优化设计-蚁群算法
- 格式:pdf
- 大小:2.78 MB
- 文档页数:32
蚁群算法在优化问题中的应用蚁群算法是一种基于模拟蚂蚁行为的优化算法。
它主要适用于NP难问题(NP-hard problem),如图论、组合优化和生产调度问题等。
在这些问题中,找到近似最优解是非常困难的,蚁群算法通过模拟蚂蚁寻找食物的过程,利用蚂蚁的群智能来搜索最优解。
蚁群算法的基本思路是通过模拟蚂蚁找食物的过程,来寻找问题的最优解。
蚂蚁在寻找食物时,会在路径上释放一种信息素,这种信息素可以吸引其它蚂蚁跟随自己的路径。
信息素的浓度会随着路径的通行次数增加而增加,从而影响蚂蚁选择路径的概率。
在寻找最优解的过程中,蚂蚁的行为规则主要包括路径选择规则和信息素更新规则。
在路径选择规则方面,蚂蚁主要通过信息素浓度和距离来选择路径。
信息素浓度越高的路径,蚂蚁越有可能选择这条路径。
但是为了防止蚂蚁陷入局部最优解,蚂蚁也会有一定概率选择比较远的路径。
在信息素更新规则方面,主要是根据蚂蚁走过的路径长度和路径的信息素浓度来更新信息素。
如果一条路径被蚂蚁选中并走过,就会在路径上留下一定浓度的信息素。
而浓度高的路径会被更多的蚂蚁选择,从而增加信息素的浓度。
但是信息素会随着时间的推移而挥发,如果路径在一段时间内没有被选择,其上的信息素浓度就会逐渐减弱。
在实际应用中,蚁群算法主要用于优化问题,如图论、组合优化和生产调度问题等。
例如,在图论中,蚁群算法可以用来寻找最短路径问题。
在组合优化中,蚁群算法可以用来求解旅行商问题和装载问题等。
在生产调度问题中,蚁群算法可以用来优化生产过程和资源分配。
总之,蚁群算法是一种非常有用的优化算法,它可以利用群智能来搜索最优解,具有较好的鲁棒性和适应性。
未来,蚁群算法还可以应用于更多领域,如金融、医疗和物流等,为各行各业的优化问题提供更好的解决方案。
【优秀作业】蚁群优化算法蚁群优化算法一.概述生物学家发现,自然界中的蚁群觅食是一种群体性行为,并非单只蚂蚁自行寻找食物源。
蚂蚁在寻找食物源时,会在其经过的路径上释放一种信息素,并能够感知其它蚂蚁释放的信息素。
信息素浓度的大小表征到食物源路径的远近,信息素浓度越高,表示对应的路径距离越短。
通常,蚂蚁会以较大的概率优先选择信息素浓度较高的路径,并释放一定量的信息素,以增强该条路径上的信息素浓度,这样会形成一个正反馈。
最终,蚂蚁能够找到一条从巢穴到食物源的最佳路径,即最短距离。
值得一提的是,生物学家同时发现,路径上的信息素浓度会随着时间的推进而逐渐衰减。
20世纪90年代初,意大利学者M.Dorigo等人提出了模拟自然界蚂蚁群体觅食行为的蚁群算法。
其基本思想是:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
路径较短的蚂蚁释放的信息素量较多,随着时间的推进,较短的路径上积累的信息素浓度逐渐增高,选择该路径上的蚂蚁个数也越来越多。
最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。
二.蚁群算法解决TSP问题1. 算法原理M.Dorigo等人最早将蚁群算法用于解决旅行商问题(Traveling Salesman Problem,TSP),并取得了较好的实验结果。
设整个蚂蚁群体中蚂蚁的数量为,城市的数量为,城市与城市之间的距离为,时刻城市与城市连接路径上的信息素浓度为。
初始时刻,各个城市间连接路径上的信息素浓度相同,不妨设。
蚂蚁根据各个城市间连接路径上的信息素浓度决定下一个访问城市,设表示时刻蚂蚁从城市转移到城市的转移概率,其公式为:其中:为启发函数,表示蚂蚁从城市转移到城市的期望程度;为蚂蚁待访问城市的集合,开始时,中有个元素,即包括除了蚂蚁出发城市的所有其它城市,随着时间的推进,中的元素不断减少,直至为空,即表示所有的城市均访问完毕;为信息素重要程度因子,其值越大,表示信息素的浓度在转移中起的作用越大;为启发函数重要程度因子,其值越大,表示启发函数在转移中的作用越大,即蚂蚁会以较大的概率转移到距离短的城市。
