泥水加压平衡盾构-简介

  • 格式:doc
  • 大小:33.00 KB
  • 文档页数:5

下载文档原格式

  / 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1发展概况

泥水式盾构机是通过有一定压力的泥浆来支撑稳固开挖面;由旋转刀盘、悬臂刀头或水力射流等进行土体开挖;开挖下来的土料与泥水混合以泥水状态由泥浆泵进行输运。泥水式盾构机适用于各种松散地层,有无地下水均可

2工作原理

泥水式盾构机施工时稳定开挖面的机理为:以泥水压力来抵抗开挖面的土压力和水压力以保持开挖面的稳定,同时,控制开挖面变形和地基沉降;在开挖面形成弱透水性泥膜,保持泥水压力有效作用于开挖面。

在开挖面,随着加压后的泥水不断渗入土体,泥水中的砂土颗粒填入土体孔隙中,可形成渗透系数非常小的泥膜(膨润土悬浮液支撑时形成一滤饼层)。而且,由于泥膜形成后减小了开挖面的压力损失,泥水压力可有效地作用于开挖面,从而可防止开挖面的变形和崩塌,并确保开挖面的稳定。因此,在泥水式盾构机施工中,控制泥水压力和控制泥水质量是两个重要的课题。

为了保持开挖面稳定,必须可靠而迅速地形成泥膜,以使压力有效地作用于开挖面。为此,泥水应具有以下特性:

(1)泥水的密度

为保持开挖面的稳定,即把开挖面的变形控制到最小限度,泥水密度应比较高。从理论上讲,泥水密度最好能达到开挖土体的密度。但是,大密度的泥水会引起泥浆泵超负荷运转以及泥水处理困难;而小密度的泥水虽可减轻泥浆泵的负荷,但因泥粒渗走量增加,泥膜形成慢,对开挖面稳定不利。因此,在选定泥水密度时,必须充分考虑土体的地层结构,在保证开挖面的稳定的同时也要考虑设备能力。

(2)含砂量

在强透水性土体中,泥膜形成的快慢与掺入泥水中砂粒的最大粒径以及含砂量(砂粒重/粘土颗粒重)有密切的关系,这是因为砂粒具有填堵土体孔隙的作用。为了充分发挥这一作用,砂粒的粒径应比土体孔隙大而且含量适中。

(3)泥水的粘性

泥水必须具有适当的粘性,以收到以下效果:

①防止泥水中的粘土、砂粒在泥水室内的沉积,保持开挖面稳定;

②提高粘性,增大阻力防止逸泥;

③使开挖下来的弃土以流体输送,经后处理设备滤除废渣,将泥水分离。

土体一经盾构机开挖,其原有的应力即被释放,并将产生向应力释放面的变形。此时,为控制地基沉降,保持开挖面稳定,必须向开挖面施加一个相当于释放应力大小的力。泥水式盾构机中由泥水压力来抵消开挖面的释放应力。在决定泥水压力时主要要考虑开挖面的水压力、土压力以及预留压力。

在泥水式盾构机中支护开挖面的液体同时又作为运输介质。开挖工具开挖的土料在开挖室中与支护液混合。然后,开挖土料与悬浮液的混合物被泵送到地面。在地面的筛分场中支护液与土料分离。随后,如需要,添加新的膨润土,再将此液体泵回隧洞开挖面。

泥水式盾构机的主要弊病是筛分场(场地及能源需要、环境污染)和排出膨润土液中包含的不可分离细料所引起的困难。与其他系统相比,经济地运用泥水式盾构机主要取决于泥水悬浮液分离的要求及地层的渗透性和悬浮液的成分。

3几种不同形式的泥水式盾构机

3.1泥水盾构(日本体系)

日本泥水盾构流体动力学的发展以及它们大量应用是由于日本沿海365J T城市的地质特征。经常是水平层理并由江河及大海沉积物形成。泥水盾构是为在砂土及淤泥中应用而365JT设计的,在很粘的粘土中应用受到限制,会导致孔口的堵塞。密实的卵石层则需要增加力矩克服作用于刀盘上的摩擦力。在小直径机器中由于增加力矩而考虑设置相应的驱动装置就非常困难。

泥水盾构的主要特征是支护液的类型(正常时是粘土悬浮液)、刀盘设计及控制支护液压力的方法。

泥水盾构的刀盘是扁平设计的,而且几乎是封闭的,这样一来也能提供机械的开挖面支撑。为搬掉障碍物等,通往隧洞开挖面的通道只能经过几个开口,它们在运行时是被封闭的。通常刀具及齿具均为双排幅射布置,刀盘可在任一方向转动。土料经过窄长而平行的刀盘面开口进入开挖室,这些开口被调整到既能通过尽可能大的土石块,又能限制水力输运管道所不能通过的块体。

