当前位置:文档之家› 2019-2020中考数学试卷及答案

2019-2020中考数学试卷及答案

2019-2020中考数学试卷及答案
2019-2020中考数学试卷及答案

2019-2020中考数学试卷及答案

一、选择题

1.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( )

A .

B .

C .

D .

2.在下面的四个几何体中,左视图与主视图不相同的几何体是( )

A .

B .

C .

D .

3.如图,将?ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )

A .66°

B .104°

C .114°

D .124°

4.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数

B .方差

C .平均数

D .中位数

5.定义一种新运算:1

a

n n

n

b

n x

dx a b -?=-?

,例如:222k

h

xdx k h ?=-?,若

m

252m

x dx --=-?

,则m =( )

A .-2

B .2

5

-

C .2

D .

25

6.下列图形是轴对称图形的有( )

A .2个

B .3个

C .4个

D .5个

7.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( )

A .

B .

C .

D .

8.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )

A .3.5

B .3

C .4

D .4.5

9.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是 ( )

A .

B .

C .

D .

10.如果关于x 的分式方程

11222ax x x

-+=--有整数解,且关于x 的不等式组03

22(1)

x a

x x -?>?

??+<-?的解集为x >4,那么符合条件的所有整数a 的值之和是( ) A .7

B .8

C .4

D .5

11.下列计算错误的是( )

A .a 2÷

a 0?a 2=a 4 B .a 2÷(a 0?a 2)=1 C .(﹣1.5)8÷(﹣1.5)7=﹣1.5

D .﹣1.58÷(﹣1.5)7=﹣1.5

12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折

D .9折

二、填空题

13.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.

14.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.

15.在函数3y x

=-

的图象上有三个点(﹣2,y 1),(﹣1,y 2),(1

2,y 3),则y 1,

y 2,y 3的大小关系为_____.

16.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与

点B 重合,那么折痕长等于 cm .

17.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____. 18.使分式

的值为0,这时x=_____.

19.已知(a -4)(a -2)=3,则(a -4)2+(a -2)2的值为__________.

20.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=4,BC=10,CD=6,则tanC=________.

三、解答题

21.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:

(Ⅰ)图1中a 的值为 ;

(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;

(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.

22.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN项部M的仰角为37°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M 的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)

23.已知抛物线y=ax2﹣1

3

x+c经过A(﹣2,0),B(0,2)两点,动点P,Q同时从原点出发

均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t秒

(1)求抛物线的解析式;

(2)当BQ=1

3

AP时,求t的值;

(3)随着点P,Q的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.

24.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:

抽取的200名学生海选成绩分组表

组别海选成绩x

A组50≤x<60 B组60≤x<70 C组70≤x<80 D组80≤x<90

E组90≤x<100

请根据所给信息,解答下列问题:

(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;

(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?

25.直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.

(1)求证:直线FG是⊙O的切线;

(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.B

解析:B

【解析】

解:A.不是轴对称图形,是中心对称图形,不符合题意;

B.既是轴对称图形,也是中心对称图形,符合题意;

C.不是轴对称图形,是中心对称图形,不符合题意;

D.不是轴对称图形,也不是中心对称图形,不符合题意.

故选B.

2.B

解析:B

【解析】

【分析】

由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.

【详解】

A、正方体的左视图与主视图都是正方形,故A选项不合题意;

B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;

C、球的左视图与主视图都是圆,故C选项不合题意;

D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;

故选B.

【点睛】

本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.

3.C

解析:C

【解析】 【分析】

根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =1

2

∠1,再根据三角形内角和定理可得. 【详解】

∵四边形ABCD 是平行四边形, ∴AB ∥CD , ∴∠ACD =∠BAC ,

由折叠的性质得:∠BAC =∠B′AC , ∴∠BAC =∠ACD =∠B′AC =

1

2

∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°; 故选C . 【点睛】

本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.

4.D

解析:D 【解析】 【分析】

根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】

由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故本题选:D. 【点睛】

本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.

5.B

解析:B 【解析】 【分析】

根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,

5211m

11

(5)25m x dx m m m m

---?-=-=

-=-,

则25

m =-

, 经检验,2

5

m =-是方程的解, 故选B. 【点睛】

此题考查了解分式方程,弄清题中的新定义是解本题的关键.

6.C

解析:C 【解析】

试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断. 解:图(1)有一条对称轴,是轴对称图形,符合题意;

图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意; 图(3)有二条对称轴,是轴对称图形,符合题意; 图(3)有五条对称轴,是轴对称图形,符合题意; 图(3)有一条对称轴,是轴对称图形,符合题意. 故轴对称图形有4个. 故选C .

考点:轴对称图形.

7.D

解析:D 【解析】 【分析】 【详解】

解:A 选项中,根据对顶角相等,得1∠与2∠一定相等; B 、C 项中无法确定1∠与2∠是否相等;

D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1. 故选:D

8.B

解析:B 【解析】 【分析】 【详解】

解:∵∠ACB =90°,∠ABC =60°, ∴∠A =30°, ∵BD 平分∠ABC ,

∴∠ABD =

1

2

∠ABC =30°, ∴∠A =∠ABD , ∴BD =AD =6,

∵在Rt △BCD 中,P 点是BD 的中点,

∴CP =

1

2

BD =3. 故选B .

9.A

解析:A 【解析】

从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近, 故选A .

10.C

解析:C 【解析】 【分析】

解关于x 的不等式组0322(1)

x a

x x -?>?

