八正丁硫基四氮杂卟啉及锌配合物的合成和表征
- 格式:pdf
- 大小:270.62 KB
- 文档页数:4
四羧基苯基锌卟啉合成
四羧基苯基锌卟啉(Zinc(II) meso-tetrakis(4-carboxyphenyl)porphyrin, ZnTCPP)是一种重要的金属有机框架(Metal-Organic Frameworks, MOFs)前驱体,广泛应用于催化、光电材料及生物医学等领域。
合成四羧基苯基锌卟啉通常需要通过多步反应完成,以下是一个基本的合成过程概述:
首先,合成卟啉环的起始材料通常是吡咯和相应的芳香醛。
在本例中,使用4-甲酰苯甲酸作为原料,它与吡咯在酸性催化剂存在下发生缩合反应,形成自由的卟啉配体(meso-tetrakis(4-carboxyphenyl)porphyrin)。
这个反应需要在惰性气体保护下进行,以避免卟啉环被氧化。
接着,将上述得到的卟啉配体与过量的锌盐(如氯化锌或醋酸锌)反应,使得中心的两个氢离子被锌离子取代,从而得到四羧基苯基锌卟啉。
此步骤通常在回流的甲醇或二甲基甲酰胺(DMF)等溶剂中进行,以确保反应充分进行。
最后,通过冷却、过滤、洗涤和干燥等步骤纯化产物,以获得高纯度的四羧基苯基锌卟啉。
此外,根据不同的应用需求,可能还需要进一步的修饰或功能化处理。
整个合成过程需要严格控制反应条件,如温度、时间、pH值和摩尔比等,以保证产物的质量和产率。
同时,由于涉及有毒化学品和敏感化合物,实验操作应在良好的通风和安全措施下进行。
四苯基卟啉的合成与表征四苯基卟啉是一种重要的有机分子材料,被广泛用于光电子学、生物医疗、催化等领域。
本文将介绍四苯基卟啉的合成和表征方法。
合成方法四苯基卟啉的合成方法较为复杂,以下将介绍其中较为常见的几种方法。
第一种方法:Anderson方法Anderson方法是四苯基卟啉合成的一种传统方法,其主要步骤如下:1.将酞菁代入和苯甲醛反应得到卟啉-phenaldazine。
2.经过获取、晶化、减压干燥等处理后,将卟啉-phenaldazine与甲硫醇等在碱性条件下反应,得到四苯基卟啉。
这种方法虽然操作相对简单,但其产率较低且对环境有较大的污染。
第二种方法:Lindh方法Lindh方法是一种改良版的四苯基卟啉合成方法,其操作步骤如下:1.将酞菁代入和苯丙酮反应,生成卟啉-phenalenone。
2.利用杂环化合物类似三苯基硼烷的还原剂将卟啉-phenalenone还原,生成四苯基卟啉。
Lindh方法不仅产率较高,且环保性能也较好。
由于使用的还原剂不是常见的危险化学品,因此该方法也更加安全。
表征方法四苯基卟啉是一种具有复杂结构的分子,其得到后需要进行表征。
以下将介绍主要的表征方法。
红外光谱分析红外光谱是测量物质分子振动状态的一种分析方法。
用红外光谱仪对四苯基卟啉进行分析,可以通过不同波长的光波与分子间的能量转移关系,给出其分子结构、化学键类型以及化学键键长等信息。
紫外-可见吸收光谱分析紫外-可见吸收光谱是表征物质电子结构的一种分析方法。
在紫外-可见吸收光谱仪中,四苯基卟啉物质吸收位置及强度可获得分子内部电子结构及电子能级等信息。
核磁共振光谱分析核磁共振光谱将磁场作用于分子,根据原子核固有的磁学特征,分析分子内部结构与化学键的信息。
通过核磁共振光谱分析,可以解析出四苯基卟啉分子的各个质子交换及化学位移信息。
结论本文介绍了四苯基卟啉的合成和表征方法,其中Anderson方法和Lindh方法分别为较为常见的合成方法。
金属卟啉的合成方法综述吴润东;何金莲;陈伟;翟锦龙【摘要】卟啉及金属卟啉是一类大环共轭结构的化合物,其广泛存在于自然界中.其独特的分子结构赋予其许多特殊的性质,其在分子识别、传感器、半导体、光信息存储、非线性光学材料、光催化剂、能量捕获和传递等领域具有广阔应用前景.本文主要就金属卟啉的合成方法进行综述.【期刊名称】《东莞理工学院学报》【年(卷),期】2019(026)001【总页数】5页(P81-85)【关键词】卟啉;金属卟啉;合成方法【作者】吴润东;何金莲;陈伟;翟锦龙【作者单位】东莞理工学院生态环境与建筑工程学院,广东东莞 523808;东莞理工学院生态环境与建筑工程学院,广东东莞 523808;东莞理工学院生态环境与建筑工程学院,广东东莞 523808;东莞理工学院生态环境与建筑工程学院,广东东莞523808【正文语种】中文【中图分类】O646.54卟啉是一类由四个吡咯类亚基的α-碳原子通过次甲基桥(=CH-)互联而形成的大分子杂环化合物。
卟啉可进一步与金属离子形成金属络合物,即金属卟啉。
自然界中以金属卟啉最为多见,金属卟啉广泛存在于生物体中,血红素、叶绿素、维生素B12都是金属卟啉类化合物,其在生物氧化过程中起着氧的传递、储存、活化以及电子传输作用,在光合过程中起光敏电子转移作用,其在新陈代谢中也起着不可或缺的地位,具有特殊的生理活性[1]。
卟啉环的共轭的大环结构使其具有良好的光电特性,常用于分子识别、传感器、半导体、光信息存储、非线性光学材料、光催化剂、能量捕获和传递等领域[2-5]。
目前金属卟啉的合成方法有很多种,本文就其合成方法进行综述。
金属卟啉的合成从步骤上可以分为“一步法”和“两步法”。
1 一步法一步法是指在生产步骤中,不制备卟啉而将吡咯等原料同金属盐直接反应生成金属卟啉络合物的方法。
G.M.Badger等[6]报道了以邻氯苯甲醛、吡咯、无水醋酸锌为原料一步与高压反应釜中加热直接合成对应的四-(邻-氯苯基)锌卟啉化合物。