根据所需的扭矩,切削刀盘采用中心轴形式、鼓型或中心锥型设计。

支护液从开挖室的上部添加,土料与悬浮液的混合液由底部靠近搅拌器的地方排出。安装搅拌器是为了防止沉淀以产生均匀的输送介质。

在泥水盾构中,隧洞开挖面支护压力直接受开挖室中添加或排出泥水的影响。支护压力,在开挖室及输入泥水管中用压力传感器测量,并与计算出的支护压力的理论值相比较。悬浮液回路中的泵与阀也用同样的方法予以控制。

因为不可能看到隧洞开挖面的变化,稳定性只能在理论的及当前的开挖

量之间用质量进行比较。当前的开挖量由测量支护液的密度得出,理论开挖量则参考比重、结实性及孔隙的份额等得出。这些值是在最初岩心钻的基础上取得的。

盾构机掘进时的所有调控功能都取自地面的中央处理装置。虽然在中央处理装置中,大量的数据都可收集、测定并看到,但盾构机中的操作人员仍是需要的,在难对付的情况下也要人工干预。

3.2水力盾构

与日本的地质条件相比,在欧洲则不同地点差异很大,因而水力盾构的基本原理对地质的适用范围就更灵活。水力盾构适于所有松散地层,如加装另外的装置还能用于岩层。

几乎所有的水力盾构都以Wayss&Freytag开发的为基础。除了设计并建造第一台样机(Hamburg-Wilhelmsburg1974)外,该公司还在德国及德国以外实施了很多成功的工程。

水力盾构很突出的部分是用沉浸墙隔离开挖室(在液体支护的隧洞开挖面附近,支护压力由后腔的气囊调整)以及有单独固定幅条的开式星型刀盘。

另外不同于日本泥水盾构的是采用水-膨润土悬浮液,这更适合欧洲的地质情况。采用膨润土与在隧洞开挖面形成滤饼是相联系的,所以此型盾构也称之为膨润土盾构。

水力盾构系统最重要的优点是通过气囊调节支护压力,泥水回路中悬浮液的量的变化不会改变支护压力的大小。比如,当掘进通过断层带,支护悬浮液可能会突然损失,但隧洞开挖面上的支护压力不会损失。通过布置在盾构顶部的压缩空气闸室以及穿过气囊及沉浸墙进入开挖室,这比日本的泥水盾构容易搬掉障碍物。为了搬掉障碍物或在刀盘上进行修理及维护工作,开挖室中的悬浮液可以被排出并由压缩空气取代。悬浮液在开挖面处形成的滤饼或泥膜层及其密封效应,使得可以单独用压缩空气支护隧洞开挖面。当与空气接触时,膨润土饼层会减薄,为了限制漏气,应每隔一段时间对膨润土饼层进行更新,如向隧洞开挖面喷射膨润土或将膨润土液满溢开挖室。

开式刀盘在泥浆输出管前装有一拦石栅,截住超过管道运输尺寸的土石块。拦石栅前有一液力操作的破碎机将大石块破碎到要求的尺寸。拦石栅前的沉积料用悬浮液喷射除去。对不同的地层可以在刀盘上装设不同的开挖刀具。

3.3混合型盾构中的水力盾构形式

在水力盾构基本概念的基础上,Wayss&Freytag与Herrenknecht一起设计了一种根据地质变化情况而进行开挖面支撑方式转换的混合型盾构。混合型盾构可转变成泥水模式、土压平衡及压缩空气模式等。在盾构机运行过程中根据需要可以完成从一种模式到另一种模式的转换,因而其应用范围较广。

在已有的混合型盾构的工程应用例子当中,大多数都是运行在水力盾构模式下而无需转换到别的模式,所以也习惯地将它们归类为或称之为水力盾构。

3.4悬臂刀头式泥水盾构

Holzmann悬臂刀头式泥水盾构是泥水支撑和部分断面开挖的组合。可伸缩的刀头悬臂装在密封承压隔板中部,当绞刀头接触到岩土层时,通过人工或自动控制操作进行开挖面开挖动作。开挖出的土料通过刀头的开口及悬臂内管道以泥水状态输出。刀头的开口尺寸与泥水输出管道尺寸相匹配,不适于管道输送的较大尺寸土石块被刀头开口阻挡。如必须进入开挖室进行修理工作或搬掉障碍物时,可以部分或全部地降低悬浮液或用压缩空气进行置换,其适用的地质范围与水力盾构一样。在开挖室沿盾壳内侧布置多个可单独进行液压控制的支撑胸板,