??+<-?,结合解集为x >4,确定a 的范围,再由分式方程

11

222ax x x

-+=--有整数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求出所有符合条件的值之和即可. 【详解】

由分式方程11

222ax x x

-+=--可得1﹣ax+2(x ﹣2)=﹣1 解得x =

2

2a

-, ∵关于x 的分式方程11

222ax x x

-+=--有整数解,且a 为整数 ∴a =0、3、4

关于x 的不等式组0322(1)x a

x x -?>?

??+<-?整理得4x a x >??

>? ∵不等式组0322(1)

x a

x x -?>?

??+<-?的解集为x >4

∴a≤4

于是符合条件的所有整数a 的值之和为:0+3+4=7

故选C . 【点睛】

本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.

11.D

解析:D 【解析】

分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可. 详解:∵a 2÷

a 0?a 2=a 4, ∴选项A 不符合题意; ∵a 2÷(a 0?a 2)=1, ∴选项B 不符合题意; ∵(-1.5)8÷(-1.5)7=-1.5, ∴选项C 不符合题意; ∵-1.58÷(-1.5)7=1.5, ∴选项D 符合题意. 故选D .

点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.

12.B

解析:B 【解析】 【详解】

设可打x 折,则有1200×10

x

-800≥800×5%, 解得x≥7. 即最多打7折. 故选B . 【点睛】

本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.

二、填空题

13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC 从而可得cos

∠OCB 的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC 由勾股定理得BC=OC ∴cos ∠OCB=故答案为【点睛】

解析:

2

【解析】 【分析】

根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值. 【详解】 ∵∠A =45°, ∴∠BOC=90° ∵OB=OC ,

由勾股定理得,OC ,

∴cos ∠OCB =

2OC BC ==

.

故答案为2

. 【点睛】

本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.

14.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键

解析:13k <<. 【解析】 【分析】

根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,

30k -<,即可求解;

【详解】

()223y k x k =-+-经过第二、三、四象限,

∴220k -<,30k -<, ∴1k >,3k <, ∴13k <<, 故答案为:13k <<. 【点睛】

本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.

15.y2>y1>y3【解析】【分析】根据图象上的点(xy )的横纵坐标的积是定

值k可得xy=k据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=

解析:y2>y1>y3.

【解析】

【分析】

根据图象上的点(x,y)的横纵坐标的积是定值k,可得xy=k,据此解答即可.

【详解】

解:∵函数y=-3

x

的图象上有三个点(-2,y1),(-1,y2),(

1

2

,y3),

∴-2y1=-y2=1

2

y3=-3,

∴y1=1.5,y2=3,y3=-6,

∴y2>y1>y3.

故答案为y2>y1>y3.

【点睛】

本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.

16.cm【解析】试题解析:如图折痕为GH由勾股定理得:AB==10cm由折叠得:AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB ∽△AGH∴∴∴G

解析:cm.

【解析】

试题解析:如图,折痕为GH,

由勾股定理得:AB==10cm,

由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,

∴∠AGH=90°,

∵∠A=∠A,∠AGH=∠C=90°,

∴△ACB∽△AGH,

∴,

∴,

∴GH=cm.

考点:翻折变换

17.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根

解析:-2

【解析】

【分析】

若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.

【详解】

∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根,

∴△=4-4(a+1)×3≥0,且a+1≠0,

解得a≤-2

3

,且a≠-1,

则a的最大整数值是-2.

故答案为:-2.

【点睛】

本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:

①当△>0时,方程有两个不相等的实数根;

②当△=0时,方程有两个相等的实数根;

③当△<0时,方程无实数根.

上面的结论反过来也成立.也考查了一元二次方程的定义.

18.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法

解析:1

【解析】

试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.

答案为1.

考点:分式方程的解法

19.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a

﹣4)(a ﹣2)+2(a ﹣4)(a ﹣2)=

解析:10 【解析】 【分析】

试题分析:把(a ﹣4)和(a ﹣2)看成一个整体,利用完全平方公式求解. 【详解】

(a ﹣4)2+(a ﹣2)2=(a ﹣4)2+(a ﹣2)2-2(a ﹣4)(a ﹣2)+2(a ﹣4)(a ﹣2) =[(a ﹣4)-(a ﹣2)]2+2(a ﹣4)(a ﹣2) =(-2)2+2×3 =10 故答案为10 【点睛】

本题考查了完全平方公式:(a±b)2=a 2±

2ab+b 2求解,整体思想的运用使运算更加简便. 20.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形 解析:

4

3

【解析】 【分析】

连接BD ,根据中位线的性质得出EF //BD ,且EF=1

2

BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可. 【详解】 连接BD

,E F Q 分别是AB 、AD 的中点

∴EF //BD ,且EF=

12

BD 4EF =Q 8BD ∴=

又Q 8106BD BC CD ===,, ∴△BDC 是直角三角形,且=90BDC ∠?

∴tanC=

BD DC =86=4

3. 故答案为:4

3

.

三、解答题

21.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.

【解析】

【分析】

【详解】

试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.

试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;

(2)、观察条形统计图得:

1.502 1.554 1.605 1.656 1.703

24563

x

?+?+?+?+?

=

++++

=1.61;

∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;

将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.

(3)、能;∵共有20个人,中位数是第10、11个数的平均数,

∴根据中位数可以判断出能否进入前9名;

∵1.65m>1.60m,∴能进入复赛

考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数22.人民英雄纪念碑MN的高度约为36.5米.