卟啉化学的产生发展及应用张来新;陈琦【摘要】简要介绍了卟啉化学的产生、发展及应用,卟啉化合物的结构特征及特性.详细综述了:新型卟啉衍生物的合成及在催化科学中的应用;新型卟啉衍生物的合成及在光电材料科学中的应用;新型卟啉化合物的合成及在医药学中的应用.并对卟啉化学的发展进行了展望.%The generation, development and application of porphyrin chemistry were introduced, as well as the structure features and characteristics of porphyrin compounds. Syntheses of new porphyrin derivatives and their application in catalysis science were discussed as well as syntheses of new porphyrin derivatives and their application in optoelectronic material science, syntheses of new porphyrin compounds and their application in medicine. Future development trend of porphyrin chemistry was prospected in the end.【期刊名称】《当代化工》【年(卷),期】2017(046)011【总页数】3页(P2289-2291)【关键词】卟啉化合物;合成;应用【作者】张来新;陈琦【作者单位】宝鸡文理学院化学化工学院,陕西宝鸡 721013;宝鸡文理学院化学化工学院,陕西宝鸡 721013【正文语种】中文【中图分类】TQ6261;O636.131912年Kuster首先发现了世界上第一个卟啉化合物。
金属卟啉配合物的性能及应用研究进展王冬华;丁二雄;马勇【摘要】Metallic porphyrin complexes are the main compounds of porphyrin derivatives, they are widely researched and applied due to the physiological function. Some of the excellent performance and related applications of metallic porphyrin complexes were briefly reviewed in this paper in such fields as: bionic system, molecular recognition, catalyst, material, organic synthesis and medicine and so on, aiming at making people understand and be familiar with the properties and applications of metallic porphyrin complexes.%金属卟啉配合物是卟啉衍生物中的主体化合物,因其具有优异性能而被广泛地研究与应用.分别从仿生体系、分子识别、催化、材料、有机合成和医疗等方面简要介绍了金属卟啉配合物的优异性能及其应用,旨在让人们了解并熟悉金属卟啉配合物的性能及用途.【期刊名称】《化学与生物工程》【年(卷),期】2011(028)010【总页数】4页(P7-10)【关键词】金属卟啉;分子识别;催化剂【作者】王冬华;丁二雄;马勇【作者单位】渭南师范学院化学与生命科学学院,陕西渭南714000;渭南师范学院化学与生命科学学院,陕西渭南714000;渭南师范学院化学与生命科学学院,陕西渭南714000【正文语种】中文【中图分类】O626卟啉是由20个碳原子和4个氮原子组成的具有共轭大环结构的有机化合物,它含有4个吡咯分子,中心的4个氮原子都含有孤电子对,可与金属离子结合生成18个p电子的大环共轭体系的金属卟啉。
卟啉锌化合物结构特点
卟啉锌是一种化学物质,其结构特点如下:
1. 中心原子:卟啉锌的中心原子是锌(Zn),其价态为+2。
2. 配体:卟啉锌的配体是卟啉,它是一种由四个吡咯环通过共轭的甲烯基相连形成的环状化合物。
3. 空间构型:由于四个吡咯环的相对位置,卟啉锌呈现出一个中心对称的结构,即它具有四个对称的配位点。
4. 键合方式:在卟啉锌中,锌原子与四个氮原子(来自四个吡咯环)通过配位键结合,形成五元环状结构。
这四个配位键在同一平面上,形成了一个平面四边形结构。
5. 稳定性:由于五元环的稳定性以及中心原子与配体的强配位相互作用,卟啉锌在常温常压下稳定。
6. 光学和电子性质:卟啉锌具有特定的吸收光谱和发射光谱,可在特定波长下吸收或发射光。
此外,其电子结构和化学性质也与其它金属卟啉有所不同。
如需获取更多详细信息,建议查阅相关文献或咨询化学领域专业人士。
