数学建模 安全行车距离
- 格式:doc
- 大小:270.00 KB
- 文档页数:13
佛山科学技术学院上机报告课程名称数学建模上机项目汽车的刹车距离模型及黄灯持续时间分析模型专业班级姓名学号一、问题提出问题一:司机在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到车完全停住汽车行驶的距离称为刹车距离,车速越快,刹车距离越长。
(1)已知交通部门提供的一组汽车的刹车距离数据如下:车速29.3 44 58.7 73.3 88 102.7 117.3 实际刹车距离42 73.5 116 173 248 343 464分析刹车距离与车速之间具有怎样的关系,利用以上数据,求出具体的数学模型。
并在同一幅图中画图,对计算出的刹车距离与实际刹车距离进行比较。
问题二:(2)在城市道路的十字路口,都会设置红绿交通灯。
为了让那些正行驶在交叉路口或离交叉路口太近而又无法停下的车辆通过路口,红绿灯转换中间还要亮起一段时间的黄灯。
试建立十字路口黄灯亮的时间的数学模型。
二、问题分析问题一:汽车的刹车距离大致可分为反应距离和制动距离。
反应距离由反应时间和车速决定,反应时间取决于司机个人状况(灵巧、机警、视野等)和制动系统的灵敏性(从司机脚踏刹车板到制动器真正起作用的时间),对于一般规则可以视反应时间为常数,且在这段时间内车速尚未改变。
这里,我们取多数人的平均反应时间为0.75秒。
制动距离与制动器作用力(制动力)、车重、车速以及道路、气候等因素有关,制动器是一个能量耗散装置,制动力作的功被汽车动能的改变所抵消。
设计制动器的一个合理原则是,最大制动力大体上与车的质量成正比,使汽车的减速度基本上是常数,这样,司机和乘客少受剧烈的冲击。
至于道路、气候等因素,对于一般规则又可以看作是固定的。
问题二:设汽车行驶速度为法定速度0v ,一定的刹车距离为1S ,通过十字路口的距离为2S ,车身的长度为L ,则黄灯的时间应t 使距停车线1S 之内的汽车能通过路口,即021/)(v L S S t ++≈,如果考虑到司机有一定的反应时间,则黄灯持续的状态就也包括驾驶员的反应时间。
摘要汽车作为现代化的交通工具,即对人类社会文明的进步发挥了积极的作用,也对人类的健康和财产安全造成了负面效应。
在某些国家的一些司机培训课程中规定了一些规则,司机在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到汽车完全停止住汽车行驶的距离称为刹车,车速越快,刹车距离越长。
就要对刹车距离与车速进行分析,它们之间有怎样的数值关系?美国的某些司机培训课程中有这样的规则:在正常驾驶条件下车速每增加10英里/小时,后面与前面一辆车的距离应增加一个车身长度。
按照“一车长度准则”,车速每增加10mph,前后车距应增加一个车身的长度,这表明前后车距与车速成正比例关系。
试判断“一个车身准则”是否安全?所以我们还要对刹车距离与车速做更仔细的分析,通过各种分析(主要通过数据分析)以及各种假设,我们提出了更加合理的建议。
在道路上行驶的汽车保持足够安全的前后车距是非常重要的,为了自己的生命安全,也为了他人的生命安全,所以谨慎驾车。
关键词:刹车距离车速一车身长度准则汽车刹车距离一、问题提出司机在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到车完全停住,汽车行驶的距离称为刹车距离,车速越快,刹车距离越长,请问刹车距离与车速之间具有怎样的数量关系?二、问题分析问题要求建立刹车距离与车速之间的数量关系,一方面车速是刹车距离的主要影响因素,车速越快,刹车距离越长;另一方面,还有很多其他的因素会影响刹车距离,包括车型、车重、刹车系统的机0械状况、轮胎类型的状况、路面类型的状况、天气的状况、驾驶员的操作技术和身体状况等。
若果所有可能的因素都考虑到,就无法建立车速与刹车距离之间的数量关系,所以需要对问题提出合理的简化假设,使得问题可以仅仅考虑车速对刹车距离的影响,从而建立刹车距离与车速之间的函数关系。
