原理加氢精制就是在一定的工艺条件下,通过催化剂的作用,原料油与H2接触,脱除原料油中的硫、氮、氧及金属等杂质,并使烯烃饱和以提高油品使用性能的过程。
3.1.1主要化学反应3.1.1.1 加氢脱硫硫是普遍存在于各种石油中的一种重要杂元素,原油中硫含量因产地而异,典型的含硫化合物如硫醇类RSH、二硫化物RSR’、硫醚类RSR’与杂环含硫化合物噻吩等。
加氢脱硫反应如下:3.1.1.2 加氢脱氮氮是天然石油中的一种重要元素,其中石油中的氮多以杂环芳香化合物的形式存在,也有少量如苯胺类非杂环化合物;及吡啶、吡咯、喹啉及其衍生物等双环、多环、杂环氮化物。
氮化物可分为碱性化合物和非碱性化合物,其中五员氮杂环的化合物为非碱性化合物,其余为碱性化合物。
在加氢过程中非碱性化合物通常转变为碱性化合物。
几种含氮化合物的氢解反应如下:3.1.3 加氢脱氧石油中的含氧化合物含量远低于硫、氮化合物,通常石油馏分中的有机氧化物以羧酸(如环烷酸)和酚类为主,醚类、羧酸、苯酚类、呋喃类。
3.1.4 加氢脱金属反应石油中一般含有金属组分,其含量因原油的产地不同而各异,其存在形式以金属络合物存在,它们的存在对炼制过程原料油的性质影响很大,金属组分以任何形式在催化剂上沉积都可以造成孔堵塞或催化活性位的破坏而导致催化剂失活,此外,在热加工中金属组分会促进焦炭的形成。
加氢操作规程第⼀章装置概况第⼀节装置简介⼀、装置概况:装置由中国⽯化集团公司北京设计院设计,以重油催化裂化装置所产的催化裂化柴油、顶循油,常减压装置⽣产的直馏柴油和焦化装置所产的焦化汽油、焦化柴油为原料,经过加氢精制反应,使产品满⾜新的质量标准要求。
新《轻柴油》质量标准要求柴油硫含量控制在0.2%以内,部分⼤城市车⽤柴油硫含量要求⼩于0.03%。
这将使我⼚的柴油出⼚⾯临严重困难,本装置可对催化柴油、直馏柴油、焦化汽柴油进⾏加氢精制,精制后的柴油硫含量降到0.03%以下,满⾜即将颁布的新《轻柴油》质量标准,缩⼩与国外柴油质量上的差距,增强市场竞争⼒。
该项⽬与50万吨/年延迟焦化装置共同占地⾯积为217m×103m即22351m2;装置建设在140万吨/年重油催化裂化装置东侧,与50万吨/年延迟焦化装置建在同⼀个界区内,共⽤⼀套公⽤⼯程系统和⼀个操作室。
本装置由反应(包括新氢压缩机、循环氢压缩机部分)、分馏两部分组成。
装置设计规模:120×104t/a。
⼆、设计特点:1、根据⼆次加⼯汽、柴油的烯烃含量较⾼,安定性差,胶质沉渣含量多的特点,本设计选⽤了三台⼗五组⾃动反冲洗过滤器,除去由上游装置带来的悬浮在原料油中的颗粒。
2、为防⽌原料油与空⽓接触氧化⽣成聚合物,减少原料油在换热器、加热炉炉管和反应器中结焦,原料缓冲罐采⽤氮⽓或燃料⽓保护。
3、反应器为热壁结构,内设两个催化剂床层,床层间设冷氢盘。
4、采⽤国内成熟的炉前混氢⼯艺,原料油与氢⽓在换热器前混合,可提⾼换热器的换热效果,减少进料加热炉炉管结焦,同时可避免流体分配不均,具有流速快、停留时间短的特点。
5、为防⽌铵盐析出堵塞管路与设备,在反应产物空冷器和反应产物/原料油换热器的上游均设有注⽔点。
6、分馏部分采⽤蒸汽直接汽提,脱除H2S、NH3,并切割出付产品⽯脑油。