其中,表示在t时刻蚂蚁k由元素(城市)i转移到元素(城市)j的状态转移概率。
allowedk = C − tabuk表示蚂蚁k下一步允许选择的城市。
α为启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起的作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间的协作性越强。
β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的受重视程度,其值越大,则该状态转移概率越接近于贪心规则;ηij(t) 为启发函数,表达式为。
式中,dij表示相邻两个城市之间的距离。
(6)修改禁忌表指针,即选择好之后将蚂蚁移动到新的元素(城市),并把该元素(城市)移动到该蚂蚁个体的禁忌表中。
(7)若集合C中元素(城市)未遍历完,即k<m,则跳转到第(4)步,否则执行第(8)步。
(8)根据公式更新每条路径上的信息量:τij(t + n) = (1 − ρ) * τij(t) + Δτij(t),(9)若满足结束条件,即如果循环次数,则循环结束并输出程序计算结果,否则清空禁忌表并跳转到第(2)步。
蚁群算法的matlab源程序1.蚁群算法主程序:main.m%function [bestroute,routelength]=AntClccleartic% 读入城市间距离矩阵数据文件CooCity = load( 'CooCity.txt' ) ;% 城市网络图坐标数据文件,txt形式给出NC=length(CooCity); % 城市个数for i=1:NC % 计算各城市间的距离for j=1:NCdistance(i,j)=sqrt((CooCity(i,2)-CooCity(j,2))^2+(CooCity(i,3)-CooCity(j,3))^2);endendMAXIT=10;%最大循环次数Citystart=[]; % 起点城市编号tau=ones(NC,NC); % 初始时刻各边上的信息痕迹为1rho=0.5; % 挥发系数alpha=1; % 残留信息相对重要度beta=5; % 预见值的相对重要度Q=10; % 蚁环常数NumAnt=20; % 蚂蚁数量routelength=inf; % 用来记录当前找到的最优路径长度for n=1:MAXITfor k=1:NumAnt %考查第K只蚂蚁deltatau=zeros(NC,NC); % 第K只蚂蚁移动前各边上的信息增量为零%[routek,lengthk]=path(distance,tau,alpha,beta,[]); % 不靠率起始点[routek,lengthk]=path(distance,tau,alpha,beta,Citystart); % 指定起始点if lengthk<routelength %找到一条更好的路径:::routelength=lengthk;:::bestroute=routek;endfor i=1:NC-1 % 第K只蚂蚁在路径上释放的信息量deltatau(routek(i),routek(i+1))=deltatau(routek(i),routek(i+1))+Q/lengthk; % 信息素更新end%deltatau(routek(NC),1)=deltatau(routek(NC),1)+Q/lengthk; %endlength_n(n)=routelength; % 记录路径收敛tau=(1-rho).*tau; % 信息素挥发end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%costtime=toc;subplot(1,2,1),plot([CooCity(bestroute,2)],[CooCity(bestroute,3)],'-*')subplot(1,2,2),plot([1:MAXIT],length_n,'-*')[routelength,costtime]2.