钻机履带底盘底架设计
- 格式:doc
- 大小:1.66 MB
- 文档页数:41
摘要旋挖钻机施工工艺在我国是近几年才推广使用的一种较先进的桩基施工工艺。
广泛应用于我国的公路、铁路、桥梁和大型建筑的基础桩施工。
本次设计主要对履带式液压旋挖钻机伸缩式履带行走装置分析与设计。
首先通过比较旋挖钻机的两种行走装置方案的特点,确定行走装置方案,其次根据旋挖钻机的行走阻力,确定发动机的功率,再次根据受力情况对行走装置进行结构设计,最后完成其CAD的装配体设计。
本设计中应用了计算机辅助制图软件CAD,减少了设计周期和设计失误,提高了设计效率;从而降低了设计成本,具有可行性。
关键词:伸缩式履带行走架;支撑梁;CAD目录1 绪论 (1)1.1旋挖钻机的介绍 (1)1.2旋挖钻机发展概况 (1)1.3本文所作的工作 (4)2 履带行走架的介绍 (6)2.1履带行走装置的特点 (6)2.2履带行走装置的构造 (6)2.3设计方案的选择 (11)3 履带行走架的设计计算 (12)3.1履带行走装置的设计计算 (12)3.2履带架伸缩梁强度的校核 (17)3.3螺纹连接的强度计算 (18)4 基于PRO/E伸缩式履带行走装置的建模 (22)4.1PRO/E的简介 (22)4.2支撑架的建模 (24)结论 (28)参考文献 (29)1 绪论1.1旋挖钻机的介绍旋挖钻机是一种适合在建筑基础工程中进行成孔作业的施工机械,具有装机功率大、输出扭矩大、轴向压力大、一机多用、机动灵活、施工效率高及环境污染小等特点,能够适应我国大部分地区的土壤地质条件,使用范围较广,其工作环境温度一般在-20°C~40°C之间。
配合不同钻具,可适应于干式(短螺旋)、湿式(回转斗)及岩层(岩心钻)条件下的成孔作业。
对干硬性黏土层采用无稳定液护壁的干式旋挖工法,而一般的覆盖层则采用静态泥浆护壁的湿式旋挖工法,旋挖钻机广泛应用于铁路、公路桥梁、市政建设、高层建筑等地基基础钻孔灌注桩工程。
1.2旋挖钻机发展概况1.2.1 国外发展概况旋挖钻机在二战以前首先在美国卡尔维尔特公司问世,二战之后在欧洲得到发展,欧洲的旋挖钻机首先是意大利土力公司从美国引入安装在载重汽车上和履带式起重机上的钻机,但这种钻机的动力头是固定式的,而且不能自行设置套管且难以适应硬质土层。
(作者单位:江苏中贵重工有限公司)◎王兴文履带式双臂锚杆钻车的研究与设计由于煤矿、巷道施工的特殊性,所以会经常采取钻爆法与机掘法,其中机掘法是最常用的一种方法,尤其是在履带式双臂锚杆钻车研发出来之后,该机械设备立刻成为相关施工作业的首选装备。
履带式双臂锚杆钻车,为全液压驱动,控制方式可以分为手动、半自动和全自动,现在该设备已经得到广泛的普及。
一、履带式双臂锚杆钻车概述1.履带式双臂锚杆钻车。
履带式双臂锚杆钻车,已经是煤矿、巷道施工中的重要工具,不但改善了支护效果、降低支护成本,还能加快施工速度,从而提高施工的效率,另外该设备对巷道的断面利用率非常高,所以在使用上有着明显的优势。
目前锚杆钻车有很多类型,一般会以锚杆钻机的数量进行划分,也就是单臂、多臂锚杆钻车,多臂又分为双臂和四臂等其中最常用的就是双臂锚杆钻车。
该设备结构简单,并且体积非常小,所以使用起来安全性更高,通过升降装置与钻臂变位机构配合动作,可以进行巷道内不同高度不同角度锚杆、锚索打孔的施工作业。
2.履带式双臂锚杆钻车设计原则。
为了能够满足各环境的施工作业,履带式双臂锚杆钻车在设计上要遵守很多原则,这样才能进行锚杆、支护作业,并且要针对施工现场做综合性的考虑。
首先是结构布局必须要紧凑,这是为了能够在狭小的地形内进行施工,而且在两台设备交叉作业时,也能更灵活的调整,避免相互之间无法错车的问题出现。
临时支护装置,能够有效保证相关人员的安全。
二、履带式双臂锚杆钻车使用优势1.施工安全系数得到提高。
任何机械设备在使用过程中,安全性永远都是第一位,履带式双臂锚杆钻车,在安全性上面有足够的保障。
由于设置了可移动、伸缩式的超前临时支护机构,所以施工人员会站在具有防护效果的顶板下进行作业,这样就提高了安全系数,避免施工人员站在空顶下作业,引发安全事故问题。
其次临时支护机构,还拥有托举网片的功能,很多没有使用锚杆钻机的施工单位,都是人员站在空顶下用手临时托举网片,这种方法无疑存在很大的安全隐患面,而托举网片的功能,可以有效避免人工托举网片,同时还减少了施工人员的工作量,当然最重要的是安全性比较高。