第53卷第2期2024年2月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.53㊀No.2February,2024一例锶配合物的合成、结构及表征保玉婷1,2,梁毅农1,2,孙㊀赞1,2(1.青海民族大学化学化工学院,西宁㊀810007;2.青藏高原资源化学与生态环境保护国家民委重点实验室,西宁㊀810007)摘要:在溶剂热条件下,以1,4,5,8-萘四羧酸(H 4L1)为配体,六水合氯化锶为金属源合成了一例锶配合物[Sr(L)2(H 2O)4]n (1)㊂通过元素分析(EA)㊁X 射线单晶衍射(SXRD)㊁X 射线粉末衍射(PXRD)㊁红外光谱(IR)和热重分析(TGA)进行结构表征㊂X 射线单晶衍射结果表明,1,4,5,8-萘四羧酸(H 4L1)发生原位反应生成1,3-二氧代-1H,3H-苯并[脱]异色烯-6,7-二羧酸(H 2L)㊂在配合物1中,每个锶原子位于四方反棱柱的几何构型中,配体连接金属延伸形成一维链状结构,链与链之间通过氢键与π π堆积作用形成2D 超分子结构㊂探究了配合物的固态发光行为,发现配合物在211nm 的激发波长下产生宽的发射光谱带(450~690nm),并在535nm 处出现最大发射波长,因此可知配合物是一种潜在的绿光材料㊂关键词:溶剂热合成;锶配合物;晶体结构;荧光性质;原位反应中图分类号:O641.4㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2024)02-0293-07Synthesis ,Structure and Characterization of a Strontium ComplexBAO Yuting 1,2,LIANG Yinong 1,2,SUN Zan 1,2(1.College of Chemistry and Engineering,Qinghai Minzu University,Xining 810007,China;2.Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Tibetan Plateau (Qinghai Minzu University),State Ethnic Affairs Commission,Xining 810007,China)Abstract :A Sr(II)complex [Sr(L)2(H 2O)4]n (1)was synthesized with 1,4,5,8-naphthalene tetracarboxylic acid (H 4L1)and strontium chloride hexahydrate under solvothermal conditions.The structure was characterized by elemental analysis (EA),single crystal X-ray diffraction (SXRD),powder X-ray diffraction (PXRD),infrared spectroscopy (IR)and thermogravimetric analysis (TGA).The single crystal X-ray diffraction results indicate that H 4L1undergoes in-situ reaction to generate 1,3-dioxo-1H,3H-benzo[de]isomere-6,7-dicarboxylic acid (H 2L).In complex 1,each Sr(II)atom is located in the geometric configuration of a square antiprism.The L -ligands connect Sr atoms to form a one-dimensional chain structure.2D supramolecular structure is formed through hydrogen bonding and π πstacking interactions.The solid states luminescence behavior of complex 1was explored.It is found that complex 1produces a wide emission spectrum band(450~690nm)at the excitation wavelength of 211nm,and the maximum emission wavelength appears at 535nm.Therefore,it can be seen that complex 1is a potential green light material.Key words :solvent thermal synthesis;strontium complex;crystal structure;fluorescence property;in-situ reaction ㊀㊀收稿日期:2023-09-15㊀㊀基金项目:青海省自然科学基金(2020-ZJ-964Q);2022年青海民族大学研究生创新项目(12M2022014)㊀㊀作者简介:保玉婷(1997 ),女,青海省人,硕士研究生㊂E-mail:189****9423@ ㊀㊀通信作者:孙㊀赞,博士,副教授㊂E-mail:sunzan_2006@0㊀引㊀㊀言金属配合物是由金属离子/簇和有机配体通过自组装过程合成的,在气体分离㊁催化㊁传感和荧光等方面具有广阔的应用前景,受到了广泛的关注[1-3]㊂有机共轭羧酸配体由于以下原因被广泛用于配合物合成:1)配体中羧酸基团可采用多种配位模式,如单齿㊁螯合-双齿㊁桥接-双齿和桥接-多齿模式等[4-6],因此有利于生成具有新颖结构的配合物;2)由于共轭体系的存在,配合物通常会产生较强的荧光[7];3)羧基可以作为氢键的给予者或是接纳者,对超分子结构的构建非常有利[8-9]㊂294㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷含有共轭基团的有机羧酸配体与锶形成的配合物通常具有良好的发光行为[5,10-11]㊂2007年刘波等[10]利用醋酸锶与四苯基卟啉类配体反应,合成了四苯基卟啉锶配合物Sr(TPP)2(TPP=tetrakis(phenyl) porphyrin),荧光光谱有一个强的荧光发射峰(610nm)和一个弱的发射峰(676nm)㊂2011年李世杰等[5]用2-丙基-4,5-咪唑二甲酸配体合成了一例锶配合物[Sr(H2pimda)2(H2O)2]n(H3pimda=2-propyl-1H-imidazole-4,5-dicarboxylic acid),在490nm处有强的荧光发射峰㊂2023年Chen等[11]用4,4ᶄ-biphenyldisulfonic acid(H2BPDS)合成了锶配合物{[Sr(C40H44N24O12)(H2O)4](C12H8O6S2)}㊃26H2O,在水溶液中能选择性地检测诺氟沙星(norfloxacin,NFX)㊂含萘环羧酸配体的配合物,如[Sr10(1,4-NDC)10Br4] (1,4-H2NDC=1,4-naphthalenedicarboxylic acid)[12]㊁{[Sr(ntca)(H2O)2]㊃H2O}n(1,4-H2ntca=1,4-naphthalenedicarboxylic acid)[13],均表现出优异的发光性能[12-16]㊂基于以上研究,本文选用1,4,5,8-萘四羧酸与氯化锶在溶剂热条件下成功构筑了锶配合物[Sr(L)2(H2O)4]n(1),通过元素分析㊁X射线单晶衍射㊁X射线粉末衍射和红外光谱进行了结构表征,并研究了配合物的热稳定性和固态发光行为㊂1㊀实㊀㊀验1.1㊀试剂与仪器试剂:1,4,5,8-萘四羧酸㊁六水合氯化锶(天津市大茂化学试剂厂);DMF(天津市富宇精细化工有限公司),所用试剂皆为分析纯㊂仪器:傅里叶红外光谱仪(FTS-3000FT-IR);元素分析仪(EL-III);X射线粉末衍射仪(Rigaku Ultima Ⅳ);X射线单晶衍射仪(Rigaku Saturn);热重分析仪(NETZSCH TG209);荧光分光光度计(英国爱丁堡FLS1000)㊂1.2㊀配合物1的性能与表征方法采用X射线粉末衍射仪(Rigaku Ultima IV)以Cu Kα为射线源,电流25mA,电压35kV,扫描速率8(ʎ)/min对样品进行物相表征㊂在氮气气氛中,以升温速率为10ħ/min,温度范围为25~770ħ对样品进行热重分析㊂在室温下以氙灯作为光源,狭缝宽度为5nm,波长扫描范围为400~800nm,激发波长为211nm对样品进行荧光光谱测试㊂1.3㊀配合物1的X射线单晶衍射选取尺寸大小合适的黄色晶体于CrysAlisPro单晶衍射仪上,用经石墨单色器单色化的Mo Kα(λ=0.071073nm)射线为光源,在293K的温度下收集衍射点㊂配合物以ω-φ扫描方式收集衍射数据㊂所有衍射数据使用SADABS程序进行半经验吸收校正㊂晶胞参数用最小二乘法确定㊂数据还原和结构解析工作分别使用SAINT和SHELXS-2018程序[17]完成㊂晶体结构用直接法解出,先用差值函数法和最小二乘法确定全部非氢原子坐标,并用理论加氢法得到氢原子位置,然后用最小二乘法对晶体结构进行精修㊂O1上的H原子占有率为0.5㊂主要晶体学数据详见表1㊂配合物1的CIF数据已经保存在英国剑桥晶体结构数据中心, CCDC号为2253022,可通过网址免费获取:㊂1.4㊀配合物1的合成将六水合氯化锶(0.1mmol,26.6mg)㊁1,4,5,8-萘四羧酸(H4L1,0.05mmol,15.2mg)㊁1mL N,N-二甲基甲酰胺(DMF)和9mL H2O同时加入到25mL的烧杯内,超声10min,待分散均匀后,转移到容积为25mL 的带聚四氟乙烯内衬的不锈钢水热反应釜内,在100ħ恒温反应24h后,得到黄色晶体,晶体经过滤㊁DMF 洗涤后自然晾干㊂元素分析结果实验值(%):C,46.45;H,2.59,按照C28H16O18Sr计算的理论值(%):C, 46.19;H,2.22㊂IR(KBr,cm-1):3539(m),3074(w),1769(m),1725(m),1645(m),1592(s), 1512(m),1438(m),1381(s),1336(m),1291(m),1223(s),1155(m),1118(m),1040(s),869(m), 815(s),761(s),644(s),591(w),556(m),479(w),412(w)㊂㊀第2期保玉婷等:一例锶配合物的合成㊁结构及表征295㊀表1㊀配合物1的晶体学及结构精修参数Table1㊀Crystallographic data and structure refinement details of complex1Formula C28H16O18SrFormula weight728.03T/K293Crystal system OrthorhombicSpace-group Fddda/nm0.6909(10)b/nm 2.5264(4)c/nm 2.9512(5)α/(ʎ)90β/(ʎ)90γ/(ʎ)90V/nm3 5.15154(14)Z8D c/(g㊃cm-3) 1.877μ/mm-1 