(完整版)锂电池matlab_simulink建模与仿真
- 格式:doc
- 大小:2.53 MB
- 文档页数:12
390收稿日期:2008-10-19基金项目:国家“863”计划项目资助(2007AA 11A103)作者简介:张华辉(1979—),女,浙江省人,博士生,主要研究方向为新型电源技术与应用。
Biography:ZHANG Hua-hui (1979—),female,candidate for Ph D.动力锂离子电池稳态特性参数Map 建模与仿真张华辉1,齐铂金1,庞静2,吴红杰1(1.北京航空航天大学机械工程及自动化学院,北京100083;2.北京有色金属研究总院能源材料与技术研究所,北京100088)摘要:提出并实现了一种车用动力锂离子电池稳态特性参数的数学模型,该模型针对混合动力车用8Ah 锂离子电池,选取对电池SOC 有重要影响的性能参数(电压、电流、温度等),设计相关实验(主要是倍率充放电实验和开路电压SOC 关系实验);应用实验数据,通过插值、拟合等方法补充实验缺省数据,建立电池稳态特性参数Map 图,用以估算电池的SOC ,对建立的Map 用实际工况曲线进行仿真。
仿真结果表明,应用建立的Map 图,对电池稳态SOC 查询估算的精度可以达到4%以内。
关键词:车用动力电池管理系统;电池稳态参数数学模型;SOC 估算;Map 图中图分类号:TM 912.9文献标识码:A 文章编号:1002-087X(2009)05-0390-05Map modeling and emulation of steady-state characteristic parametersof power Li-ion batteryZHANG Hua-hui 1,QI Bo-jin 1,PANG Jing 2,WU Hong-jie 1(1.School of Mechanical Engineering &Automation,Beihang University,Beijing 100083,China;2.Energy Materials and Technology Research Institute,General Research Institute for Nonferrous Metals,Beijing 100088,China )Abstract:A model of steady-state characteristic parameters of Li-ion battery was proposed to achieve SOC (State-of-Charge)estimation.The model was established on Li-ion battery which had a rated capacity of 8Ah used for HEV.Some fateful characteristic parameters for battery SOC estimation such as voltage,current,temperature,and etc,were chosen to constitute the Map.Some experiments (mainly multiple current charge and discharge tests and OCV-SOC tests)were designed to get these e the methods of interpolation and fitting to complement the absent data,and get the battery steady-state parameter SOC estimation Map.An emulation of Li-ion battery actual work was tested,and the results indicate that using the method to estimate SOC makes the precision under 4%.Key words:battery management system;battery-steady-state-parameter model;SOC estimation;Map电动车用动力蓄电池的管理中,蓄电池荷电状态(SOC )的估算是一项关键技术。
MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three-Phase Series RLC Branch)(4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three-Phase V-I Measurement)(6)三相故障设置模块(Three-Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2.1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:1.2.2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1.2.5 故障设置模块勾选故障相A、B、C,设置短路电阻0.00001Ω,设置0.02s—0.2s发生短路故障,参数设置如下图:1.2.6 示波器模块为了得到仿真结果准确数值,可将示波器模块的“Data History”栏设置为下图所示:1.3 无穷大功率电源供电系统仿真结果及分析得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小,短路电流周期分量的幅值为Im=10.63kA,时间常数Ta=0.0211s,则短路冲击电流为Iim=17.3kA。
实验七SIMULINK 仿真集成环境一、实验目的熟悉SIMULINK 的模型窗口、熟练掌握SIMULINK 模型的创建,熟练掌握常用模块的操作及其连接。
二、实验内容(1) SIMULINK 模型的创建和运行。
(2) 一阶系统仿真。
三、实验步骤1.Simulink 模型的创建和运行(1) 创建模型。
①在MATLAB 的命令窗口中输入simulink 语句,或者单击MATLAB 工具条上的SIMULINK 图标,SIMULINK 模块库浏览器。
②在MATLAB 菜单或库浏览器菜单中选择File|New|Model,或者单击库浏览器的图标,即可新建一个“untitle”的空白模型窗口。
③打开“Sources”模块库,选择“Sine Wave”模块,将其拖到模型窗口,再重复一次;打开“Math Operations”模块库选取“Product”模块;打开“Sinks”模块库选取“Scope”模块。
(2) 设置模块参数。
①修改模块注释。
单击模块的注释处,出现虚线的编辑框,在编辑框中修改注释。
②双击下边“Sine Wave”模块,弹出参数对话框,将“Frequency”设置为100;双击“Scope”模块,弹出示波器窗口,然后单击示波器图标,弹出参数对话框,修改示波器的通道数“Number of axes”为3。
③如图A4 所示,用信号线连接模块。
图A4(3) 启动仿真①单击工具栏上的图标或者选择Simulation|Start 菜单项,启动仿真;然后双击“Scope”模块弹出示波器窗口,可以看到波形图。
②修改仿真步长。
在模型窗口的Simulation 菜单下选择“Configuration Parameters”命令,把“Max step size”设置为0.01;启动仿真,观察波形是不是比原来光滑。
③再次修改“Max step size”为0.001;设置仿真终止时间为10s;启动仿真,单击示波器工具栏中的按钮,可以自动调整显示范围,可以看到波形的起点不是零点,这是因为步长改小后,数据量增大,超出了示波器的缓冲。
基于MATLABSimulinkSimPowerSystems的永磁同步电机矢量控制系统建模与仿真一、本文概述随着电力电子技术和控制理论的快速发展,永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)因其高效率、高功率密度和优良的调速性能,在电动汽车、风力发电、机器人和工业自动化等领域得到了广泛应用。
然而,PMSM的高性能运行依赖于先进的控制系统,其中矢量控制(Vector Control, VC)是最常用的控制策略之一。
矢量控制,也称为场向量控制,其基本思想是通过坐标变换将电机的定子电流分解为与磁场方向正交的两个分量——转矩分量和励磁分量,并分别进行控制,从而实现电机的高性能运行。
这种控制策略需要对电机的动态行为和电磁关系有深入的理解,并且要求控制系统能够快速、准确地响应各种工况变化。
MATLAB/Simulink/SimPowerSystems是MathWorks公司开发的一套强大的电力系统和电机控制系统仿真工具。
通过Simulink的图形化建模环境和SimPowerSystems的电机及电力电子元件库,用户可以方便地进行电机控制系统的建模、仿真和分析。
本文旨在介绍基于MATLAB/Simulink/SimPowerSystems的永磁同步电机矢量控制系统的建模与仿真方法。
将简要概述永磁同步电机的基本结构和运行原理,然后详细介绍矢量控制的基本原理和坐标变换方法。
接着,将通过一个具体的案例,展示如何使用Simulink和SimPowerSystems进行永磁同步电机矢量控制系统的建模和仿真,并分析仿真结果,验证控制策略的有效性。
将讨论在实际应用中可能遇到的挑战和问题,并提出相应的解决方案。
通过本文的阅读,读者可以对永磁同步电机矢量控制系统有更深入的理解,并掌握使用MATLAB/Simulink/SimPowerSystems进行电机控制系统仿真的基本方法。