履带底盘操纵性能的仿真与优化设计引言在军事装备的发展中,履带底盘作为一种重要的机动装备,广泛应用于坦克、装甲车辆等各类战斗车辆中。
履带底盘的操纵性能对于车辆的机动能力和作战效能有着至关重要的影响。
现代仿真技术的发展为履带底盘操纵性能的优化设计提供了有力的工具和方法。
本文旨在探讨履带底盘操纵性能的仿真与优化设计,以提高军事装备的整体实施效果。
第一部分:履带底盘操纵性能的重要性1.1 发展背景随着现代战争形态的发展,对装备机动能力的要求越来越高。
履带底盘作为重型装备的基础部件之一,对于提供装备的高机动性和作战效能具有重要意义。
1.2 操纵性能的定义操纵性能是履带底盘在不同工况下实现机动、导航和控制的能力。
主要包括转弯半径、爬坡能力、通过性和稳定性等方面。
1.3 影响因素履带底盘操纵性能的好坏受到多种因素的影响,如传动系统、底盘布局、悬挂系统和转向系统等。
第二部分:履带底盘操纵性能的仿真方法2.1 仿真技术的应用仿真技术广泛应用于履带底盘操纵性能的研究中。
通过建立精确的数学模型,结合计算机仿真软件,可以对履带底盘在不同工况下的操纵性能进行仿真与评估。
2.2 仿真软件的选择目前,市面上存在多种针对履带底盘操纵性能仿真的软件,如ADAMS、SolidWorks等。
选择合适的仿真软件对于仿真分析的精确性和可靠性至关重要。
2.3 仿真参数的设置在进行仿真分析前,需要确定好各个参数的输入值,如车速、质量、转速等。
合理设置仿真参数可以更好地模拟实际工况下的履带底盘操纵性能。
第三部分:履带底盘操纵性能的优化设计3.1 优化设计的目标履带底盘操纵性能的优化设计旨在提高装备的机动性能和作战效能,减小对驾驶员的操纵难度,提高作战的灵活性和机动性。
3.2 优化设计的方法通过改变底盘的结构、悬挂系统的设计、转向系统的参数等,可以对履带底盘操纵性能进行优化。
同时,借助仿真软件进行仿真分析,可以更准确地评估设计方案的效果。
3.3 设计方案的验证将优化设计的方案进行实际试验和验证,通过对比实验数据和仿真结果,可以确定设计方案的有效性和可行性。
机械毕业设计07履带式机器人结构设计履带式机器人是一种具有履带作为移动器件的机器人,它具有良好的越障能力和稳定性,被广泛应用于军事、工业和服务等领域。
本文将针对履带式机器人的结构设计进行探讨。
一、机器人运动系统设计机器人运动系统是履带式机器人的核心部分,它主要由履带、驱动器和底盘组成。
履带是机器人的移动器件,可以提供稳定的运动和越障能力。
驱动器是将电能转化为机械能,并通过传动装置传输给履带的装置。
底盘是机器人的基座,用于支撑整个机器人的重量,并提供机器人的稳定性。
在履带的选择上,应根据机器人的工作环境和应用需求进行选择。
一般来说,宽厚的履带可以提供更好的越障性能,而窄的履带则可以提供更好的转向性能。
在驱动器的设计上,可以选择直流电机或步进电机作为驱动器,根据机器人的负载和速度要求来确定驱动器的功率和转速。
底盘的设计应考虑机器人的稳定性和重心位置,以保证机器人在工作过程中不易倾翻。
机器人的结构设计涉及到机器人的外形和内部组件的布局。
外形设计主要考虑机器人的美观性和易于操作,内部组件的布局设计则要考虑到机器人的功能和结构的紧凑性。
在外形设计上,可以根据机器人的应用环境和工作任务来设计机器人的外形。
例如,如果机器人需要在狭窄的环境中工作,可以设计紧凑的外形和可伸缩的结构,以便机器人能够更好地适应工作环境。
同时,外形设计也要考虑到机器人的易操作性,例如,可以添加手柄或触摸屏等操作界面,以便人类操作员能够更方便地控制机器人。
在内部组件的布局设计上,应考虑到机器人的功能和结构的紧凑性。
例如,电路板、传感器和控制器等组件应合理地布置在机器人的内部空间中,以提供机器人的功能,并减小机器人的体积。
同时,还应考虑到机器人的维护和维修的方便性,例如,为电池和电路板等设备添加易于拆卸和更换的设计。
总之,履带式机器人的结构设计需要综合考虑机器人的运动系统设计和机器人的外形和内部组件的布局设计。
通过合理的设计和选择,可以提高机器人的运动性能和工作效率,使机器人能够更好地应对各种工作场景和任务要求。
履带式移动机器人底盘机械结构设计作者:徐少飞来源:《消费电子·下半月》2014年第08期摘要:随着社会科学技术的飞速发展,在世界各国的生活和工业生产中,机器人技术被广泛应用在各种场合。