需要提出哪几条合理的简化假设?可以假设车型、轮胎类型、路面条件都相同;假设汽车没有超载;假设刹车系统的机械状况、轮胎状况、天气状况以及驾驶员状况都良好;假设汽车在平直道路上行驶,驾驶员紧急刹车,一脚把刹车踏板踩到底,汽车在刹车过程没有转方向。
数学模型姓名:班级:学院:指导老师:摘要:司机在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到汽车完全停止住汽车行驶的离称为刹车距离,车速越快,刹车距离越长。
就要对刹车距离与车速进行分析,它们之间有怎样的数量关系?美国的某些司机培训课程中有这样的规则:在正常驾驶条件下车速每增加10英里/小时,后面与前面一辆车的距离应增加一个车身长度。
又云,实现这个规则的一种简便方法是所谓“2秒规则”,即后车司机从前车经过某一标志开始默数2秒钟后到达同一标志,而不管车速如何。
试判断“2秒规则”与上述规则是否一致?是否有更好的规则?并建立刹车距离的模型。
汽车在10英里/小时(约16千米/小时)的车速下2秒钟下行驶多大距离。
容易计算这个距离为:10英里/小时*5280英尺/英里*1小时/3600秒*2秒=29.33英尺(=8.94米),远远大于一个车身的平均长度15英尺(=4.6米),所以“2秒准则”与上述规则并不一样。
所以我们还要对刹车距离与速度做更仔细的分析,通过各种分析(主要通过数据分析)以及各种假设,我们提出了更加合理的准则,即“t秒准则”。
在道路上行驶的汽车保持足够安全的前后车距是非常重要的,人们为此提出各种五花八门的建议,就上面的“一车长度准则”,“2秒准则”以及我们提出的t秒准则。
这些准则的提出都是为了怎样的刹车距离与车速的关系来保证行驶的安全。
所以为了足够安全要做仔细的分析。
关键字:刹车距离;车速;t秒准则。
一问题分析问题要求建立刹车距离与车速之间的数量关系。
制定这样的规定是为了在后车急刹车情况下不致撞到前面的车,即要确定汽车的刹车距离。
刹车距离显然与车速有关,先看看汽车在10英里/小时(约16千米/小时)的车速下2秒钟下行驶多大距离。
容易计算这个距离为:10英里/小时*5280英尺/英里*1小时/3600秒*2秒=29.33英尺(=8.94米),远远大于一个车身的平均长度15英尺(=4.6米),所以“2秒准则”与上述规则并不一样。
数学建模汽车刹车距离1. 前言汽车刹车距离在车辆的安全行驶和驾驶过程中起着至关重要的作用。
单独考虑车辆的马力、制动能力和路面情况都是不够的,需要将这些因素综合考虑,以保证行驶的安全性。
本文通过建立模型,探究车辆刹车距离的影响因素,以及如何优化车辆的行驶效率。
2. 模型的建立在考虑汽车刹车距离时,需要综合考虑车辆的制动性能、车速、路面状态等多个因素。
为了更好地探究这些因素之间的关系,我们建立了如下的数学模型。
设汽车在行驶过程中的车速为v,制动的加速度为a,路面的摩擦系数为μ,刹车距离为d。
根据牛顿第二定律可得:$$F=ma$$其中F为刹车制动力,m为车辆质量,a为制动加速度。
由于制动力与车速、制动器摩擦系数均有关系,因此可以通过以上参数进行表达。
可得到如下公式:$$F=C_{f}+C_{r}mg(v)$$式中,Cf和Cr分别为车轮前后制动器产生的制动力,g(v)为与车速有关的函数,m为车辆质量。
在刹车的过程中,系统对车辆施加一定的制动力,车速逐渐降低,直到最终停止。
设t为刹车的时间,可得如下公式:$$d=\frac{1}{2}at^{2}+\frac{1}{2}vt$$式中,第一项为制动过程加速度造成的路程,第二项为刹车前车辆的行驶路程。
将制动加速度a代入上述公式,可以得到:代入刚才的F公式,可以得到:这便是本文研究的汽车刹车距离的数学模型。
从中可以看出,刹车距离与车速、制动力、摩擦系数等参数均有关系,需要综合考虑。
3. 模型的应用和分析在上一章节中,我们得到了汽车刹车距离的数学模型。
下面将具体分析模型中的各个参数。
3.1 制动加速度制动加速度是指行驶中车辆的减速度,即刹车踏板产生的力作用在车辆质量上所产生的减速度。