蚁群算法寻找路径程序:path.m% 某只蚂蚁找到的某条路径routek,lengthkfunction [routek,lengthk]=path(distance,tau,alpha,beta,Citystart)[m,n]=size(distance);if isempty(Citystart) % 如果不确定起点p=fix(m*rand)+1; % 随机方式初始化起点,均匀概率elsep=Citystart; % 外部给定确定起点 endlengthk=0; % 初始路径长度设为 0routek=[p]; % 蚂蚁路径点序列,即该蚂蚁已经过的城市集合,路径初始起点for i=1:m-1np=routek(end); % 蚂蚁路径城市序号,依次经过的城市编号np_sum=0; % 路由长度初始为 0for j=1:mif inroute(j,routek) % 判断城市节点j是否属于tabuk,即是否已经过continue;else % j为还未经过的点ada=1/distance(np,j); % 预见度np_sum=np_sum+tau(np,j)^alpha*ada^beta; % 路由表:信息痕迹、预见度 endendcp=zeros(1,m); % 转移概率,基于路径长度及路由表for j=1:mifinroute(j,routek)continue;elseada=1/distance(np,j); % 预见度cp(j)=tau(np,j)^alpha*ada^beta/np_sum; % np到j的转移概率endendNextCity=nextcitychoose2(cp); % 根据转移概率确定下一个城市,% 直观地,取转移概率最大值方向方法,决策结果稳定且收敛快routek=[routek,NextCity]; % 更新路径lengthk=lengthk+distance(np,NextCity); % 更新路径长度end蚁群算法仿真结果:其中左边是蚂蚁行走的最短路径,右边是最短路径的值的收敛情况。
基于进制蚁群算法的自适应pid控制器优化设计与整定方
法
自适应PID控制器是一种根据系统状态自动调整PID参数
的控制器。
进制蚁群算法是一种模拟蚁群行为的优化算法,可以应用于PID控制器参数的优化。
基于进制蚁群算法的自适应PID控制器优化设计与整定方
法可以按照以下步骤进行:
1. 确定控制系统的目标和性能要求,包括稳定性、快速性
和精确性等指标。
2. 设计PID控制器结构,包括选择合适的比例系数、积分
系数和微分系数。
3. 将PID控制器的参数表示为进制形式,即通过进制编码
将参数转化为二进制形式。
4. 初始化进制蚁群算法中的参数,包括蚂蚁数量、迭代次数和信息素浓度等。
5. 利用蚁群算法搜索最优的PID参数组合,通过信息素的分布和挥发,蚂蚁在参数空间中搜索最优解。
6. 根据蚁群算法的搜索结果,更新PID控制器的参数。
7. 在实际控制系统中进行仿真或实验,评估优化后的PID 控制器的性能。
8. 根据实际反馈结果,对PID控制器进行进一步的调整和优化。
通过以上的步骤,基于进制蚁群算法的自适应PID控制器优化设计与整定方法能够根据系统的需求和性能要求,自动搜索最优的PID参数组合,提高控制系统的稳定性和性能。
同时,由于进制蚁群算法的全局搜索能力,可以避免陷入局部最优解的问题,提高了优化的准确性和效率。
蚁群算法基本原理
蚁群算法(Ant Colony Algorithm)是一种基于模拟蚁群行为的优化算法,用于解决复杂的优化问题。
其原理是模拟蚂蚁寻找食物的行为,在寻找过程中通过信息素来引导蚂蚁探索最优解。
基本流程:
1. 初始化:将蚂蚁随机分散在问题空间中,每只蚂蚁都随机选择一个起点。