由于履带式机器人能够适应更为复杂的地理环境,承载能力更好,因此这种类型机器人被广泛使用。
本课题主要完成了履带式移动机器人底盘机械结构设计。
其目的在于提供一种能够更小型,负载能力更强,更适合恶劣环境的履带式移动机器人,实现履带式移动机器人在技术和工艺上的突破。
关键词:履带式移动机器人;结构设计;翻越中图分类号:TP242 文献标识码:A 文章编号:1674-7712 (2014) 16-0000-01移动机器人越来越广泛的被应用在社会的各个方面,但其仍然存在着体积庞大、承载能力比较差、对环境的适应力弱等缺点,在其实际应用中会大大影响使用的范围,而且直接影响测量结果等等。
因此,研究设计一种自主装卸运输的粉状物料机器人尤为重要。
一、履带式移动机器人底盘机械结构设计总体方案确定(一)履带式移动机器人底盘设计指标。
为了实现在复杂环境下作业,履带式移动机器人涉及得满足以下指标:移动速度:0.01-0.5m/s 电源:电池供电负重:≥20kg(二)履带式移动机器人运动机构的比较。
1.坦克履带式机械机构。
一般来说,大家认为前导轮中心线与水平面的高度也就是翻越障碍物的最大高度值,这就够需要左右两套电机驱动,机械结构较为简单,但其翻越障碍能力决定于前导轮中心线的高度,但是,假如想要机器人翻越更高的目标障碍,则需要增加水平面到前导轮的高度,因此整个机器的整体高度就会变得很大,不利于穿过诸如管道等类似的狭小的区域。
一般的中型机器人采用这种结构,如防暴,消防和救援机器人等。
2.前轮带摆臂机械机构。
前摆臂驱动轮与履带的主驱动轮有重叠结构,并且摆臂关节与水平面的夹角可以调整,因此可以在不增加机械整体高度的前提下提升爬升高度,只要提高前导轮的高度,使之具备相同的越障能力。
工程钻机—履带行走部分设计摘要工程机械是国民经济建设及国防工程施工中使用的重要技术装备,在国民经济建设中,尤其是城市建设、民用建筑、水利建设、道路构筑、机场修建、矿山开采、码头建造、农田改良中,工程机械起着越来越重要的作用。
我国的工程机械行业目前进入了一个高速发展阶段,推、挖、装、起重、铲土运输、筑路、农用机械等各种品种齐全并形成了系列化,各种工程机械虽然品种很多但基本上可划分为动力装置、行走装置和工作装置。
履带行走装置的挖掘机履带行驶系统包括车架。
行走装置和悬架三部分。
车架是整体骨架,用来安装所有的总成和部件。
行走装置用来支持机体,把动力装置传到驱动轮上的驱动转矩和旋转运动变为车辆工作与行驶所需的驱动力和速度。
悬架是车架和行走装置之间互相传力的连接装置。
本文在详述履带行走装置整体设计的基础上,又对驱动轮、拖链轮、导向轮、支重轮结构进行了设计,对一些关键部分进行了设计校核计算。
对各个轮的加工工艺有粗略的描述。
本文还详述了减速系统的设计包括轴、齿轮的选择及校核。
关键词:整体设计;驱动轮;支重轮;减速系统AbstractConstruction Machinery is a national economic construction and national defense construction in the importance of the use of technical equipment, construction in the national economy, especially in urban construction, civil construction, water conservancy, road building, airport construction, mining, pier construction, agricultural improvement, mechanical engineering is playing an increasingly important role. China's construction machinery industry has now entered a phase of rapid development, pushing, digging, loading, lifting, shoveling transport, roads, agricultural machinery and other species and formed a complete series, all kinds of construction machinery