制动加速度越大,车速下降的速率就越快,刹车距离也就相应越短。
反之,制动加速度越小,刹车距离就越长。
3.2 车速3.3 摩擦系数摩擦系数是路面与轮胎之间的摩擦力系数。
摩擦系数越大,所产生的摩擦力也就越大,车辆制动效果就越好,刹车距离就相应更短。
汽车刹车距离问题数学建模汽车刹车距离是指当驾驶员踩下刹车踏板后,车辆从开始刹车到停下所需行驶的距离。
汽车刹车距离的计算是为了评估车辆的刹车性能和安全性能。
下面将介绍几种数学建模方法,用于计算汽车的刹车距离。
1. 牛顿第二定律建模方法:根据牛顿第二定律,力等于物体质量乘以加速度。
在刹车过程中,刹车力是指向相反方向的力,且大小与刹车系统的设计和工作状态有关。
刹车力可以表示为负的阻力力,即R = -μmg,其中μ是摩擦系数,m是车辆质量,g是重力加速度。
根据牛顿第二定律,可以得到刹车过程中的加速度为a = -μg。
刹车距离S可以通过速度v和加速度a之间的关系得到:v^2 = u^2 + 2aS,其中u是刹车前的速度。
将a代入该公式,可以计算得到刹车距离S。
2. 动力学模型建模方法:动力学模型将车辆作为一个动力学系统进行建模。
在刹车过程中,刹车系统提供的刹车扭矩将车辆减速,直到停下。
刹车扭矩可以表示为:M = r · F,其中M是刹车扭矩,r是车轮半径,F是刹车力。
根据动力学原理,车辆减速度a可以表示为:a = (M - F_r) / m,其中F_r是车辆的滚动阻力。
根据物理定律,可以得到刹车距离S:v^2 = u^2 - 2aS,其中u是刹车前的速度。
将a代入该公式,可以计算得到刹车距离S。
3. 统计建模方法:除了基于物理原理的建模方法外,还可以通过实际测试数据进行统计建模。
这种方法利用实际刹车测试数据,通过拟合函数来建立刹车距离和刹车速度之间的关系。
可以采用多项式拟合、指数函数拟合等方法来得到刹车距离的计算公式。
这种建模方法可以更直接地反映实际刹车距离与刹车速度之间的关系。
除了上述方法外,还可以考虑其他因素对刹车距离的影响,如路面状况、气候条件等。
这些因素可能对刹车性能产生重要影响,因此在建模过程中应该综合考虑。
总结起来,汽车刹车距离问题的数学建模可以基于牛顿第二定律、动力学模型和统计建模等方法来计算刹车距离。
2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):吉林医药学院参赛队员(打印并签名) :1. 于邦文2. 薛盈军3. 杨国庆指导教师或指导教师组负责人(打印并签名):霍俊爽(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):车道被占用对城市道路通行能力的影响摘要本文通过对城市中车道因交通事故被占用问题的分析,探讨了事故所处道路横断面的实际通行能力的变化过程,并依据事故路段车辆排队长度与实际通行能力、事故持续时间、路段上游车辆流量之间的关系,最后针对各个问题建立模型并求解。
汽车刹车距离模型美国的某些司机培训课程中有这样的规则:在正常驾驶条件下车速每增加10英里/小时,后面与前面一辆车的距离应增加一个车身长度。
又云,实现这个规则的一 种简便方法是所谓“2秒规则”,即后车司机从前车经过某一标志开始默数2秒钟后到达同一标志,而不管车速如何。
试判 断“2秒规则”与上述规则是否一致?是否有更好的规则?并建立刹车距离的模型。
,解:(1)计算车速10英里/小时2秒钟前进距离:英尺秒秒英尺d =10×5280英尺/3600秒×2秒=29.33英尺一个车身平均长度l=15英尺 说明车速10英里/小时时两规则并不一致。
(2)刹车距离模型刹车距离由反应距离和制动距离组成。
反应距离指从司机刹车到制动开始起作用汽车行驶距离。
模型假设{1}刹车距离d 等于反应距离1d 和制动距离2d 之和。
2)反应距离1d 与车速v 成正比,比例关系为反应时间1t 。
3)刹车时间使用最大制动力F ,F 作的工等于汽车动能的改变,且F 与车质量m 成正比。