2. 蚂蚁搜索:每只蚂蚁根据一定的概率选择下一个节点,概率与当前节点的信息素有关,如果信息素较高则该节点被选中的概率较大。
3. 信息素更新:每只蚂蚁在搜索过程中会留下一定的信息素,当搜索完成后,信息素会根据一定的规则进行更新,具体规则可以为:信息素浓度与路径长度成反比例关系,或者信息素挥发速度固定。
4. 最优解记录:当所有蚂蚁完成搜索后,从它们所走过的路径中选择获得最优解,并将该路径上的信息素浓度进行更新。
5. 重复搜索:重复上述所有步骤,直到达到设定的迭代次数或者满足终止条件。
蚁群算法基本原理就是通过模拟蚁群行为,通过信息素的引导来搜索最优解。
在
实际应用中,蚁群算法可以用于解决诸如旅行商问题、作业调度问题、路径规划问题、图像分割问题等优化问题。
蚁群算法及其连续优化算法初析蚁群算法是一种采用自然界中的蚂蚁群搜索最优解的技术,它可以有效地解决复杂的寻优问题。
该算法模拟蚁群在搜寻食物的过程,由此具有自我组织和自我激励能力,并且趋向于收敛到最优解。
蚁群算法是一种启发式搜索算法,通过观察现象联想结果,把它应用到很多优化问题,被称为解决复杂优化问题的一种强有力的工具。
蚁群算法也被称为微弱目标搜索算法,通常指粒子群算法(PSO),它是一种基于群智能(swam intelligence)的一类事件驱动方法,通过微量的调节迭代搜索优化求解问题。
该算法具有可拓展性、快速搜索效率、相较复杂模型可计算性等优势,算法建立非线性各向同性的最优搜索方法,加速优化求解过程。
蚁群算法的主要思想是从现有的解空间中概率性地搜索出一系列具有算法收敛的有效解决方案,同时具有快速的求解能力以及良好的收敛性能。
该算法的基本思想是利用一群蚂蚁建立最优寻优路径,它们在搜索时受到启发因子和个体影响,并采用概率性及随机性突发性现象,这就带来了蚁群算法的突出优势。
蚁群算法连续优化算法是蚁群算法的一种变形,它主要用于解决最优化问题,能够有效地求解含有非线性和多峰约束的优化问题。
与传统的蚁群算法不同,蚁群连续优化算法的核心思想是建立一个更新的连续优化器,用来代替蚁群算法中的随机搜索机制。
它通过将每只蚂蚁的位置和速度组合在一起,建立出一个鲁棒性更强的连续优化器,从而启发出更有效的策略。
蚁群算法及其连续优化算法具有广阔的应用前景,可以广泛用于约束优化、多目标优化、复杂布局优化等问题的求解。
它能够帮助用户更快地找到优化解,减少计算成本,提高优化效率,并且易于实现。
蚁群算法及其连续优化算法仍在不断发展,为我们探索解决更复杂优化问题提供了更多可能性。
总之,蚁群算法及其连续优化算法具有收敛性、可拓展性和具有快速搜索效率的特点,可以为我们提供更高效更准确的优化求解。
其可以广泛应用于复杂优化求解领域,成为解决复杂社会问题的有用工具。
蚁群算法原理一、什么是蚁群算法蚁群算法(Ant Colony Optimization,ACO)是一种仿生智能算法,它模拟蚂蚁搜索食物的行为,从而解决多种优化问题。
该算法旨在建立蚂蚁在搜索空间中的路径,并在这些路径上传播信息,从而使蚂蚁在搜索空间中最终能够找到最优解的路径。
二、蚁群算法的原理1、蚁群算法的基本原理蚁群算法建立在模拟生物天性的基础上,它的基本原理如下:蚂蚁在搜索过程中会搜索出一系列可能的路径,当它们回到搜索起点时,会把它们走过的路线信息传给其它蚂蚁,然后其它蚂蚁据此搜索出其它可能的路线,此过程一直持续,所有蚂蚁在搜索空间中随机探索,把自己走过的路线都留下越多的信息,这样就把多条路线的信息逐渐累积,最终能够找到最优解的路径,从而解决优化问题。
2、蚁群算法的过程(1)协作首先,许多蚂蚁在搜索空间中进行协作,它们在这个空间中进行随机搜索,并尝试找到最优解的路径。
(2)共嗅搜索过程中,蚂蚁会随机尝试搜索各种可能的路径,并在路径上沿途留下一些信息,这些信息就是蚂蚁在搜索过程中搜集到的数据,以这些数据为基础,一方面蚂蚁能够自动判断路径上的优劣,另一方面其它蚂蚁也可以共享这些信息,从而改进和优化搜索效率。