but although many species can basically be classified into power plant, operating equipment and working equipment.Crawler excavator crawler traveling device system includes the frame. Walking devices and suspension of three parts. Overall skeleton frame is used to install all the assemblies and components. Walking device used to support the body, the power plant came on the drive wheel torque and rotary movement into a vehicle required for work and driving the driving force and speed. Suspension is a walking frame and transmission device between the connected devices.In this paper, detailed walking track devices based on the overall design, butalso on the driving wheel, drag chain, guide wheel, supporting wheels structure design, for some of the key parts of the design verification calculation. For each round of processing technology has a rough description. This article also details the system design, including speed shaft, gear selection and verification.Keywords: the overall design, wheel, supporting wheels, slowing the Department目录摘要 (I)Abstract (II)第一章前言 (1)1.1国内履带式液压驱动底盘的现状 (1)第二章履带式行走装置的总体方案设计 (5)2.1履带式行走装置的特点 (5)2.2国内履带式液压驱动底盘的发展趋势 (5)2.3 产品的主要技术要求 (6)2.4总体设计依据 (7)2.5履带式行走装置的功用与组成 (7)2.5.1驱动轮 (8)2.5.2支重轮 (8)2.5.3导向轮 (9)2.5.4缓冲装置 (9)2.5.5托链轮 (9)2.5.6履带 (10)2.6考虑到的若干方案的比较 (11)2.7履带式行走装置的接地比压 (12)2.8运行阻力计算 (12)2.8.1履带支承长度L、轨距B和履带板宽度b (12)2.8.2履带的张紧度计算 (13)2.8.3节距 (13)2.8.4运行阻力计算 (13)2.9拟定和分析传动方案 (15)第三章传动方案的总体设计及各零部件的设计 (16)3.1选择液压马达 (16)3.2液压马达选取 (16)3.3液压泵的选取 (17)第四章驱动轮的设计 (18)4.1驱动轮的整体设计 (18)4.2 驱动轮的形状 (18)4.2.1 驱动轮的结构 (18)4.2.2 驱动轮齿数的设计计算 (18)4.3 驱动轮各部分结构尺寸 (19)4.4 轴的设计 (20)4.4.1 轴直径的确定 (20)4.4.2 心轴的强度校核 (21)4.5 轴承的计算 (22)4.6 驱动轮的加工工艺 (23)4.6.1 工艺方案 (23)4.6.2 工艺基准选择 (24)4.6.3 加工顺序的安排 (24)4.7 标准件的选择 (24)第五章支重轮和托链轮的设计及计算 (26)5.1 支重轮的直径 (26)F (26)5.1.1 支重轮的摩擦阻力"w5.1.2 支重轮的摩擦阻力 (26)5.1.3 支重轮轴强度的校核: (26)5.2 支重轮的加工工艺 (28)5.2.1选材及结构 (28)5.2.2 热处理 (29)5.2.3 表面喷丸 (30)5.2.4 压力机压铜套 (30)5.3托链轮轮及轴的强度校核 (31)5.3.1根据轴的结构图做出轴的计算简图 (31)5.3.2根据轴的计算简图做出轴的剪力图与弯矩图 (32)5.3.3确定材料的许用切应力和弯曲应力 (33)5.3.4 校核轴的剪切应力及弯曲强度 (33)第六章导向轮的整体设计 (35)6.1 导向轮的结构设计 (36)6.1.1导向轮的结构形状 (36)6.1.2轮轴的设计 (36)6.1.3轴径d的确定 (37)6.1.4 轴的强度校核 (38)6.3 导向轮外部尺寸 (39)6.3.1轮的尺寸 (39)6.4轴承的计算 (40)6.4.1验算轴承的平均压力P(单位./MPa) (40)6.4.2 验算轴承的pv (单位Mpa.m/s)值 (41)m s) (41)6.4.3 验算滑动速度v(单位/6.5 标准件的选择 (41)第七章履带的选择 (43)第八章履带张紧装置 (44)8.1结构形式和设计要求 (44)8.1.1结构形式 (44)8.1.2对张紧装置的设计要求是: (45)8.2 设计方法 (47)8.2.1履带的张紧度 (47)8.2.2缓冲弹簧的预紧力1H P 和最大弹性行程时的张力2H P 。
毕业设计说明书
橡胶履带车辆底盘设计(差速转向装置
设计(三行星排))
摘要
液压机械双功率流差速转向装置是目前履带车辆最为先进的转向装置,发动机功率在变速箱的输入轴上分流,一路功率流向变速箱,一路功率流向由变量泵、定量马达及其他控制元件组成的液压转向调速系统。
此种转向机构具有转向时平均速度不降低,转向工作效率高,左右履带的速度差能够无级调节,可实现由方向盘操纵进行精确的方向控制,机动性好等许多优点,有效的改善了履带车辆的转向性能。
此设计的关键就是实现双功率流履带车辆的平稳转向。
本文在参考东方红1302R橡胶履带拖拉机的一些参数的情况下,着重介绍了机械液压双功率流转向系统的差速转向机构的设计方案和工作原理,对差速转向机构中的元件,如齿轮、轴等进行了设计计算,并合理选取机构中所需的相关元件,使各元件间匹配合理,使其达到最佳的工作状态。
同时对设计的差速转向机构的性能进行初步分析计算,其结果表明此种设计方案参数匹配合理,能较好的满足履带车辆的转向要求。
关键词:履带车辆,液压机械双功率流差速转向机构,设计。
橡胶履带底盘橡胶履带底盘是一种广泛应用于各种工程机械和军事装备的关键组件。
它由橡胶履带带体、金属骨架和连接件等组成,具有良好的抗摩擦性、抗磨损性、耐老化性和冲击吸能性能。
本文将从结构设计、材料选择以及应用领域等方面对橡胶履带底盘进行详细介绍。
一、结构设计橡胶履带底盘的结构设计旨在提供良好的承载能力、运动性能和减震性能。
通常,橡胶履带底盘由若干个橡胶履带板和金属连接件组成。
橡胶履带板上有特殊的纹理设计,以增加与地面的摩擦力,提高牵引力和抗滑性能。
金属连接件用于连接橡胶履带板,并在运动中支撑和传递外界载荷。
此外,橡胶履带底盘还可以根据具体应用需求进行单、双层和多层结构的设计,以增加承载能力和稳定性。
二、材料选择橡胶履带底盘的材料选择对其性能和寿命起着关键作用。
在橡胶履带板的制造中,常用的材料有天然橡胶、合成橡胶和增韧橡胶等。
天然橡胶具有优异的抗磨损性和耐老化性能,但价格较高。
合成橡胶价格相对较低,但抗老化性能较差。
增韧橡胶是一种综合性能较好的橡胶材料,具有良好的抗磨损性能和抗老化性能。
对于金属连接件,通常采用高强度合金钢材料制造,以保证其承载能力和耐久性。
三、应用领域橡胶履带底盘广泛应用于各种工程机械和军事装备中。
在工程机械领域,橡胶履带底盘被应用于挖掘机、推土机、装载机、压路机等大型设备中。
其优异的抗磨损性和冲击吸能性能,使得机械设备能够在各种恶劣的工况下正常运行。
在军事装备中,橡胶履带底盘被广泛应用于坦克、步兵战车、自行火炮等装甲车辆中。
橡胶履带底盘能够提供优秀的通过性能,使装甲车辆能够在复杂地形和恶劣环境中灵活作战和快速行动。
四、发展趋势随着科技的不断进步和工程机械的高效化要求,橡胶履带底盘也在不断发展和创新。
首先,材料方面,新型高分子材料的应用将进一步提高橡胶履带底盘的性能和寿命,比如利用纳米技术改善橡胶材料的磨损性能。
其次,在结构设计方面,将更多的运用数值计算和仿真技术,优化橡胶履带底盘的结构,提高其承载能力和减震性能。