轴的设计与校核

  • 格式:doc
  • 大小:167.50 KB
  • 文档页数:15

下载文档原格式

  / 15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.1 概述

轴是机械中非常重要的零件,用来支承回转运动零件,如带轮、齿轮、蜗轮等,同时实现同一轴上不同零件间的回转运动和动力的传递。1. 轴的分类

根据工作过程中轴的中心线形状的不同,轴可以分为:直轴和曲轴。根据工作过程中的承载不同,可以将轴分为:

•传动轴:指主要受扭矩作用的轴,如汽车的传动轴。

•心轴:指主要受弯矩作用的轴。心轴可以是转动的,也可以是不转动的。

•转轴:指既受扭矩,又受弯矩作用的轴。转轴是机器中最常见的轴。

根据轴的外形,可以将直轴分为光轴和阶梯轴;根据轴内部状况,又

可以将直轴分为实心轴和空。

2. 轴的设计

⑴ 轴的工作能力设计。

主要进行轴的强度设计、刚度设计,对于转速较高的轴还要进行振动稳定性的计算。

⑵ 轴的结构设计。

根据轴的功能,轴必须保证轴上零件的安装固定和保证轴系在机器中的支撑要求,同时应具有良好的工艺性。

一般的设计步骤为:选择材料,初估轴径,结构设计,强度校核,必要时要进行刚度校核和稳定性计算。校核结果如不满足承载要求时,则必须修改原结构设计结果,再重新校核。

3. 轴的材料

轴是主要的支承件,常采用机械性能较好的材料。常用材料包括:•碳素钢:该类材料对应力集中的敏感性较小,价格较低,是轴类零件最常用的材料。常用牌号有:30、35、40、45、50。采用优质碳钢时,一般应进行热处理以改善其性能。受力较小或不重要的轴,也可以选用Q235、Q255等普通碳钢。

•合金钢:对于要求重载、高温、结构尺寸小、重量轻等使用场合的轴,可以选用合金纲。合金钢具有更好的机械性能和热处理性能,但对应力集中较敏感,价格也较高。设计中尤其要注意从结构上减小应力集中,并提高其表面质量。

•铸铁:对于形状比较复杂的轴,可以选用球墨铸铁和高强度的铸铁。它们具有较好的加工性和吸振性,经济性好且对应力集中不敏感,但铸造质量不易保证。

2.1.2 轴的结构设计

根据轴在工作中的作用,轴的结构取决于:轴在机器中的安装位置和形式,轴上零件的类型和尺寸,载荷的性质、大小、方向和分布状况,轴的加工工艺等多个因素。合理的结构设计应满足:轴上零件布置合理,从而轴受力合理有利于提高强度和刚度;轴和轴上零件必须有准确的工作位置;轴上零件装拆调整方便;轴具有良好的加工工艺性;节省材料等。

1. 轴的组成

轴的毛坯一般采用圆钢、锻造或焊接获得,由于铸造品质不易保证,较少选用铸造毛坯。

轴主要由三部分组成。轴上被支承,安装轴承的部分称为轴颈;支承轴上零件,安装轮毂的部分称为轴头;联结轴头和轴颈的部分称为轴身。轴颈上安装滚动轴承时,直径尺寸必须按滚动轴承的国标尺寸选择,尺寸公差和表面粗糙度须按规定选择;轴头的尺寸要参考轮毂的尺寸进行选择,轴身尺寸确定时应尽量使轴颈与轴头的过渡合理,避免截面尺寸变化过大,同时具有较好的工艺性。

2. 结构设计步骤

设计中常采用以下的设计步骤:

1分析所设计轴的工作状况,拟定轴上零件的装配方案和轴在机器中的安装情况。

2根据已知的轴上近似载荷,初估轴的直径或根据经验确定轴的某

径向尺寸。

3根据轴上零件受力情况、安装、固定及装配时对轴的表面要求等确定轴的径向(直径)尺寸。

4根据轴上零件的位置、配合长度、支承结构和形式确定轴的轴向尺寸。

考虑加工和装配的工艺性,使轴的结构更合理。

3. 零件在轴上的安装

保证轴上零件可靠工作,需要零件在工作过程中有准确的位置,即零件在轴上必须有准确的定位和固定。零件在轴上的准确位置包括轴向和周向两个方面。

⑴ 零件在轴上的轴向定位和固定

常见的轴向定位和固定的方法采用轴肩、各种挡圈、套筒、圆螺母、锥端轴头等的多种组合结构。

•轴肩分为定位轴肩和非定位轴肩两种。利用轴肩定位结构简单、可靠,但轴的直径加大,轴肩处出现应力集中;轴肩过多也不利于加工。因此,定位轴肩多在不致过多地增加轴的阶梯数和轴向力较大的情况下使用,定位轴肩的高度一般取3~6mm,滚动轴承定位轴肩的高度需按照滚动轴承的安装尺寸确定。非定位轴肩多是为了装配合理方便和径向尺寸过度时采用,轴肩高度无严格限制,一般取为1~2mm。

•套筒定位可以避免轴肩定位引起的轴径增大和应力集中,但受到套筒长度和与轴的配合因素的影响,不宜用在使套筒过长和高速旋转的场合。

•挡圈的种类较多,且多为标准件,设计中需按照各种挡圈的用途和国标来选用。

⑵ 零件在轴上的周向定位和固定

常见的周向定位和固定的方法采用键、花键、过盈配合、成形联结、

销等多种结构。

键是采用最多的方法。同一轴上的键槽设计中应布置在一条直线上,如轴径尺寸相差不过大时,同一轴上的键最好选用相同的键宽。

4. 轴的结构工艺性

⑴从装配来考虑:应合理的设计非定位轴肩,使轴上不同零件在安装过程中尽量减少不必要的配合面;为了装配方便,轴端应设计45°的倒角;在装键的轴段,应使键槽靠近轴与轮毂先接触的直径变化处,便于在安装时零件上的键槽与轴上的键容易对准;采用过盈配合时,为了便于装配,直径变化可用锥面过渡等。

⑵从加工来考虑:当轴的某段须磨削加工或有螺纹时,须设计砂轮越程槽或退刀槽;根据表面安装零件的配合需要,合理确定表面粗糙度和加工方法;为改善轴的抗疲劳强度,减小轴径变化处的应力集中,应适当增大其过渡圆角半径,但同时要保证零件的可靠定位,过渡圆角半径又必须小于与之相配的零件的圆角半径或倒角尺寸。

.

2.1.3 轴的强度计算

进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法。

•对于只传递扭矩的轴(传动轴),按扭转强度条件计算;

•对于只承受转矩的轴(心轴),按弯曲强度条件计算;对于既受到转矩的作用,又受到弯矩作用的轴(转轴),应按弯扭合成强度条件计算;

•重要的轴还需按疲劳强度条件进行精确校核。对于瞬时过载很大或应力循环不对称性较为严重的轴,还应校核静强度。

1. 扭转强度计算

根据轴的转矩的大小,通过计算切应力来建立轴的强度条件。这种方法计算简便,但计算精度较低,主要用于初步估算轴径以便进行结构设计和以传递转矩为主的传动轴。

强度条件为:

•T——轴所传递的扭矩,

•Wr——轴抗扭截面模量,对实心轴轴的直径:

mm

•P——轴所传递的功率(kw)

•n——轴的转速(r/min);

•[τ]——许用扭转切应力(Mpa)。

•C——与材料有关的系数。当轴所受弯矩较大时,C值宜取较大值,反之相反。最小直径处有键槽时,单键轴径需增加3%,双键轴径需增加7%。

2. 弯扭合成强度计算