(3)路径搜索蚂蚁在搜索过程中会随机尝试搜索所有可能的路径,它们也会把自己走过的最好的路径留下,这个路径就是最后需要搜索的最优路径,当蚂蚁搜索完毕时,就能够把这条最优路径传给其它蚂蚁,从而解决优化问题。
三、蚁群算法的优势1、收敛性好蚁群算法拥有良好的收敛性,它可以较快地找到最优解。
2、实现简单蚁群算法实现简单,只需要定义蚂蚁在寻找最优路径时的行为模型即可,无需定义较多的参数,因此能够大大减少计算量。
3、鲁棒性高蚁群算法的鲁棒性很高,它可以有效地避免局部最优路径,从而更容易达到全局最优路径。
四、蚁群算法的应用1、旅行商问题蚁群算法可以用来解决旅行商问题,即给定一组城市,求解访问相关城市的最优路径。
蚁群算法(C语⾔实现)蚁群算法(ant colony optimization, ACO),⼜称蚂蚁算法,是⼀种⽤来在图中寻找优化路径的机率型算法。
它由Marco Dorigo于1992年在他的中提出,其灵感来源于蚂蚁在寻找⾷物过程中发现路径的⾏为。
蚁群算法是⼀种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进⾏了⽐较,数值仿真结果表明,蚁群算法具有⼀种新的模拟进化优化⽅法的有效性和应⽤价值。
预期的结果: 各个蚂蚁在没有事先告诉他们⾷物在什么地⽅的前提下开始寻找⾷物。
当⼀只找到⾷物以后,它会向⼀种信息素,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到⾷物!有些蚂蚁并没有象其它蚂蚁⼀样总重复同样的路,他们会另辟蹊径,如果令开辟的道路⽐原来的其他道路更短,那么,渐渐,更多的蚂蚁被吸引到这条较短的路上来。
最后,经过⼀段时间运⾏,可能会出现⼀条最短的路径被⼤多数蚂蚁重复着。
原理: 为什么⼩⼩的蚂蚁能够找到⾷物?他们具有智能么?设想,如果我们要为蚂蚁设计⼀个⼈⼯智能的程序,那么这个程序要多么复杂呢?⾸先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到⾷物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且⽐较它们的⼤⼩,⽽且更重要的是,你要⼩⼼翼翼的编程,因为程序的错误也许会让你前功尽弃。
这是多么不可思议的程序!太复杂了,恐怕没⼈能够完成这样繁琐冗余的程序。
然⽽,事实并没有你想得那么复杂,上⾯这个程序每个蚂蚁的核⼼程序编码不过100多⾏!为什么这么简单的程序会让蚂蚁⼲这样复杂的事情?答案是:简单规则的涌现。
事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关⼼很⼩范围内的眼前信息,⽽且根据这些局部信息利⽤⼏条简单的规则进⾏决策,这样,在蚁群这个集体⾥,复杂性的⾏为就会凸现出来。
7.1 蚁群优化算法概述•7.1.1 起源•7.1.2 应用领域•7.1.3 研究背景•7.1.4 研究现状•7.1.5 应用现状7.1.1 蚁群优化算法起源20世纪50年代中期创立了仿生学,人们从生物进化的机理中受到启发。
提出了许多用以解决复杂优化问题的新方法,如进化规划、进化策略、遗传算法等,这些算法成功地解决了一些实际问题。
20世纪90年代意大利学者M.Dorigo,V.Maniezzo,A.Colorni等从生物进化的机制中受到启发,通过模拟自然界蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法——蚁群算法,是群智能理论研究领域的一种主要算法。
背景:人工生命•“人工生命”是来研究具有某些生命基本特征的人工系统。
人工生命包括两方面的内容。
•研究如何利用计算技术研究生物现象。
•研究如何利用生物技术研究计算问题。
•现在关注的是第二部分的内容,现在已经有很多源于生物现象的计算技巧。
例如,人工神经网络是简化的大脑模型,遗传算法是模拟基因进化过程的。
•现在我们讨论另一种生物系统-社会系统。