基于MatlabSimulink的电动汽车仿真模型设计与应用一、本文概述随着全球能源危机和环境污染问题的日益严重,电动汽车作为一种清洁、高效的交通工具,受到了越来越多的关注和推广。
在电动汽车的研发过程中,仿真模型的建立与应用发挥着至关重要的作用。
本文旨在探讨基于Matlab/Simulink的电动汽车仿真模型设计与应用,旨在为电动汽车的设计、优化和控制提供理论支持和实践指导。
本文将对电动汽车仿真模型的重要性进行阐述,指出其在电动汽车研发过程中的地位和作用。
接着,将详细介绍Matlab/Simulink在电动汽车仿真模型设计中的应用,包括其强大的建模功能、灵活的仿真能力以及高效的算法处理能力等。
在此基础上,本文将重点讨论电动汽车仿真模型的设计方法。
包括电动汽车动力系统的建模、控制系统的建模以及整车模型的集成等。
将结合具体案例,对电动汽车仿真模型在实际应用中的效果进行展示和分析,以验证其有效性和可靠性。
本文还将对电动汽车仿真模型的发展趋势进行展望,探讨其在未来电动汽车研发中的潜在应用前景。
通过本文的研究,希望能够为电动汽车仿真模型的设计与应用提供有益的参考和启示,推动电动汽车技术的不断发展和进步。
二、电动汽车仿真模型设计基础电动汽车(EV)仿真模型的设计是一个涉及多个学科领域的复杂过程,其中包括电力电子、控制理论、车辆动力学以及计算机建模等。
在Matlab/Simulink环境中,电动汽车仿真模型的设计基础主要包括对车辆各子系统的理解和建模,以及如何利用Simulink提供的各种模块和工具箱进行模型的构建和仿真。
电动汽车的主要子系统包括电池管理系统(BMS)、电机控制系统(MCS)、车辆控制系统(VCS)以及车辆动力学模型。
这些子系统都需要根据实际的电动汽车设计和性能参数进行精确的建模。
电池管理系统(BMS)建模:电池是电动汽车的能源来源,因此,BMS建模对于电动汽车的整体性能至关重要。
BMS模型需要包括电池的荷电状态(SOC)估计、电池健康状况(SOH)监测、电池热管理以及电池能量管理等功能。
matlab搭建电力系统仿真模型摘要:一、引言二、搭建电力系统仿真模型的方法1.打开Simulink 仿真2.选择空白模型3.打开模型库4.选择电力系统模块5.搭建模型并连接模块三、电力系统仿真模型的应用1.光伏电池输出特性仿真2.漏电保护死区仿真四、总结正文:一、引言MATLAB 是一种广泛应用于科学计算、数据分析和可视化的软件,其强大的功能可以助力各种领域的研究。
在电力系统领域,MATLAB 可以帮助工程师搭建仿真模型,从而对电力系统的运行特性和性能进行分析。
本文将介绍如何使用MATLAB 搭建电力系统仿真模型。
二、搭建电力系统仿真模型的方法1.打开Simulink 仿真首先,需要打开MATLAB 软件,然后点击“Simulink”图标,打开Simulink 仿真环境。
2.选择空白模型在Simulink 中,选择“blank model”新建一个空白模型,这将帮助我们从零开始搭建电力系统仿真模型。
3.打开模型库在搭建模型过程中,我们需要使用MATLAB 提供的模型库。
点击“Model Library”打开模型库,选择“Power Systems”目录下的“power”和“systems”子目录。
4.选择电力系统模块在模型库中,我们可以找到各种电力系统相关的模块,如发电机、变压器、输电线路等。
选择需要的模块并拖拽到新建的模型中。
5.搭建模型并连接模块将所选模块按照电力系统的结构进行搭建,并使用连接线将它们连接起来。
例如,将发电机连接到变压器,再将变压器连接到输电线路等。
三、电力系统仿真模型的应用1.光伏电池输出特性仿真通过MATLAB 仿真,我们可以研究光伏电池的输出特性。
搭建光伏电池模型,设置光照强度、环境温度等参数,然后进行仿真,得到光伏电池的输出特性曲线。
2.漏电保护死区仿真漏电保护死区是指漏电保护器在某些条件下无法正常工作的现象。
通过MATLAB 仿真,我们可以模拟漏电保护死区的形成过程,从而分析其对电力系统的影响。
MATLAB建模与仿真工具箱的使用指南绪论近年来,建模与仿真技术在各个领域的应用越来越广泛。
MATLAB作为一款强大的科学计算软件,拥有丰富的工具箱,其中建模与仿真工具箱是其中一项重要的功能。
本文将从初学者角度出发,指导读者如何使用MATLAB建模与仿真工具箱进行模型的构建和仿真。
一、建模与仿真简介1.1 建模的概念与意义建模是指利用已有的数据或者基础理论,通过建立数学或物理模型来描述和解决实际问题的过程。
建模能够对复杂的系统或现象进行抽象和简化,从而更好地理解和分析问题。
通过建模,我们可以预测系统的行为、优化系统性能、辅助决策等。
1.2 仿真的概念与应用仿真是指通过对建立的模型进行计算机模拟,以模拟实际系统或现象的行为。
仿真可以提供系统的动态演化信息,帮助我们理解系统行为,并且可以进行参数调整和优化。
仿真还可以用于产品开发、系统设计、风险评估等方面。