【解析】

【分析】

在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC 中,由ME=EC?tan∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.

【详解】

由题意得四边形ABDC、ACEN是矩形,

∴EN=AC=1.5,AB=CD=15,

在Rt△MED中,∠MED=90°,∠MDE=45°,

∴ME=DE,

设ME=DE=x,则EC=x+15,

在Rt△MEC中,∠MEC=90°,∠MCE=35°,

∵ME=EC?tan∠MCE,

∴x≈0.7(x+15),

解得:x≈35,

∴ME≈35,

∴MN=ME+EN≈36.5,

答:人民英雄纪念碑MN的高度约为36.5米.

【点睛】

本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.

23.(1)y=-2

3

x2-

1

3

x+2;(2)当BQ=

1

3

AP时,t=1或t=4;(3)存在.当t

1-+M(1,1),或当t

=3+M(﹣3,﹣3),使得△MPQ为等边三角形.

【解析】

【分析】

(1)把A(﹣2,0),B(0,2)代入y=ax2-

1

3

x+c,求出解析式即可;

(2)BQ=

1

3

AP,要考虑P在OC上及P在OC的延长线上两种情况,有此易得BQ,AP 关于t的表示,代入BQ=

1

3

AP可求t值.

(3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑△MPQ,发现PQ为一有规律的线段,易得OPQ为等腰直角三角形,但仅因此无法确定PQ运动至何种情形时△MPQ为等边三角形.若退一步考虑等腰,发现,MO应为PQ的垂直平分线,即使△MPQ为等边三角形的M点必属于PQ的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足△MPQ为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t的方程,考虑t的存在性.

【详解】

(1)∵抛物线经过A(﹣2,0),B(0,2)两点,

2

40,

3

2.

a c

c

?

++=

?

?

?=

?

,解得

2

,

3

2.

a

c

?

=-

?

?

?=

?

∴抛物线的解析式为y=-

2

3

x2-

1

3

x+2.

(2)由题意可知,OQ=OP=t,AP=2+t.

①当t≤2时,点Q在点B下方,此时BQ=2-t.

∵BQ=

1

3

AP,∴2﹣t=

1

3

(2+t),∴t=1.

②当t>2时,点Q在点B上方,此时BQ=t﹣2.

∵BQ =

13AP ,∴t ﹣2=1

3

(2+t ),∴t =4. ∴当BQ =

1

3

AP 时,t =1或t =4. (3)存在.

作MC ⊥x 轴于点C ,连接OM .

设点M 的横坐标为m ,则点M 的纵坐标为-23

m 2-1

3m +2.

当△MPQ 为等边三角形时,MQ =MP , 又∵OP =OQ ,

∴点M 点必在PQ 的垂直平分线上, ∴∠POM =

1

2

∠POQ =45°, ∴△MCO 为等腰直角三角形,CM =CO ,

∴m =-

23

m 2-1

3m +2,

解得m 1=1,m 2=﹣3.

∴M 点可能为(1,1)或(﹣3,﹣3). ①如图,

当M 的坐标为(1,1)时,

则有PC =1﹣t ,MP 2=1+(1﹣t )2=t 2﹣2t +2, PQ 2=2t 2,

∵△MPQ 为等边三角形, ∴MP =PQ , ∴t 2﹣2t +2=2t 2,

解得t 1=3-t 2=13-(负值舍去). ②如图,

当M 的坐标为(﹣3,﹣3)时, 则有PC =3+t ,MC =3,

∴MP 2=32+(3+t )2=t 2+6t +18,PQ 2=2t 2, ∵△MPQ 为等边三角形, ∴MP =PQ , ∴t 2+6t +18=2t 2,

解得t 1=333+,t 2=333-(负值舍去).

∴当t =1+3-时,抛物线上存在点M (1,1),或当t =333+时,抛物线上存在点M (﹣3,﹣3),使得△MPQ 为等边三角形. 【点睛】

本题是二次函数、一次函数及三角形相关知识的综合题目,其中涉及的知识点有待定系数法求抛物线,三角形全等,等腰、等边三角形性质及一次函数等基础知识,在讨论动点问题是一定要注意考虑全面分情形讨论分析. 24.(1)答案见解析;(2)a=15,72°;(3)700人. 【解析】

试题分析:(1)用随机抽取的总人数减去A 、B 、C 、E 组的人数,求出D 组的人数,从而补全统计图;(2)用B 组抽查的人数除以总人数,即可求出a ;用360乘以C 组所占的百分比,求出C 组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案. 试题解析:(1)D 的人数是:200﹣10﹣30﹣40﹣70=50(人), 补图如下:

(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为

360×=72°

(3)根据题意得:2000×=700(人),

答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.

考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图

25.(1)证明见解析(2)48

【解析】

【分析】

(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,继而得出∠GFC+∠OFC=90°,即可得出答案;

(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.【详解】

(1)连接FO,

∵ OF=OC,

∴∠OFC=∠OCF.

∵CF平分∠ACE,

∴∠FCG=∠FCE.

∴∠OFC=∠FCG.

∵ CE是⊙O的直径,

∴∠EDG=90°,

又∵FG//ED,

∴∠FGC=180°-∠EDG=90°,

∴∠GFC+∠FCG=90°

∴∠GFC+∠OFC=90°,

即∠GFO=90°,

∴OF⊥GF,

又∵OF是⊙O半径,

∴FG与⊙O相切.