3.805θ/(ʎ)9.21~134.49Unique reflns,R int1166/0.0287GOF 1.133R1,w R2[I>2σ(I)]0.0271,0.0732R1,w R2(all data)0.0280,0.0737㊀㊀R1=Σ(||F o|-|F c||)/Σ|F o|;w R2={Σw(|F o|2-|F c|2)2/Σw(|F o|2)2}1/2.2㊀结果与讨论2.1㊀配合物1的晶体结构分析配合物1属于正交晶系Fddd空间群,晶胞参数为a=0.6909(10)nm,b=2.5264(4)nm,c=2.9512(5)nm 和α=β=γ=90ʎ㊂配合物1的分子式为C28H16O18Sr,结构式为[Sr(L)2(H2O)4]n㊂1,4,5,8-萘四甲酸在反应过程中生成了配体1,3-二氧代-1H,3H-苯并[脱]异色烯-6,7-二羧酸(H2L),如图1所示[18]㊂在配合物1中,中心金属Sr(II)离子的配位环境如图2(a)所示,Sr的八个配位原子来自于羧酸配体的四个氧原子以及四个水分子的氧原子,通过Shape软件计算(见表2)[19],发现Sr(II)离子的几何构型为四方反棱柱(见图2(b)),相关的键长键角列于表3㊂L-配体的配位模式如图2(c)所示,连接两个Sr(II)离子形成1D链结构(见图2(d))㊂在配合物1中,链与链之间通过O H O氢键(表4)和π π堆积作用(d cg㊃㊃cg=0.38683(10)㊁0.37782(10)㊁0.36046(9)nm)形成2D超分子结构(见图2(e))㊂图1㊀H4L1原位反应生成配体H2LFig.1㊀H2L ligand is derived from in situ reaction of H4L1296㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷图2㊀配合物1的晶体结构㊂(a)配合物1中Sr(II)离子的配位环境(对称码:#1x,-y+5/4,-z+5/4;#2-x+5/4, y,-z+5/4;#3x+5/4,-y+5/4,z);(b)配合物1中Sr(II)离子的四方反棱柱几何构型;(c)配体L-的配位模式;(d)配合物1的1D链;(e)配合物1由O H O氢键(虚线)和π π堆积作用(实线)形成的2D超分子层Fig.2㊀Crystal structure of complex1.(a)The coordination environment of Sr(II)ion in complex1(Symmetry code:#1x, -y+5/4,-z+5/4;#2-x+5/4,y,-z+5/4;#3x+5/4,-y+5/4,z);(b)square antiprism geometric configuration of Sr(II)ion in complex1;(c)coordination mode of L-ligand;(d)1D chain of complex1;(e)2D supramolecular structure was constructed by O H O hydrogen bond(dashed line)andπ πstacking interaction(solid line)of complex1表2㊀Shape软件分析配合物1中Sr(II)离子的几何构型Table2㊀Shape software analysis of the Sr(II)ion in complex1Label Shape DistortionTDD-8Triangular dodecahedron 2.366SAPR-8Square antiprism 1.699BTPR-8Biaugmented trigonal prism 3.407JBTPR-8Biaugmented trigonal prism J50 3.800JSD-8Snub diphenoid J84 6.0422.2㊀配合物1的红外光谱图3为配合物的红外光谱,其中v=3539cm-1为 OH的吸收峰,v=3074cm-1为 CH的吸收峰, v=1769㊁1725cm-1说明有酸酐,v=1645㊁1592㊁1512cm-1说明有羧基,v=1438㊁1381㊁1336㊁1291㊁1155㊁1118㊁1040㊁869㊁815㊁761㊁735㊁644㊁591㊁556㊁412cm-1说明有苯环存在㊂2.3㊀配合物1的粉末X射线衍射分析及热重分析由配合物的X射线粉末衍射图谱(见图4)可知,样品的实验测试图谱与通过单晶数据模拟得到的理论模拟谱图相符合,表明配合物有较高的相纯度㊂从配合物的热重曲线(见图5)可以看出配合物在100ħ左右开始质量损失,说明配合物失去了配位水分子,失重率为9.77%(理论值是9.88%),紧接着在120ħ左右发生结构的分解,直到590ħ左右趋于稳定,可归因于配体的分解㊂㊀第2期保玉婷等:一例锶配合物的合成㊁结构及表征297㊀表3㊀配合物1的部分键长和键角Table3㊀Selected bond lengths and angles for complex1Bond Length/nm Bond Length/nmSr(1) O(5)0.2595(14)Sr(1) O(2)0.2651(13)Sr(1) O(5)#10.2595(14)Sr(1) O(2)#10.2651(13)Sr(1) O(5)#20.2595(14)Sr(1) O(2)#20.2651(13)Sr(1) O(5)#30.2595(14)Sr(1) O(2)#30.2651(13) Bond