更确切的是,在由简单个体组成的群落与环境以及个体之间的互动行为,也可称做“群智能”(swarm intelligence)。
这些模拟系统利用局部信息从而可能产生不可预测的群体行为(如鱼群和鸟群的运动规律),主要用于计算机视觉和计算机辅助设计。
•在计算智能(computational intelligence)领域有两种基于群智能的算法。
蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization)。
前者是对蚂蚁群落食物采集过程的模拟,已经成功运用在很多离散优化问题上。
•作为一种新兴演化计算技术,群智能已成为新的研究热点,它与人工生命,特别是进化策略和遗传算法有着极为特殊的联系,已完成的理论和应用研究证明群智能方法是一种能够有效解决大多数全局优化问题的新方法.••更为重要的是,群智能的潜在并行性和分布式特点为处理大量的以数据库形式存在的数据提供了技术保证.•因此无论是从理论研究还是应用研究的角度分析,群智能理论及其应用研究都是具有重要学术意义和现实价值的。
第五章蚁群优化算法5.1介绍蚁群优化(ACO)是群体智能的一部分,它模仿蚂蚁的合作行为来解决复杂的组合优化问题。
它的概念是由Marco Dorigo[1]和他的同事提出的,当他们观察到这些生物在寻找食物时所采用的相互交流和自我组织的合作方式时,他们感到很惊讶。
他们提出了执行这些策略的想法,为不同领域的复杂优化问题提供了解决方案,并获得了广泛的欢迎[1, 2]。
蚁群算法是一组被称为人工蚂蚁的软件代理,它们为特定的优化问题寻找好的解决方案。
蚁群算法是通过将问题映射成一个加权图来实现的,在加权图中,蚂蚁沿着边缘移动,寻找最佳路径。
蚁群研究(实际上是真正的蚂蚁)始于1959年,当时皮埃尔•保罗•格拉斯(Pierre Paul Grasse)发明了“协同”理论,解释了白蚁的筑巢行为。
之后于1983年Deneubourg和他的同事们[3]对蚂蚁的集体行为进行了研究。
1988年,Mayson和Manderick发表了一篇关于蚂蚁的自组织行为的文章。
最终在1989年,Goss, Aron, Deneubour, and Pasteelson在其研究工作(阿根廷蚂蚁的集体行为)中提出了蚁群算法的基本思想[4],同年,Ebling 及其同事提出了一食物定位模型。
1992年,Marco Dorigo(Dorigo, 1992)在其博士论文中提出了蚂蚁系统(Ant System)[1]。
一些研究人员将这些算法扩展到各个研究领域的应用中,Appleby和英国电信主管发表了第一个在电信网络中的应用,后来Schoonderwoerd 和他的同事在1997年对其进行了改进。
在2002年,它被应用于贝叶斯网络中的调度问题。
蚁群算法的设计是基于蚂蚁搜索巢穴和食物位置之间短路径的能力,这可能会因蚂蚁的种类而有所不同。
近年来,研究人员对蚁群算法的应用结果进行了研究,结果表明,所使用的大多数人工蚂蚁并不能提供最好的解决方案,而精英蚁群通过重复的交换技术提供了最好的解决方案。
基于蚁群算法的振动筛参数优化设计 李玥亭;张振山;王振威 【期刊名称】《重庆工商大学学报(自然科学版)》 【年(卷),期】2024(41)2 【摘 要】目的为研究振动筛的筛分参数对振动筛筛分效率的影响以及筛分颗粒在筛分过程中的运动规律,对振动筛进行参数优化设计。方法首先建立振动筛的三维模型,使用离散元分析软件EDEM对振动筛的筛分过程进行模拟仿真并使用正交试验法设计了多组振动筛筛分试验,通过离散单元法分析了振动筛的振幅、振动频率和振动方向角三个运动学参数对筛分效率的影响。对正交试验结果进行多元非线性拟合,在拟合函数的基础上使用蚁群算法寻找最佳筛分效率对应的振动参数值。结果振动频率增大会导致颗粒在筛箱中跳动次数过大,颗粒一直处于跳起状态,颗粒通过筛孔的概率降低,使筛分效率下降。振频对筛分效率的影响与振幅相似,随着振频的增大,筛面抖动加剧,对颗粒的作用力增大,颗粒在空中的时间增加,导致颗粒进入筛孔的机率减小,筛分效率下降。振动方向角增大时,筛分效率呈先增后减趋势,方向角过小时,颗粒朝几乎平行于筛网的方向弹出,与筛网总接触时间减小,透过筛孔的砂粒减小,方向角过大时,颗粒垂直于筛面弹出,筛分速度变慢,颗粒容易在筛面上堆积,可透过筛孔的颗粒在筛分过程中与筛面接触的机会减小,最终透过筛孔的颗粒减少,筛分效率下降。结论当振幅为2 mm,振频为18 Hz,振动方向角为44°时,振动筛的筛分效果最佳,此研究对振动筛的优化设计具有一定指导意义。