(2)延长FO,与ED交于点H,

由(1)可知∠HFG=∠FGD=∠GDH=90°,

∴四边形FGDH是矩形.

∴FH⊥ED,

∴HE=HD.

又∵四边形FGDH是矩形,FG=HD,

∴HE=FG=4.

∴ED=8.

∵在Rt△OHE中,∠OHE=90°,

∴OH=22

OE HE

-=22

54

-=3.∴FH=FO+OH=5+3=8.

S四边形FGDH=1

2

(FG+ED)?FH=

1

2

×(4+8)×8=48.

(完整版)2019中考数学模拟试题附答案

2016中考数学信息试卷 一、选择题(每题3分,共24分) 1.6-的绝对值等于( ) A .6 B .1 6 C .1 6 - D .6- 2.下列计算正确的是( ) A .2 x x x += B. 2x x x ?= C.235()x x = D.32 x x x ÷= 3. 一个几何体的主视图和左视图都是正方形,俯视图是一个圆,那么这个几何体是( ) A .长方体 B .正方体 C .圆锥 D .圆柱 4.如图,已知⊙O 是△ABC 的内切圆,且∠ABC =50°,∠ACB =80°, 则∠BOC 是( ) A. 110° B. 115° C. 120° D. 125° 第4题 第7题 第8题 5.下列说法正确的是( ) A .要了解人们对“低碳生活”的了解程度,宜采用普查方式 B .一组数据3、4、5、5、6、7的众数和中位数都是5 C .随机事件的概率为50%,必然事件的概率为100% D .若甲组数据的方差是0.168,乙组数据的方差是0.034,则甲组数据比乙组数据稳定 6.圆锥的侧面积为8π ,母线长为4,则它的底面半径为( ) A .2 B .1 C .3 D .4 7.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB =45°,则折叠后重叠部分的面积为( ) A . 2cm 2 B . 22cm 2 C .3 2 cm 2 D . 3cm 2 8.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线 l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为 ( ) A .y=x 53 B .y=x 43 C .y=x 10 9 D .y=x 二、填空题(每题3分,共30分) 45° C B A

2019-2020年中考数学模拟试题(含答案)

2019-2020年中考数学模拟试题(含答案) (九年级备课组制) 一、选择题(3×7=21分) 1.-2的倒数是( ) A .12- B .1 2 C . 2 D .-2 2.下列运算正确的是( ) A .5510x x x += B .5510· x x x = C .5510()x x = D .20210x x x ÷= 3.下图中所示的几何体的主视图是( ) 4.不等式组? ??>->-030 42x x 的解集为( ) A .x >2 B .x <3 C .x >2或 x <-3 D .2<x <3 5、若一次函数y ax b =+的图象经过二、三、四象限,则二次函数2y ax bx =+的图象只可能是( ) A 、 B 、 C 、 D 、 6、如图,AB 是⊙O 的弦,OC 是⊙O 的半径,OC ⊥AB 于点D ,AB =16cm ,OD=6cm ,那么⊙O 的半径是( ) A 、5 cm B 、10 cm C 、20 cm D 、12 cm 7.如图,小明从点O 出发,先向西走40米,再向南走30米 到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( ) A .点A B .点B C .点C D .点D A . B . C . D .

二、填空题(7×3=21分) 8.分解因式:21x -= . 9.如图,直线a b ,被直线c 所截, 若a b ∥,160∠=°,则2∠= °. 10.2010年我国西南部发生特大干旱,5200万人饮水困难,5200万人用科学记 数法表示 人. 11.函数1 3 y x = -中,自变量x 的取值范围是 . 12.为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的“阳 光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,则图2中“乒乓球”部分占 (填百分数). 13.下面是一个简单的数值运算程序,当输入x 的值为2时,输出的数值 是 . 14.如图,点P 在AOB ∠的平分线上,若使AOP BOP △≌△, 则需添加的一个条件是 . (只写一个即可,不添加辅助线) 三、解答题 15、(本小题7分)先化简, A B P O 图1 图 2 输入x (2)?- 4+ 输出 1 2 c a b

2019-2020中考数学模拟试题(及答案)

2019-2020中考数学模拟试题(及答案) 一、选择题 1.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( ) A .1 个 B .2 个 C .3 个 D .4个 2.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ). A .7710?﹣ B .8 0.710?﹣ C .8710?﹣ D .9710?﹣ 3.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( ) A .平均数 B .中位数 C .众数 D .方差 4.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A . 15 4 B . 14 C . 1515 D . 417 17 5.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( ) A .2 B .4 C .22 D 2 6.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =- B .24y x =+ C .22y x =+ D .22y x =- 7.已知11 (1)11 A x x ÷+ =-+,则A =( )

人教版初三数学圆的测试题及答案

九年级圆测试题 一、选择题(每题3分,共30分) 1.如图,直角三角形A BC 中,∠C =90°,A C =2,A B =4,分别以A C 、BC 为直径作半圆,则图中阴影的面积为 ( ) A 2π- 3 B 4π-4 3 C 5π-4 D 2π-23 2.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶ 2∶3 C 3∶2∶1 D 3∶2∶1 3.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定 4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90° 5.在Rt △A BC 中,已知A B =6,A C =8,∠A =90°,如果把此直角三角形绕直线A C 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线A B 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶12 6.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216° 7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352 =+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含 8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对 9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么