Angle/(ʎ)Bond Angle/(ʎ)O(5)#1 Sr(1) O(5)#274.18(7)O(5)#3 Sr(1) O(2)#367.51(5)O(5)#1 Sr(1) O(5)#3109.36(7)O(5) Sr(1) O(2)#389.79(5)O(5)#2 Sr(1) O(5)#3160.22(8)O(2)#1 Sr(1) O(2)#2149.39(7) O(5)#1 Sr(1) O(5)160.22(8)O(5)#1 Sr(1) O(2)#376.29(5) O(5)#2 Sr(1) O(5)109.37(7)O(5)#2 Sr(1) O(2)#3131.15(5) O(5)#3 Sr(1) O(5)74.18(7)O(2)#1 Sr(1) O(2)#3115.20(7)O(5)#1 Sr(1) O(2)#167.51(5)O(2)#2 Sr(1) O(2)#373.36(7)O(5)#2 Sr(1) O(2)#187.79(5)O(5)#2 Sr(1) O(2)76.29(5)O(5)#3 Sr(1) O(2)#176.29(5)O(5)#3 Sr(1) O(2)87.80(5) O(5) Sr(1) O(2)#1131.15(5)O(2)#1 Sr(1) O(2)73.36(7)O(5)#1 Sr(1) O(2)#287.80(5)O(2)#2 Sr(1) O(2)115.20(7)O(5)#2 Sr(1) O(2)#267.51(5)O(2)#2 Sr(1) O(2)115.20(7)O(5)#3 Sr(1) O(2)#2131.15(5)O(5)#1 Sr(1) O(2)#376.29(5) O(5) Sr(1) O(2)#276.29(5)O(2)#3 Sr(1) O(2)149.40(7)㊀㊀Symmetry code:#1x,-y+5/4,-z+5/4;#2-x+5/4,y,-z+5/4;#3x+5/4,-y+5/4,z.表4㊀配合物1的氢键长度和角度Table4㊀Hydrogen bonds lengths and angles for complex1D H A d(D H)/nm d(H A)/nm d(D A)/nmøDHA/(ʎ) O(5) H(5A)㊃㊃O(1)#10.0850.1990.2811(2)161㊀㊀Symmetry code:#1-1+x,y,z.图3㊀配合物1的红外光谱Fig.3㊀IR spectrum of complex1图4㊀配合物1的PXRD图谱Fig.4㊀PXRD patterns of complex1图5㊀配合物1的热重曲线Fig.5㊀Thermogravimetric curve of complex1298㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷2.4㊀配合物1的固态荧光性能研究在室温下测定了配合物1的激发光谱和发射光谱,如图6所示,由激发光谱可知,最大激发波长为211nm㊂在211nm激发波长下测得配合物1的荧光发射光谱(见图6(b)),表现为宽的发射光谱(450~690nm),最大发射波长在535nm处,说明配合物1是一种潜在的绿光材料㊂通过分析配合物1的结构,发现相邻的配体之间存在强π π堆积相互作用,因此配合物1的发光可归因于配体π-π∗的跃迁[20]㊂图6㊀配合物1的激发(a)和发射(b)光谱Fig.6㊀Excitation(a)and emission(b)spectra of complex13㊀结㊀㊀论在溶剂热条件下,以SrCl2㊃H2O和1,4,5,8-萘四羧酸(H4L1)为原料,合成了[Sr(L)2(H2O)4]n配合物1,该配合物属于正交晶系Fddd空间群,在反应过程中,配体H2L(H2L=1,3-二氧代-1H,3H-苯并[脱]异色烯-6,7-二羧酸)由1,4,5,8-萘四甲酸(H2L1)原位生成㊂中心Sr原子位于八配位的四方反棱柱几何构型中,配位原子来自于四个羧酸配体的四个氧原子和四个配位水分子的氧原子㊂L-配体连接Sr中心形成1D链结构,链与链之间通过O H O氢键与π π堆积作用形成2D超分子结构,固态荧光研究发现配合物1最大发射波长位于535nm处,说明其是一种很好的绿光材料㊂参考文献[1]㊀SEBASTIAN S S,DICKE F P,RUSCHEWITZ U.Fluorinated linkers enable the synthesis of flexible MOFs with1D alkaline earth SBUs and atemperature-induced phase transition[J].Dalton Transactions,2023,52(18):5926-5934.[2]㊀JAFARZADEH M.Recent progress in the development of MOF-based photocatalysts for the photoreduction of Cr(VI)[J].ACS Applied Materials&Interfaces,2022,14(22):24993-25024.[3]㊀LV Y C,LIANG J S,LI D L,et al.Hydration-facilitated coordination tuning of metal-organic frameworks toward water-responsive fluorescenceand proton conduction[J].Inorganic Chemistry,2022,61:18789-18794.