【总页数】8页(P34-41) 【作 者】李玥亭;张振山;王振威 【作者单位】上海工程技术大学机械与汽车工程学院 【正文语种】中 文 【中图分类】TD452 【相关文献】 1.基于蚁群算法的茶叶理条机参数优化设计2.基于蚁群算法的往复振动筛运动参数优化设计3.基于改进蜂群算法的往复振动筛运动参数优化设计4.基于粒子群算法的往复振动筛运动参数优化设计
因版权原因,仅展示原文概要,查看原文内容请购买
一、蚁群算法的背景信息蚁群优化算法(ACO)是一种模拟蚂蚁觅食行为的模拟优化算法,它是由意大利学者Dorigo M等人于1991年首先提出,之后,又系统研究了蚁群算法的基本原理和数学模型,并结合TSP优化问题与遗传算法、禁忌搜索算法、模拟退火算法、爬山法等进行了仿真实验比较,为蚁群算法的发展奠定了基础,并引起了全世界学者的关注与研究蚁群算法是一种基于种群的启发式仿生进化系统。
蚁群算法最早成功应用于解决著名的旅行商问题(TSP),该算法采用了分布式正反馈并行计算机制,易于与其他方法结合,而且具有较强的鲁棒性。
二、蚁群算法的原理[1]蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法。
蚂蚁在运动过程中,能够在它所经过的路径上留下一种称之为外激素(pheromo ne)的物质进行信息传递,而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向,因此由大量蚂蚁组成的蚁群集体行为便表现出一种信息正反馈现象 :某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。
基本的ACO模型由下面三个公式描述:a g(2-1;m号("1)二05®)+》蚯(2-2;(如果第k个蚂蚁经过了由i到j的路轻)〈2-3)btagJBJ.CDdTYykrLaoiO 式(2-1)、式(2-2)和式(2-3)中:m为蚂蚁个数;n为迭代次数;i为蚂蚁所在位置;j为蚂蚁可以到达的置;为蚂蚁可以到达位置的集合;为启发性信息(3-8>(3-9>Dlog. iirykii_2O1CJ式(3-9)中根据进行信息素更新的蚂蚁的类别可以是已知的最优解的路径长度或者是本次循环中的最优解的路径长度。
(2)信息素浓度的限制。
为了防止某条路径上的信息素出现大或者过小的极端情况,设定信息素浓度区间为。
通过这种方式使得在某条路径上的信息素浓度增大到超过区间上限或者减小到低于区间下限时,算法采用强制手段对其进行调整,以此提高算法的有效性。
蚁群算法蚁狮算法
蚁群算法(Ant Colony Algorithm)是一种模拟蚂蚁觅食行为的启发式优化算法。
它通过模拟蚂蚁在寻找食物过程中释放信息素的行为,来解决组合优化问题。
蚂蚁在寻找食物时会在路径上释放一种化学物质,称为信息素,其他蚂蚁通过感知到信息素的浓度来选择路径,从而实现最优路径的搜索。
蚁群算法的基本思想是:在解空间中随机生成一群蚂蚁,每只蚂蚁根据当前位置和信息素浓度选择下一个移动位置,移动后释放信息素。
信息素浓度会随着时间的推移逐渐蒸发。
蚂蚁根据信息素浓度和启发函数来选择下一个位置,启发函数一般根据问题的特性来设计。
最终,通过迭代更新信息素浓度和蒸发,蚂蚁群体会逐渐收敛到最优解。
蚁狮算法(Ant Lion Optimizer)是一种基于蚁狮捕食行为的启发式优化算法。