历年全国中考数学试题及答案

班级 姓名 学号 成绩 一、精心选一选 1.下列运算正确的是( ) A.()11a a --=-- B.( ) 2 3624a a -= C.()2 22a b a b -=- D.3 2 5 2a a a += 2.如图,由几个小正方体组成的立体图形的左视图是( ) 3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球 D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=o ∠ ∠∠ B.123360++=o ∠ ∠∠ C.1322+=∠∠∠ D.132+=∠ ∠∠ 5.已知24221 x y k x y k +=??+=+?,且10x y -<-<,则k 的取值范围为( ) A.112 k -<<- B.102 k << C.01k << D. 1 12 k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4 y x = 的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >> C.b c a >> D.c a b >> 8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.2 1185580x = B.()2 11851580x -= C.( )2 11851580x -= D.()2 58011185x += 9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D. A B D C 3 2 1 第4题图 P 第9题图

2019-2020中考数学模拟试卷(及答案)

2019-2020中考数学模拟试卷(及答案) 一、选择题 1.下列计算正确的是() A.2a+3b=5ab B.(a-b)2=a2-b2C.(2x2)3=6x6D.x8÷x3=x5 2.如图是某个几何体的三视图,该几何体是() A.三棱柱B.三棱锥C.圆柱D.圆锥 3.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是() A.B. C.D. 4.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )

A.abc>0B.b2﹣4ac<0C.9a+3b+c>0D.c+8a<0 5.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面爬到顶点B,则它爬行的最短路程是() A.10B.5C.22D.3 6.下列命题中,真命题的是() A.对角线互相垂直的四边形是菱形 B.对角线互相垂直平分的四边形是正方形 C.对角线相等的四边形是矩形 D.对角线互相平分的四边形是平行四边形 7.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l: y=kx+43与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P 在线段OA上运动时,使得⊙P成为整圆的点P个数是() A.6B.8C.10D.12 8.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若 AD=6, 则CP的长为( ) A.3.5B.3C.4D.4.5 9.下列计算正确的是() A.a2?a=a2B.a6÷a2=a3 C.a2b﹣2ba2=﹣a2b D.(﹣ 3 2a )3=﹣ 3 9 8a 10.10+1的值应在() A.3和4之间B.4和5之间C.5和6之间D.6和7之间11.如图,菱形ABCD的对角线相交于点O,若AC=8,BD=6,则菱形的周长为()

初三数学圆测试题和答案及解析

九年级上册圆单元测试 一、选择题(本大题共10小题,每小题3分,共计30分) 1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( ) A.0个 B.1个 C.2个 D.3个 2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆 的位置关系是( ) A.外离 B.相切 C.相交 D.内含 3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( ) A.35° B.70° C.110° D.140° 4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( ) A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5 5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( ) A.42 ° B.28° C.21° D.20° 6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( ) A.2cm B.4cm C.6cm D.8cm 7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图

中阴 影部分的面积为( ) A. B. C. D. 8.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相 切,则满足条件的⊙C有( ) A.2个 B.4个 C.5个 D.6个 9.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程有实数 根,则直线与⊙O的位置关系为( ) A.相离或相切 B.相切或相交 C.相离或相交 D.无法确定 10.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A2B2C2的位置,设AB=,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为( ) A. B. C. D. 二、填空题(本大题共5小题,每小4分,共计20分) 11.(山西)某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包 装侧面,则需________________的包装膜(不计接缝,取3). 12.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经被攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅

2018年中考数学试卷及答案

2018四川高级中等学校招生考试 数 学 试 卷 学校: 姓名: 准考证号: 一、选择题(本题共30分,每小题3分) 第1-10题均有四个选项,符合题意的选项只有..一个. 1.如图所示,点P 到直线l 的距离是 A.线段P A 的长度 B. A 线段PB 的长度 C.线段PC 的长度 D.线段PD 的长度 2.若代数式 4 x x -有意义,则实数x 的取值范围是 A. x =0 B. x =4 C. 0x ≠ D. 4x ≠ 3.右图是某几何体的展开图,该几何体是 A.三棱柱 B.圆锥 C.四棱柱 D.圆柱 4.实数a,b,c,d 在数轴上的点的位置如图所示,则正确的结论是 A.4a >- B. 0ab > C. a d > D. 0 a c +> 5.下列图形中,是轴对称图形不是中心.. 对称图形的是 6.若正多边形的一个内角是150°,则该正方形的边数是 A.6 B. 12 C. 16 D.18

7.如果2210 a a +-=,那么代数式 2 4 2 a a a a ?? -? ?- ?? 的值是 A.-3 B. -1 C. 1 D.3 8.下面统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 根据统计图提供的信息,下列推断不合理 ...的是 A.与2015年相比,2016年我国与东欧地区的贸易额有所增长 B.2016—2016年,我国与东南亚地区的贸易额逐年增长 C. 2016—2016年,我国与东南亚地区的贸易额的平均值超过4 200亿美元 D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多 9.小苏和小林在右图的跑道上进行4×50米折返跑.在整个过程中, 跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的 对应关系如下图所示。下列叙述正确的是 A. 两个人起跑线同时出发,同时到达终点 B.小苏跑全程的平均速度大于小林跑全程的平均速度 C.小苏前15s跑过的路程大于小林15s跑过的路程 D.小林在跑最后100m的过程中,与小苏相遇2次

2019-2020成都市中考数学模拟试题(带答案)