[4]㊀邹水香,李㊀庆,梅舒静,等.甲酸锶的合成及表征[J].黄冈师范学院学报,2017,37(6):33-36.ZOU S X,LI Q,MEI S J,et al.Synthesis and characterization of strontium complex based on formic acid[J].Journal of Huanggang Normal University,2017,37(6):33-36(in Chinese).[5]㊀李世杰,宋文东,苗东亮,等.两个基于2-丙基-4,5-咪唑二甲酸的锶和钡配合物的合成,结构及性质研究(英文)[J].无机化学学报,2011,27(10):2088-2094.LI S J,SONG W D,MIAO D L,et al.Synthesis,structural and properties of two strontium and Barium complexes based on2-propyl-1H-imidazole-4,5-dicarboxylic acid[J].Chinese Journal of Inorganic Chemistry,2011,27(10):2088-2094.[6]㊀WANG X,YU X W,LIN L,et al.Two metal-organic frameworks based on2,5-thiophenedicarboxylic acid and semi-rigid bis-imidazole ligand:luminescence,magnetism and electrocatalytic activities[J].Polyhedron,2019,161:325-329.[7]㊀陈小莉,商㊀璐,黄梦萍,等.基于三联吡啶/苯三羧酸类配体构筑的两个配合物的合成㊁结构和性质[J].无机化学学报,2021,37(2):340-350.CHEN X L,SHANG L,HUANG M P,et al.Two complexes based on terpyridine/benzotricarboxylic acid ligands:synthesis,structures and properties[J].Chinese Journal of Inorganic Chemistry,2021,37(2):340-350(in Chinese).㊀第2期保玉婷等:一例锶配合物的合成㊁结构及表征299㊀[8]㊀申美琳.Ln(Ⅲ)-萘二酸配合物荧光探针的离子热制备及其荧光性能研究[D].西安:陕西师范大学,2019.SHEN M L.Ionic thermal preparation and fluorescence properties of fluorescent probes of Ln(Ⅲ)-naphthalene dicarboxylic acid complexes[D].Xi'a n:Shaanxi Normal University,2019(in Chinese).[9]㊀PÉREZ JUANA M,SAMUEL M,GARCÍASALAS FRANCISCO M,et al.Metal-organic frameworks based on a janus-head biquinoline ligand ascatalysts in the transformation of carbonyl compounds into cyanohydrins and alcohols[J].Crystal Growth&Design,2022,22(12):7395-7404.[10]㊀刘㊀波,柴生勇,别国军,等.四苯基卟啉锶配合物的合成及发光性能[J].化学工程,2007,35(11):43-45+53.LIU B,CHAI S Y,BIE G J,et al.Synthesis and luminescence of tetrakis(phenyl)porphyrin strontium[J].Chemical Engineering(China), 2007,35(11):43-45+53(in Chinese).[11]㊀CHEN K,ZHU Z Q,ZHANG M H,et al.4,4 -Biphenyldisulfonic acid induced coordination polymers of symmetrical tetramethyl cucurbit[6]uril with alkaline-earth metals for detection of antibiotics[J].CrystEngComm,2023,25(6):961-970.[12]㊀LIU S S,CHENG M,LI B,et al.Ionothermal synthesis of a3D luminescent strontium(II)coordination polymer with dodecanuclear metallocyclicring segments[J].Journal of Inorganic and Organometallic Polymers and Materials,2015,25(5):1103-1110.