7、反应进料加热炉采⽤双室⽔平管箱式炉,炉底共设有32台附墙式扁平焰⽓体燃烧器,⼯艺介质经对流室进⼊辐射室加热⾄⼯艺所需温度,并设有⼀套烟⽓余热回收系统,加热炉总体热效率可达90%。
加氢裂化工艺一、引言加氢裂化工艺是一种重要的炼油工艺,主要用于将重质石油馏分转化为高级汽油和柴油。
本文将详细介绍加氢裂化工艺的流程和设备组成。
二、加氢裂化工艺流程1. 原料预处理原料先经过蒸馏分离出各个馏分,然后将需要进行加氢裂化的重质馏分送入预处理装置。
预处理装置主要包括加热器、换热器和精密过滤器等设备,其作用是将原料加热至适宜温度,去除杂质和水分。
2. 加氢反应预处理后的原料进入反应器,与催化剂在高压下进行反应。
催化剂通常由铝酸盐、硅酸盐或钼酸盐等组成。
反应器内的温度通常在400-500℃之间,压力在20-30MPa之间。
加氢反应会使原料中的大分子链断裂,并与氢气发生反应生成较轻的烃类物质。
3. 分离和净化经过反应后的产物进入分离塔,塔内通过不同温度和压力的分离区间,将产物分为不同的组分。
其中,高级汽油和柴油是主要产品,其余产物可用于其他工艺或作为燃料。
产物中可能含有少量杂质和催化剂残留,需要通过净化装置进行处理。
4. 催化剂再生反应器中使用的催化剂在一定时间后会失效,需要进行再生。
催化剂再生主要包括焙烧、酸洗和还原等步骤。
焙烧将催化剂中的碳积聚物烧掉,酸洗去除催化剂表面的杂质,还原则是将氧化态的金属还原成金属原子。
三、加氢裂化工艺设备组成1. 反应器反应器是加氢裂化工艺中最重要的设备之一。
反应器通常由钢制成,内部涂有耐高温、耐腐蚀的陶瓷材料。
反应器通常具有自动控制系统和安全保护系统。
2. 分离塔分离塔是将产物分离为不同组分的关键设备。
分离塔通常由钢制成,内部涂有耐高温、耐腐蚀的陶瓷材料。
分离塔通常具有自动控制系统和安全保护系统。
3. 加热器加热器是将原料加热至适宜温度的设备。
加热器通常由钢制成,内部涂有耐高温、耐腐蚀的陶瓷材料。
加热器通常具有自动控制系统和安全保护系统。
4. 换热器换热器是将反应产生的废气或废水与进料进行换热的设备。
换热器通常由钢制成,内部涂有耐高温、耐腐蚀的陶瓷材料。
换热器通常具有自动控制系统和安全保护系统。
柴油加氢工艺原理可概括为:将柴油和催化剂(氢)反应到目标性质的过程。
通过调整反应条件,如温度、压力和氢油比,可以改变生成的柴油的成分和性质。
以下是对柴油加氢工艺原理的详细解释:
1. 反应机理:在柴油加氢工艺中,油品与氢气在催化剂表面发生还原反应,使碳链打开,氢原子被取代到新的位置,形成新的氢化分子。
这个过程有助于降低油品中的硫、氮和金属杂质含量,达到国标清洁柴油的要求。
2. 催化剂:柴油加氢催化剂是一种含金属的氧化物,如钴、钼、钨和钒等,通常与载体(如氧化铝或硅酸盐)结合在一起。
这些催化剂可以降低反应的活化能,加快反应速度,使油品分子更易于与氢气结合。
3. 温度和压力:温度和压力是柴油加氢工艺中的重要参数。
较高的温度可以提高反应速度,但也会使油品挥发损失。
压力通常需要保持在较高的水平,以确保氢气能够有效地与油品分子结合。
通过调整温度和压力,可以优化柴油的产率和质量。
4. 氢油比:氢油比(H/C)是影响柴油加氢工艺的重要因素。