2019-2020成都市中考数学模拟试题(带答案) 一、选择题 1.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A .94.610? B .74610? C .84.610? D .90.4610? 2.在下面的四个几何体中,左视图与主视图不相同的几何体是( ) A . B . C . D . 3.下列命题正确的是( ) A .有一个角是直角的平行四边形是矩形 B .四条边相等的四边形是矩形 C .有一组邻边相等的平行四边形是矩形 D .对角线相等的四边形是矩形 4.如图,在△ABC 中,AC =BC ,有一动点P 从点A 出发,沿A →C →B →A 匀速运动.则CP 的长度s 与时间t 之间的函数关系用图象描述大致是( ) A . B . C . D . 5.方程2 1 (2)304 m x mx --+=有两个实数根,则m 的取值范围( ) A .52 m > B .5 2 m ≤ 且2m ≠ C .3m ≥ D .3m ≤且2m ≠ 6.已知命题A :“若a 2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( ) A .a =1 B .a =0 C .a =﹣1﹣k (k 为实数) D .a =﹣1 ﹣k 2(k 为实数) 7.10+1的值应在( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间

8.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为( ) A .61 B .72 C .73 D .86 9.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( ) A .2 B .3 C .4 D . 10.某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为()0S V h h = ≠,这个函数的图象大致是( ) A . B . C . D . 11.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所

人教中考数学 圆的综合综合试题附答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.已知O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA , OB OC 5∴==, AB m 5==, OB OC AB ∴==, AOB ∴是等边三角形, AOB 60∠∴=,

1 ACB AOB 302 ∠∠∴==, 故答案为30; ()2①如图2,连接AO 并延长交 O 于D ,连接BD , AD 为O 的直径, AD 10∴=,ABD 90∠=, 在Rt ABD 中,AB m 6==,根据勾股定理得,BD 8=, AB 3 tan ADB BD 4 ∠∴= =, C ADB ∠∠=, C ∠∴的正切值为3 4 ; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E , AC BC =,AO BO =, CE ∴为AB 的垂直平分线, AE BE 3∴==, 在Rt AEO 中,OA 5=,根据勾股定理得,OE 4=, CE OE OC 9∴=+=, ABC 11 S AB CE 692722 ∴=?=??=; Ⅱ、当AC AB 6==时,如图4,

2020中考数学试卷及答案

2020中考数学试卷及答案 精心选一选(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在括号内. 相信你一定会选对!) 1、函数24-=x y 中自变量x 的取值范围是() A 、2>x B 、2≥x C 、2≠x D 、2

4、如图1,天平右盘中的每个砝码的质量都是1g ,则正视图左视图俯视图A A 图1 物体A 的质量m(g)的取值范围,在数轴上可表示为() 5、把分式方程 12121=----x x x 的两边同时乘以(x-2), 约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1

.1-(1-x)=x-2 D .1+(1-x)=x-2 6、在一副52张扑克牌中(没有大小王)任意抽取一张牌,抽出的这张牌是方块的机会是() A 、21 B 、41 C 、31 D 、0 7.将函数762++=x x y 进行配方正确的结果应为()A 2)3(2++=x y B 2)3(2+-=x y C 2)3(2-+=x y D 2)3(2--=x y 8、一个形式如圆锥的冰淇淋纸筒,其底面直径为cm 6, 母线长为cm 5,围成这样的冰淇淋纸筒所需纸片的面积是() A 、266cm π B 、230cm π C 、228cm π D 、B 0 A C D 9、某村的粮食总产量为a (a 为常量)吨,设该村粮食的人均产量为y (吨),人口数为x ,则y 与x 之间的函数图象应为图中的()10、在圆环形路上有均匀分布的四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存. 现要将所有产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为1∶2∶3∶5. 若运费与路程、运的数量成正比例,为使选定的工厂仓库储存所有产品时总的运费最省,应选的工厂是() A 、甲B 、乙 C 、丙D 、丁 二、细心填一填(本大题共有5小题,每 空4分,共20分.) 11、分解因式:3x 2-12y 2= . 12.如图9,D 、E 分别是∶ABC 的边AC 、AB 上的点,请你添加一个条件,使∶ADE 与∶ABC 相似.你添加的条件 甲乙丙丁

中山市2019年中考数学模拟试卷及答案

中山市2019年中考数学模拟试卷及答案 (全卷共120分,考试时间120分钟) 第Ⅰ卷 一、选择题(共10小题,每小题2分,共20分.在每小题给出的四个选项中,有且只有....一个是正确 的) 1.16的算术平方根为 A .±4 B .4 C .﹣4 D .8 2.某天的温度上升了-2℃的意义是 A .上升了2℃ B .没有变化 C .下降了-2℃ D .下降了2℃ 3.2017年4月,位于连云港高新开发区约10万平米土地拍卖,经过众多房地产公司的476轮竞价,最终成交价为20.26亿元人民币.请你将20.26亿元用科学计数法表示为 A .10 2.02610?元 B .9 2.02610?元 C .8 2.02610?元 D .11 2.02610?元 4.下图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的主视图是 5. 为了响应“精准扶贫”的号召,帮助本班的一名特困生,某班15名同学积极捐款,他们捐款的数额如下表. 关于这15名同学所捐款的数额,下列说法正确的是 A. 众数是100 B. 平均数是30 C. 中位数是20 D. 方差是20 6.不等式063≤ -x 的解集在数轴上表示正确的是 7.c b a ,, 为常数,且2 22)(c a c a +>- ,则关于x 的方程02 =++c bx ax 根的情况是 A B C D