[13]㊀HAIDER G,USMAN M,CHEN T P,et al.Electrically driven white light emission from intrinsic metal-organic framework[J].ACS Nano,2016,10(9):8366-8375.[14]㊀许明媛,朱莉娜,李㊀涛.1,8-萘二酸构筑的六核锌配合物的合成㊁结构和荧光性质[J].化学试剂,2020,42(11):1351-1354.XU M Y,ZHU L N,LI T.Synthesis,crystal structure and fluorescent properties of hexanuclear zinc complex constructed by1,8-naphthalene acid[J].Chemical Reagents,2020,42(11):1351-1354(in Chinese).[15]㊀SU X H,HASI Q,WEI Y M.Synthesis,structure and properties of semi-rigid polycarboxylic acid ligands containing naphthalene ring and theircomplexes[J].Modern Chemical Research,2021(19):1-3.[16]㊀CHO J,JEONG J H,SHIN H J,et al.Synthesis,structure and photoluminescence properties of naphthalene-based chiral zinc(II)complexes[J].Polyhedron,2020,187:114643.[17]㊀SHELDRICK G M.Crystal structure refinement with SHELXL[J].Acta Crystallographica Section C,Structural Chemistry,2015,71(1):3-8.[18]㊀黄小冬,程炯佳,陶程龙,等.基于1,4,5,8-萘四羧酸原位合成的钡配合物的结构㊁对芳香胺的检测及其作为纳米BaCO3的前驱体[J].无机化学学报,2022,38(3):559-568.HUANG X D,CHENG J J,TAO C L,et al.Barium complex in situ synthesized from1,4,5,8-Naphthalene tetracarboxylic acid:structure, detection of aromatic amines,and use as a precursor of nano BaCO3[J].Chinese Journal of Inorganic Chemistry,2022,38(3):559-568(in Chinese).[19]㊀LLIUNELL M,CASANOVA,D,CIRERA J.Shape v.2.0[Z].Universitat de Barcelona,Barcelona,2010.[20]㊀USMAN M,HAIDER G,MENDIRATTA S,et al.Continuous broadband emission from a metal-organic framework as a human-friendly white lightsource[J].Journal of Materials Chemistry C,2016,4(21):4728-4732.。
基于卟啉及其衍生物气体传感器的研究进展姑力米热·吐尔地;帕提曼·尼扎木丁;王佳明;阿布力孜·伊米提【摘要】卟啉及其金属配合物具有较大的摩尔消光系数、较高的磷光密度以及较好的耐光性,是检测挥发性有机气体的潜在的气敏材料.将卟啉及其金属配合物敏感材料应用于环境中的VOCs的检测已有了深入并活跃的研究.该文将基于不同制造技术的卟啉传感器的分类及其工作原理进行了简要介绍,并在VOCs的检测领域及研究方向做了展望.【期刊名称】《化学传感器》【年(卷),期】2017(037)003【总页数】7页(P17-23)【关键词】卟啉;金属卟啉配合物;卟啉传感器;气体传感器【作者】姑力米热·吐尔地;帕提曼·尼扎木丁;王佳明;阿布力孜·伊米提【作者单位】新疆大学化学化工学院,新疆乌鲁木齐830046;新疆大学化学化工学院,新疆乌鲁木齐830046;新疆大学化学化工学院,新疆乌鲁木齐830046;新疆大学化学化工学院,新疆乌鲁木齐830046【正文语种】中文0 引言卟啉(Porphyrin)是由Kuster在1912年首次提出的,其结构为“四吡咯”大环结构的并结构中包含环状大分子共轭化合物的总称。
卟吩(Porphin)是吡咯与响应的交联剂链接而生成,其分子中26个π电子离域的分布在卟啉大环上,因此,卟啉化合物是一类特殊的高度共轭的芳香体系。
卟吩环外围的H原子被其它基团所取代或中心N原子相链的两个H被金属离子所取代的同系物或衍生物即为卟啉。
因此,卟啉及其金属配合物的种类繁多、结构各异、功能复杂多样、在医学[1]、物理学[2]、分析化学、配位化学[3]以及医学与之有关的交叉科学等研究领域都占据着及其重要的地位。
通常用成环原子编号法对卟啉及其金属配合物进行命名编号。
International Union of Pure and Applied Chemistry(IUPAC,国际理论和应用化学协会)编号法是最常用的编号法之一。