适当的氢油比可以确保氢气有效地与油品分子结合,加快反应速度,并提高柴油的产率和质量。
5. 产品分布:柴油加氢工艺的产品分布可以通过调整反应条件(如温度、压力和氢油比)来实现。
通过优化这些条件,可以生产出具有特定组成和性质的柴油产品,如十六烷指数、硫含量和馏分组成等。
总之,柴油加氢工艺是一种通过在催化剂、适当的反应条件以及调整氢油比下将柴油与氢气反应以达到清洁柴油的目标性质的过程。
通过调整反应条件,可以控制生成的柴油的成分和性质,以满足不同应用的需求。
希望这个回答能帮助您理解柴油加氢工艺原理,如果您还有其他问题,欢迎随时向我提问。
加氢精制和加氢裂化介绍加氢精制和加氢裂化介绍一、加氢精制加氢精制主要用于油品精制,其目的是除掉油品中的硫、氮、氧杂原子及金属杂质,改善油品的使用性能。
由于重整工艺的发展,可提供大量的副产氢气,为发展加氢精制工艺创造了有利条件,因此加氢精制已成为炼油厂中广泛采用的加工过程,也正在取代其它类型的油品精制方法。
㈠加氢精制的主要反应加氢精制的主要反应有:1、加氢脱硫2、加氢脱氮3、加氢脱氧4、重质油加氢脱金属5、在各类烃中,环烷烃和烷烃很少发生反应,而大部分的烯烃与氢反应生成烷烃。
在加氢精制中,加氢脱硫比加氢脱氮反应容易进行,在几种杂原子化合物中含氮化合物的加氢反应最难进行。
例如,焦化柴油加氢精制时,当脱硫率达到90%的条件下,脱氮率仅为40%。
加氢精制产品的特点:质量好,包括安定性好,无腐蚀性,以及液体收率高等,这些都是由加氢精制反应本身所决定的。
㈡加氢精制工艺装置加氢精制的工艺流程因原料而异,但基本原理是相同的,如图3-10所示,包括反应系统、生成油换热、冷却、分离系统和循环氢系统三部分。
1、反应系统原料油与新氢、循环氢混合,并与反应产物换热后,以气液混相状态进入加热炉,加热至反应温度进入反应器。
反应器进料可以是气相(精制汽油时),也可以是气液混相(精制柴油时)。
反应器内的催化剂一般是分层填装,以利于注冷氢来控制反应温度(加氢精制是放热反应)。
循环氢与油料混合物通过每段催化剂床层进行加氢反应。
加氢反应器可以是一个,也可以是两个。
前者叫一段加氢法,后者叫两段加氢法。
两段加氢法适用于某些直馏煤油的精制,以生成高密度喷气燃料。
此时第一段主要是加氢精制,第二段是芳烃加氢饱和。
2、生成油换热、冷却、分离系统反应产物从反应器的底部出来,经过换热、冷却后进入高压分离器。
在冷却器前要向产物中注入高压洗涤水,以溶解反应生成的氨和部分硫化氢。
反应产物在高压分离器中进行油气分离,分出的气体是循环氢,其中除了主要成分氢外,还有少量的气态烃(不凝气)和未溶于水的硫化氢。
加氢裂化工艺流程介绍加氢裂化工艺是一种重要的炼油技术,用于将重质原油或重油转化为高质量的轻质烃产品,例如汽油和柴油。
这种工艺技术通过加氢处理和裂化反应,能够提高燃料的辛烷值,降低硫含量,改善产品的质量,并通过产生高附加值的烃产品而提高工艺收益。
加氢裂化工艺流程一般包括加氢、裂化和分离三个主要步骤。
下面将详细介绍加氢裂化工艺的流程及其各个步骤的作用。
第一步:加氢加氢是加氢裂化工艺中的关键步骤,其主要目的是通过加氢反应去除原油中的硫和氮等杂质,并减少原油中的重质分子。