A. 有两个相等的实数根 B. 有两个不相等的实数根 C. 无实数根 D. 有一根为0 8.将抛物线y =x 2 向左平移两个单位,再向上平移一个单位,可得到抛物线 A .y=(x -2) 2 +1 B .y=(x -2) 2 -1 C .y=(x+2) 2 +1 D .y=(x+2) 2 -1 9. 如图,直立于地面上的电线杆AB ,在阳光下落在水平地面和坡面上的影子分别是BC 、CD ,测得 BC =6米,CD =4米,∠BCD =150°,在D 处测得电线杆顶端A 的仰角为30°,则电线杆AB 的 高度为 A.2+2 3 B.4+2 3 C.2+3 2 D.4+3 2 10. 如图,直角三角形纸片ABC 中,AB=3,AC=4. D 为斜边BC 中点,第1次将纸片折叠,使点A 与点D 重合,折痕与AD 交于点P 1;设P 1D 的中点为D 1,第2次将纸片折叠,使点A 与点D 1重合,折痕与AD 交于P 2;设P 2D 1的中点为D 2,第3次将纸片折叠,使点A 与点D 2重合,折痕与AD 交于点P 3;…;设P n-1D n-2的中点为D n-1,第n 次将纸片折叠,使点A 与点D n-1重合,折痕与AD 交于点P n (n >2),则AP 6的长为 A. 125235? B. 9 52 53? C. 146235? D. 117253? 第Ⅱ卷 二、填空题(共6小题,每小题3分,共18分.) 11.在平面直角坐标系中,点P (m ,m-3)在第四象限内,则m 的取值范围是_______. 12.分解因式:x 3 -4x = .

中考数学圆试题及答案

0 1 2 3 4 5 0 1 2 3 4 5 B . C . 一.选择 1. (2009 年泸州)已知⊙O 1 与⊙O 2 的半径分别为 5cm 和 3cm ,圆心距 020=7cm ,则两圆的位置关系为 A .外离 B .外切 C .相交 D .内切 2. (2009 年滨州)已知两圆半径分别为 2 和 3,圆心距为 d ,若两圆没有公共点,则下列结论正确的是( ) A . 0 < d < 1 B . d > 5 C . 0 < d < 1或 d > 5 D . 0 ≤ d < 1 或 d > 5 3.(2009 年台州市)大圆半径为 6,小圆半径为 3,两圆圆心距为 10,则这两圆的位置关系为( ) A .外离 B .外切 C.相交 D .内含 4.(2009 桂林百色)右图是一张卡通图,图中两圆的位置关系( ) A .相交 B .外离 C .内切 D .内含 5.若两圆的半径分别是 1cm 和 5cm ,圆心距为 6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离 6(2009 年衢州)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C .4 D .3 7.(2009 年舟山)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C .4 D .3 8. .(2009 年益阳市)已知⊙O 1 和⊙O 2 的半径分别为 1 和 4,如果两圆的位置关系为相交,那么圆心距 O 1O 2 的 取值范围在数轴上表示正确的是 0 1 2 3 4 5 0 1 2 3 4 5 A . D . 9. (2009 年宜宾)若两圆的半径分别是 2cm 和 3cm,圆心距为 5cm ,则这两个圆的位置关系是( ) A. 内切 B.相交 C.外切 D. 外离 10.. (2009 肇庆)10.若⊙O 与 ⊙O 相切,且 O O = 5 ,⊙O 的半径 r = 2 ,则⊙O 的半径 r 是( ) 1 2 1 2 1 1 2 2 A . 3 B . 5 C . 7 D . 3 或 7 11. .(2009 年湖州)已知⊙O 与 ⊙O 外切,它们的半径分别为 2 和 3,则圆心距 O O 的长是( ) 1 2 1 2 A . O O =1 B . O O =5 C .1< O O <5 D . O O >5 1 2 1 2 1 2 1 2

【必考题】中考数学试题(及答案)

【必考题】中考数学试题(及答案) 一、选择题 1.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( ) A .5cm B .10cm C .20cm D .40cm 2.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( ) A .2个 B .3个 C .4个 D .5个 3.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( ) A .2 B .3 C .5 D .7 4.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A . B . C . D . 5.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为 ( ) A .﹣3 B .﹣5 C .1或﹣3 D .1或﹣5 6.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( )

A .110° B .125° C .135° D .140° 7.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( ) A . B . C . D . 8.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( ) A .10° B .15° C .18° D .30° 9.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=o ,则GAF ∠的度数为( ) A .110o B .115o C .125o D .130o 10.如图,在半径为13的O e 中,弦AB 与CD 交于点E ,75DEB ∠=?,6,1AB AE ==,则CD 的长是( ) A .26 B .10 C .211 D .4311.cos45°的值等于( ) A 2 B .1 C 3 D .22 12.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )

2019年重庆市中考数学模拟试题(1)(最新整理)