模型建立 由假设2)11d t v =由假设3,2212Fd mv =,而F ma =,则2212d v a= 其中a 为刹车减速度,是常数,则22d kv = (2)则刹车距离与速度的模型为21v d t kv =+ (3)其中1t 根据经验取0.75秒,现利用实际数据来确定k 。
车速与刹车距离(第3列括号内为最大值)由20.75ii d kv =+,(i =1,2,3,4,5,6,7)及第2第三列数据有721741(0.75).0.0255ii i i ii dv v k v==-==∑∑则刹车距离与速度关系为:20.750.255d v v =+ (4)表1中第4列为计算的刹车距离,第5列是采用最大刹车距离时的刹车时间。
由(4)还可以得到刹车时间与车速关系:20.750.255t v v =+ (5)2030405060708090100110120050100150200250300350400450500速度(英尺/秒)距离(英尺)图1 实际(*)与计算刹车距离(实线)比较 表2 修正后t 秒规则。
数学建模 - 交通管理问题实验十交通管理问题【实验目的】1.了解微分方程的一些基本概念。
2.初步掌握微分方程模型建立、求解的基本方法和步骤。
3.学习掌握用MATLAB软件中相关命令求解常微分方程的解析解。
【实验内容】在城市道路的十字路口,都会设置红绿交通灯。
为了让那些正行驶在交叉路口或离交叉路口太近而又无法停下的车辆通过路口,红绿灯转换中间还要亮起一段时间的黄灯。
对于一名驶近交叉路口的驾驶员来说,万万不可处于这样进退两难的境地:要安全停车但又离路口太近;要想在红灯亮之前通过路口又觉得距离太远。
那么,黄灯应亮多长时间才最为合理呢?已知城市道路法定速度为v0,交叉路口的宽度为I,典型的车身长度统一定为L,一般情况下驾驶员的反应时间为T,地面的磨擦系数为?。
(假设I=9m,L=4.5m,?=0.2,T=1s)【实验准备】微分方程是研究函数变化过程中规律的有力工具,在科技、工程、经济管理、人口、交通、生态、环境等各个领域有着广泛的应用。
如在研究牛顿力学、热量在介质中的传播、抛体运动、化学中液体浓度变化、人口增长预测、种群变化、交通流量控制等等过程中,作为研究对象的函数,常常要和函数自身的导数一起,用一个符合其内在规律的方程,即微分方程来加以描述。
1.微分方程的基本概念未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。
如果未知函数是一元函数,称为常微分方程。
如果未知函数是多个变量的函数,称为偏微分方程。
联系一些未知函数的多个微分方程称为微分方程组。
微分方程中出现的未知函数的导数的最高阶数称为微分方程的阶。
若方程中未知函数及其各阶导数都是一次的,称为线性常微分方程,一般表示为y(n)+a1(t)y(n?1)+…+an?1(t)y'+an(t)y=b(t) (1)若(1)式中系数ai(t)(i=1,2,…,n)均与t无关,称之为常系数(或定常、自治、时不变)的。
建立微分方程模型要根据研究的问题作具体的分析。
2013-2014(2)建模实践论文 题目:安全行车距离 队员1:顾可人,0918180227 队员2:范 榕,0918180228 队员3:金重阳,0918180226 建模实践论文成绩考核表 学生姓名 顾可人 专业班级 R数学09-2 27
学生姓名 范榕 专业班级 R数学09-2 28
学生姓名 金重阳 专业班级 R数学09-2 26
题 目 安全行车距离
评 审 者 考 核 项 目 评分(每项 满分20分)
1 上课态度与遵守纪律的情况
2 完成任务的情况与水平(工作量) 3 论文质量(正确性、条理性、创造性和实用性) 4 技术水平(理论、分析、计算、验证以及创新性) 5 论文答辩(讲述的条理性、系统性,回答问题的正确性) 总评成绩 总评成绩等级(优、良、中、及格、不及格)