二、MATLAB建模与仿真工具箱简介2.1 工具箱的作用与组成MATLAB建模与仿真工具箱是为了方便用户进行系统建模与仿真而开发的一系列工具集合。
它包含了各种用于建模与仿真的函数、算法和工具,涵盖了多个领域的建模需求,如控制系统、信号处理、通信系统等。
2.2 常用工具箱的功能介绍2.2.1 SimulinkSimulink是MATLAB中最常用的建模与仿真工具,它提供了一个图形化的界面,可以通过将各种预定义的模块进行连接来构建系统模型。
Simulink支持多种类型的模型,如连续时间系统、离散时间系统、混合系统等。
Simulink还提供了丰富的仿真和分析工具,如参数扫描、优化、系统响应分析等。
2.2.2 Control System ToolboxControl System Toolbox是用于控制系统建模与仿真的工具箱,它提供了大量的函数和算法,用于设计和分析线性控制系统。
Control System Toolbox支持多种控制器设计方法,如PID控制器、先进的模型预测控制器等。
基于MATLABSimulink的控制系统建模与仿真实践控制系统是现代工程领域中一个至关重要的研究方向,它涉及到对系统的建模、分析和设计,以实现对系统行为的控制和调节。
MATLAB Simulink作为一款强大的工程仿真软件,在控制系统领域有着广泛的应用。
本文将介绍基于MATLAB Simulink的控制系统建模与仿真实践,包括建立系统模型、进行仿真分析以及设计控制算法等内容。
1. 控制系统建模在进行控制系统设计之前,首先需要建立系统的数学模型。
MATLAB Simulink提供了丰富的建模工具,可以方便快捷地搭建系统模型。
在建模过程中,可以利用各种传感器、执行器、控制器等组件来描述系统的结构和功能。
通过连接这些组件,并设置其参数和初始条件,可以构建出一个完整的系统模型。
2. 系统仿真分析建立好系统模型后,接下来就是进行仿真分析。
MATLABSimulink提供了强大的仿真功能,可以对系统进行各种不同条件下的仿真实验。
通过改变输入信号、调节参数值等操作,可以观察系统在不同工况下的响应情况,从而深入理解系统的动态特性和性能指标。
3. 控制算法设计在对系统进行仿真分析的基础上,可以针对系统的性能要求设计相应的控制算法。
MATLAB Simulink支持各种常见的控制算法设计方法,如PID控制、状态空间法、频域设计等。
通过在Simulink中搭建控制算法,并与系统模型进行联合仿真,可以验证算法的有效性和稳定性。
4. 系统优化与调试除了基本的控制算法设计外,MATLAB Simulink还提供了优化工具和调试功能,帮助工程师进一步改进系统性能。
通过优化算法对系统参数进行调整,可以使系统响应更加迅速、稳定;而通过调试功能可以检测和排除系统中可能存在的问题,确保系统正常运行。
5. 实例演示为了更好地说明基于MATLAB Simulink的控制系统建模与仿真实践,接下来将通过一个简单的倒立摆控制系统实例进行演示。
Simulink 自带电池模型翻译说明(部分内容)电池通用的电池模型。
路径Simscape / Electrical / Specialized Power Systems / Electric Drives / Extra Sources说明该电池模块实现了用参数化通用动态模型来表示当下最流行的可充电电池类型。
下图为该电池模块的等效电路。
对于铅酸蓄电池,采用以下数学模型: 放电模型(*i >0):**110()(,,,)(0)()t t t t Q Q Exp s f i i i Exp E K i K i Laplace Q i Q i Sel s -=-⋅⋅-⋅⋅+⋅-- 充电模型(*i <0):**120()1(,,,)()0.1()t t t t Q Q Exp s f i i i Exp E K i K i Laplace i Q Q i Sel s s-=-⋅⋅-⋅⋅+⋅+⋅-式中,- E0为常数电压,V。
- Exp(s)为指数区域特性,V。
- Sel(s)代表电池模型,Sel(s)=0为放电过程,Sel(s)=1为充电过程。
- K为极性常数,V/Ah,或者极性内阻,Ω。
- i*为低频电流特性,A。
- i 为电池电流。
- i t为提取容量,Ah- Q 为最大电池容量,Ah其他电池数学模型略。
充放电特性(仅铅酸电池)根据放电特性,可以修改等效电路的参数来表示特定的电池类型。
一个典型的放电曲线包含三部分。
第一部分表示电压以指数下降时该区域电量,下降的宽度取决于电池类型。
第二部分表示电池达到标称电压前的可用电量。
第三部分表示电压迅速下降时电池可用电量。
当电池电流为负值时,按照以下充电特性充电。
温度影响衰老效应略参数:●Parameters Tab●Discharge Tab●Temperature Tab●Aging TabParameters TabType(类型):有四种类型,选择需要的类型。