3 3 ? ( , ) 重庆市2019 年初中毕业暨高中招生考试 数学模拟试卷(一) (全卷共四个大题,满分150 分,考试时间120 分钟) 注意事项: 1.试题卷上各题的答案用黑色签字笔或钢笔书写在答题卡上,不得在试题卷上直接作答; 2.答题前认真阅读答题卡上的注意事项; 3.作图(包括作辅助线)请一律用黑色的签字笔完成; 4.考试结束,由监考人员将试题卷和答题卡一并收回. 参考公式:抛物线y =ax2+bx +c(a ≠ 0) 的顶点坐标为-b4ac -b2 ,对称轴公式为x =- b .2a 4a 2a 一、选择题:(本大题12 个小题,每小题4 分,共48 分)在每个小题的下面,都给出了 代号为A,B,C,D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答 案所对应的方框涂黑. 1.下列实数中最小的是( ) 2 A.B.-2 C.πD. 3 2.剪纸是中国传统文化艺术,下列剪纸中不是轴对称图形的是( ) A. B. C. D. 3.据统计2018 年末中国人口总数已经达到1390000000 人,请用科学计数法表示中国2018 年末人口数( ) A.139 ?107B.1.39 ?109C.13.9 ?108D.0.139 ?1010 4. 已知a 是整数,满足a<+2<a+1,求a2+2a=() A. 15 B.16 C.24 D.35 ?3x - 2 y = 14 5.已知x,y 是方程组?x - 4 y =-12 的解,则x—y 的值是() A.1 B.2 C.3 D.4 6.如图四边形ABCD 是圆的内接四边形. 连接AO ,C O,已知∠AOC =118o,求∠ABC = ()

2019年中考数学模拟试题(带答案)

2019年中考数学模拟试题(带答案) 一、选择题 1.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析 式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =-- 2.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( ) A .2 B .4 C .22 D .2 3.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( ) A .2个 B .3个 C .4个 D .5个 4.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为 ( ) A .24y x =- B .24y x =+ C .22y x =+ D .22y x =- 5.菱形不具备的性质是( ) A .四条边都相等 B .对角线一定相等 C .是轴对称图形 D .是中心对称图形 6.下列运算正确的是( ) A .23a a a += B .()2 236a a = C .623a a a ÷= D .34a a a ?= 7.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A . B . C .

D . 8.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( ) A .783230x y x y +=??+=? B .78 2330x y x y +=??+=? C .30 2378x y x y +=??+=? D .30 3278x y x y +=??+=? 9.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数k y x = (0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为45 2 , 则k 的值为( ) A . 54 B . 154 C .4 D .5 10.直线y =﹣kx +k ﹣3与直线y =kx 在同一坐标系中的大致图象可能是( ) A . B . C . D . 11.方程2 1 (2)304 m x mx --+=有两个实数根,则m 的取值范围( ) A .52 m > B .5 2 m ≤ 且2m ≠ C .3m ≥ D .3m ≤且2m ≠ 12.下列各式化简后的结果为2 的是( ) A 6 B 12 C 18 D 36二、填空题 13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x = (0x >)及22k y x =(0x >) 的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ?的面积为4,则

历年全国中考数学试题及答案

班级 姓名 学号 成绩 一、精心选一选 1.下列运算正确的是( ) A.()11a a --=-- B.( ) 2 3624a a -= C.()2 22a b a b -=- D.3 2 5 2a a a += 2.如图,由几个小正方体组成的立体图形的左视图是( ) 3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球 D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠ ∠∠ B.123 360++=∠ ∠∠ C.1322+=∠∠∠ D.132+=∠∠∠ 5.已知24221 x y k x y k +=??+=+?,且10x y -<-<,则k 的取值范围为( ) A.112 k -<<- B.102 k << C.01k << D. 1 12 k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4 y x = 的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >> C.b c a >> D.c a b >> 8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.2 1185580x = B.()2 11851580x -= C.( )2 11851580x -= D.()2 58011185x += A. B. C. D. A B D C 3 2 1 第4题图

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

2018中考数学试卷及答案

3 A. 2m 3n 2m B.—— 3n C. 2m D. 2 m 3n 2018年中考数学试卷 说明:1.全卷共6页,满分为150分,考试用时为120分钟。 2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、 姓名、考场号、 座位号。用2B 铅笔把对应该号码的标号涂黑。 3. 选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改 动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。 4. 非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位 置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。不按 以上要求作答的答案无效。 5. 考生务必保持答题卡的整洁。考试结束时,将试卷和答题卡一并交回。 第I 卷(共42分) 一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题 目要求的. 1.下列运算结果为正数的是( ) B. 3 2 C. 0 ( 2017) D. 2 3 A. 1 B. 2 C. 0.813 D. 8.13 3. 用量角器测量 MON 的度数,操作正确的是( ) 6 4 m 个 24 8 2 2 (2) 4. --------------- 」 2 () 3 432 (33) 2 A. ( 3) 2.把 0.0813 写成 a 10n (1 a 10, n 为整数)的形式,则a 为

5. 图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的 图形是中心对称图形,这个位置是() A.① B.② C?③ D.④ 6. 如图为张小亮的答卷,他的得分应是( 耳#佯拜i■血井具】co汙J ①-1 f - M2吋冊取「 C3P -2笛粉闽斛毗£. ◎ ih

中考数学 圆的综合综合试题附详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F. (1)求证:AE=BF; (2)连接EF,求证:∠FEB=∠GDA; (3)连接GF,若AE=2,EB=4,求ΔGFD的面积. 【答案】(1)(2)见解析;(3)9 【解析】 分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边 上的中线等于斜边的一半,得到AD=DC=BD=1 2 AC,进而确定出∠A=∠FBD,再利用同角的 余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证; (2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论; (3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长,根据三角形的面积公式计算即可. 详解:(1)连接BD.在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°. ∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=1 2 AC,∠CBD=∠C=45°, ∴∠A=∠FBD. ∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.

相关主题
文本预览
相关文档 最新文档