指导教师签字: 摘要 随着高速公路的发展和个人汽车拥有量的增大,高速公路交通事故量也随之增加。在诸多高速公路交通事故中,汽车追尾事故就占30%一60%,并且它造成的损失占高速公路交通事故急损失的60%。从而可见避免高速公路追尾事故的发生是我国急需解决的重要问题。导致高速公路追尾交通事故的主要原因是驾驶员未能保持安全的车间距离,所以预防高速公路追尾事故的有效措施之一,就是发明以高速公路最小安全行车车间距离数学模型为基础的高速公路追尾碰撞预防报警系统。我们将应用初等方法,揭示在公路上驾驶司机应该选择刹车的最佳时间和最佳距离。控制车距的影响因素:反应时间,车速,车身重,路面状况等。此模型将回答2S法则适不适用的问题,提供了司机在行驶中应注意的各种事项,有利于交通的安全与便捷。司机在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到汽车完全停止住汽车行驶的离称为刹车距离,车速越快,刹车距离越长。就要对刹车距离与车速进行分析,它们之间有怎样的数量关系?正常的驾驶条件对车与车之间的跟随距离的要求是每10英里的速率可以允许一辆车的长度的跟随距离,但是在不利的天气或道路条件下要有更长的跟随距离。做到这点的一种方法就是利用2秒法则,这种方法不管车速为多少,都能测量出正确的跟随距离。看着你面前的汽车刚刚驶过的一个高速公路上涂油柏油的地区或立交桥的影子那样的固定点。然后默数“一千零一,一千零二”,这就是2秒。如果你在默数完这句话前到达这个记号,那么你的车和前面的车靠的太近了。上述的方法做起来很容易,但是,它只是一个粗略的、模糊的判断,而且在一些意外情况它是没用的。我们需要是用更多的细节并清楚地解决和说明问题,这时我们需要对它做一个科学的数学分析和数学建模来应对各种可能的问题。
关键词:安全行车,反应距离,刹车距离,车速 一、问题重述 在中国, 高速公路既限制最低车速(50km/h),又限制最高车速(110km/h), 加之高速公路本身的结构特点,使行车速度可控制在一定的范围内, 又排除了横向交通的干扰, 我们把这种交通条件称为理想的交通条件,即在同一条车道上, 同向行驶的车辆以相同的速度、连续不断地行驶, 各车辆之间保持着一定的车头间距, 构成了一种稳定交通流。如果跟随车辆的车头间距过小, 则容易发生追尾碰撞事故; 如果车头间距过大, 又会影响道路的通行能力。所谓行车安全距离就是指在同一条车道上, 同向行驶前后两车间的距离( 后车车头与前车车尾间的距离) , 保持既不发生追尾事故, 又不降低道路通行能力的适当距离。
美国的某些司机培训课程中有这样的规则:在正常驾驶条件下车速每增加10英里/小时,后面与前面一辆车的距离应增加一个车身长度。又云,实现这个规则的一种简便方法是所谓“2秒规则”,即后车司机从前车经过某一标志开始默数2秒钟后到达同一标志,而不管车速如何。试判断“2秒规则”与上述规则是否一致?是否有更好的规则?并建立刹车距离的模型。汽车在10英里/小时(约16千米/小时)的车速下2秒钟下行驶多大距离。容易计算这个距离为:10英里/小时*5280英尺/英里*1小时/3600秒*2秒=29.33英尺(=8.94米),远远大于一个车身的平均长度15英尺(=4.6米),所以“2秒准则”与上述规则并不一样。
所以我们还要对刹车距离与速度做更仔细的分析,通过各种分析(主要通过数据分析)以及各种假设,我们提出了更加合理的准则,即“t秒准则”。
在道路上行驶的汽车保持足够安全的前后车距是非常重要的,人们为此提出各种五花八门的建议,就上面的“一车长度准则”,“2秒准则”以及我们提出的t秒准则。这些准则的提出都是为了怎样的刹车距离与车速的关系来保证行驶的安全。所以为了足够安全要做仔细的分析。 二、模型分析 制定这样的规定是为了在后车急刹车情况下不致撞到前面的车,即要确定汽车的刹车距离。刹车距离显然与车速有关,先看看汽车在10英里/小时(约16千米/小时)的车速下2秒钟下行驶多大距离。容易计算这个距离为:10英里/小时*5280英尺/英里*1小时/3600秒*2秒=29.33英尺(=8.94米),远远大于一个车身的平均长度15英尺(=4.6米),所以“2秒准则”与上述规则并不一样。