在加氢反应器中,原油经过预处理后,与氢气一起在高温高压条件下进行反应,将硫和氮等杂质转化为硫化氢和氨气,并将部分重质分子进行加氢裂解,生成轻质烃产品。
加氢反应的温度一般在380°C到450°C之间,压力在20到70MPa之间,催化剂一般采用钼、镍、钯等金属的氧氮化物或硫化物。
经过加氢反应后,原油中的硫含量大大降低,产品的燃料辛烷值得到提高,提高了产品的质量。
裂化反应的温度一般在480°C到540°C之间,压力在0.5到3MPa之间,催化剂通常采用酸性固体催化剂,如沸石、石英等。
裂化反应通过热裂化和裂化反应的相结合,能够提高产品的轻质烃产率,并使得裂解的产品更符合市场需求。
第三步:分离在加氢裂化工艺中,分离是指将裂化产物中的汽油、柴油、溶剂油、润滑油和裂化气体等不同产品进行分离、提纯和回收利用的过程。
分离系统主要包括蒸馏塔、吸附塔、萃取塔等设备,通过不同的温度、压力、溶剂等条件,将不同产品从裂化产物中分离出来,使其符合市场需求,并提高产品的附加值和收益。
在加氢裂化工艺中,分离系统的设计和操作对产品质量和工艺经济性起着重要作用。
通过合理的分离工艺和操作方式,能够有效地提高产品的质量,降低生产成本,提高产值。
催化柴油加氢精制工艺综述发布时间:2021-05-28T14:30:15.240Z 来源:《科学与技术》2021年2月5期作者:王会崔帅[导读] 文章从加氢反应、过程催化剂和反应工艺三个部分对催化王会崔帅(通讯作者)云南工商学院摘要:文章从加氢反应、过程催化剂和反应工艺三个部分对催化柴油加氢精制工艺进行阐述。
加氢脱硫是加氢精制工艺的主要反应,催化剂分为主金属和助剂,根据不同的主金属添加不同的助剂用以提高催化剂的整体活性、选择性等。
我国柴油加氢精制工艺有柴油中压加氢改质技术(MHUG)、提高柴油十六烷值、降低柴油密度技术 (RICH)、催化柴油单段加氢处理脱硫脱芳技术(SSHT)、提高柴油十六烷值的MCI技术等。
关键词:催化; 柴油加氢; 精制前言加氢精制过程是以焦化馏分为原料,在一定温度(350-400℃)下进行脱硫、脱氮、脱氧、脱金属,同时是烯烃和芳烃饱和的一种加工过程。
该过程主要有加氢反应、裂化反应,反应产物有气体、汽油、柴油、蜡油。
通过加氢精制可以改善产品的安定性,提高柴油的十六烷值,降低胶质、酸值。
本文从氢解反应、催化剂和加氢工艺三个部分对催化柴油加氢精制工艺进行概述。
1.氢解反应1.1 含硫化合物的氢解反应在加氢精制的条件下,原油馏分中的硫化物进行氢解,转化为相应的烃和H2S。
反应进程中会产生多种中间产物,如硫醇、硫醚、二硫化物、环状化合物等。
硫醇、硫醚、二硫化物大多在比较缓和的条件下生成,反应过程中首先在C-S健、S-S健上发生断裂,生成的分子碎片再与氢原子发生化合反应。
环状化合物加氢脱硫比较困难,需要较苛刻的反应条件。
首先环中双键加氢饱和,然后发生断环反应,脱去硫原子。
或者杂环硫化物直接脱硫,例如二苯噻吩加氢脱硫生成苯分子。
2.2 含氧化合物的氢解反应石油及石油产品中含氧量很小,主要是环烷酸,二次加工产品中还有酚类等。
从动力学角度看,含氧化合物在加氢精制的条件下分解很快,对杂环氧化物,当有较多取代基时,反应活性较低。