为了判断规则的合理性,需要对刹车距离做教仔细的分析。一方面,车速是刹车距离的主要影响因素,车速越快,刹车距离越长;另一方面,还有其他很多因素会影响刹车距离,包括车型,车重,刹车系统的机械状况,轮胎类型和状况,路面类型和状况,天气状况,驾驶员的操作技术和身体状况等。 刹车距离由反应距离和制动距离两部分组成,前者指从司机决定刹车到制动器开始起作用汽车行驶的距离,后者指从制动器开始起作用到汽车完全停止行驶的距离。反应距离由反应时间和车速决定,反应时间取决于司机个人状况(灵巧、机警、视野等)和制动系统的灵敏性(从司机脚踏刹车板到制动器真正起作用的时间),对于一般规则可以视反应时间为常数,且在这段时间内车速尚未改变。制动距离与制动器作用力(制动力)、车重、车速以及道路、气候等因素有关,制动器是一个能量耗散装置,制动力作的功被汽车动能的改变所抵消.设计制动器的一个合理原则是,最大制动力大体上与车的质量成正比,使汽车的减速度基本上是常数,这样,司机和乘客少受剧烈的冲击.至于道路、气候等因素,对于一般规则又可以看作是固定的问题要求建立刹车距离与车速之间的数量关系。 为了建立刹车距离与车速之间的函数关系,需要提出哪几条合理的简化假设呢? 可以假设车型,轮胎类型,路面条件都相同;假设汽车没有超载;假设刹车系统的机械状况,轮胎状况,天气状况以及驾驶员状况都良好;假设汽车在平直道路上行驶,驾驶员紧急刹车,一脚把刹车踏板踩到底,汽车在刹车过程没有转方向。 这些假设都是为了使我们可以仅仅考虑车速对刹车距离的影响。这些假设是初步的和粗糙的,在建模过程中,还可能提出新假设,或者修改原有假设。 我们仔细分析刹车的过程,发现刹车经历两个阶段: 在第一阶段,司机意识到危险,做出刹车决定,并踩下刹车系统开始起作用,汽车在反应时间行驶的距离称为“反应距离”; 在第二阶段,从刹车踏板被踩下,刹车系统开始起作用,到汽车完全停止,汽车在制动过程“行驶”(轮胎滑动摩擦地面)的距离称为“制动距离”。 模型建立: V——车辆行驶速度(米/秒) T——制动所需要的时间(秒) m——车辆质量即车辆重量(千克) S——距离(米) a——车辆制动后的加速度,可以测量 驾驶员做出反应有一个时间T1,根据速度与位移的公式得到一个反应距离为:11SVT 根据力学牛顿定律和能量守恒定律:Fma 22/2FSmV 可知,制动后的制动距离为:22/2smVa 总的刹车滑行距离就为:
12SSS 模型假设: (1) 测量数据m与a真实可靠,前面的车采取通用的车辆行驶速率和车辆长度。 (2) 忽略天气、路面和车辆性能等原因。 (3) 驾驶员的反应时间正常。 (4) 制动过程持续无意外。 三、模型建立及求解 问题:安全行车距离 随着人们生活水平的不断提高,马路上行驶的车辆也越来越多,交通事故的发生也在不断提高。针对严重的道路交通情况,为了保障人民的生命安全,在遇到紧急情况时就需要司机能够迅速停下车辆,避免交通事故发生。安全行车距离是指在车辆行驶过程中两辆车之间必须保持的最小距离,以免在紧急刹车时两辆车相撞。 1.请你参考已知的数据(或自己收集资料)建立让车辆停止的安全距离的数学模型。 结合1的模型,给出速度是40公里/小时和80公里/小时的安全行车距离。 附件. 观察到的反应距离和刹车距离 速度(英里/小时) 司机的反应距离(英尺) 刹车距离(英尺) 20 22 18-22 50 55 105-131 65 72 196-245 80 88 334-418 25 28 25-31 35 39 47-58 55 61 132-165 70 77 237-295 30 33 36-45 45 50 82-103 75 83 283-353 60 66 162-202 40 44 64-80 识别问题:
同一车道前后跟随两车在行驶中, 当前车制动时, 其制动信号灯可能被后车及时发现, 也可能未被后车及时发现, 在这两种情况下的行车安全距离肯定是不一样的。在计算行车安全距离时, 我们认为驾驶员都是在注意力集中的情况下驾驶车辆的。如果前车突然制动停车, 后车即时发现前车制动信号灯亮后随之