蚁狮是一种昆虫,它会在沙地上挖掘坑穴,然后隐藏在坑穴中等待猎物。
当猎物掉进坑穴时,蚁狮会迅速捕捉并吃掉它。
蚁狮算法模拟了蚁狮捕食行为,通过追踪猎物的行为来寻找最优解。
蚁狮算法的基本思想是:在解空间中随机生成一群蚂蚁,每只蚂蚁根据当前位置和信息素浓度选择下一个移动位置。
与蚁群算法不同的是,蚁狮算法引入了一个蚁狮,它代表了当前最优解,蚂蚁会追踪蚁狮的位置。
当蚂蚁接近蚁狮时,它会增加信息素浓度,从而吸引其他蚂蚁朝着蚁狮方向移动。
蚁狮会不断更新自身位置,以寻找
更优解。
最终,通过迭代更新信息素浓度和蚁狮位置,蚂蚁群体会逐渐收敛到最优解。
蚁群算法路径优化matlab代码蚁群算法是一种基于生物群体的智能算法,常用于路径优化等问题。
在这个问题中,蚂蚁在寻找食物时会根据周围的环境信息和食物的香味找到最短路径。
本文将介绍如何在 MATLAB 中使用蚁群算法进行路径优化,并提供一些拓展。
在 MATLAB 中实现蚁群算法需要用到三个主要函数:ants_logic.m、ants_move.m 和 ants_display.m。
以下是这三个函数的基本功能和代码实现。
1. ants_logic.m这个函数是蚁群算法的核心部分,负责计算蚂蚁的当前路径和更新路径搜索树。
函数的基本思路是每个蚂蚁根据当前环境和食物香味来选择前进方向,如果前方是死路或食物已经被其他蚂蚁找到,则蚂蚁会返回原路。
如果蚂蚁到达了食物位置,则它会将自己的信息传递给其他蚂蚁,并更新食物香味。
拓展:在路径优化问题中,通常会有多个不同的路径可供选择,而蚁群算法可以通过学习其他蚂蚁的路径来发现更短、更快的路径。
为了实现这一功能,可以在 ants_logic.m 函数中增加一个参数,指示当前蚂蚁应该学习其他哪个蚂蚁的路径。
2. ants_move.m这个函数负责控制蚂蚁的移动方向。
在函数中,我们需要给定蚂蚁的当前位置和食物位置,并计算蚂蚁应该移动到的新位置。
在MATLAB 中,我们可以使用 rand 函数生成一个随机数,然后将其作为新位置的坐标。
拓展:为了提高路径搜索的效率,我们可以在 ants_move.m 函数中加入一些随机因子。
例如,可以在蚂蚁移动方向上添加一个随机偏置,这样可以让蚂蚁更有可能探索新的区域。
3. ants_display.m这个函数用于可视化路径搜索的过程。
在函数中,我们可以给定蚂蚁的初始位置和食物位置,并使用 MATLAB 的图形处理函数绘制路径。
拓展:为了使路径搜索过程更加有趣,我们可以在ants_display.m 函数中添加一些动画效果。
例如,可以使用 MATLAB 的 animation 函数创建动画,让蚂蚁路径在屏幕上动态地显示。
基于蚁群算法的多目标优化研究1. 引言随着社会经济的发展和科技的进步,越来越多的问题需要考虑多个目标因素,而单一的优化方法常常无法达到最优解。
此时,多目标优化就成为了一项重要的研究内容。
多目标优化是指在存在多个目标函数的情况下,寻求一种最佳的解决方案,该方案可以使所有目标函数达到最优状态。
2. 多目标优化的困难之处多目标优化问题存在以下困难:(1)目标函数之间的相互制约和矛盾,即不存在一个解能够同时使得所有目标函数达到最小值或最大值。
因此,在多目标优化中要寻找一种折中的方式,使得所有目标都得到一定的满足。
(2)搜索空间巨大,对计算资源和时间有很高的要求。
常用的单目标优化算法如遗传算法、粒子群算法等,并不能直接应用于多目标优化问题。
因此需要寻找一种特别的算法。
3. 多目标优化算法的分类多目标优化算法常见的有以下几种:(1)加权法:将目标函数通过线性加权的方式转化为单一的优化目标函数,但是难以确定权值的选择。
(2)约束法:通过增加约束条件限制解的可行性。
虽然能够得到可行性解,但是约束条件的提出需要较强的领域知识支持。
(3)进化算法:基于自然进化的思想,如遗传算法、粒子群算法等。
因为其搜索空间大,局部非常优秀,被广泛应用。
(4)蚁群算法:基于蚁群的觅食行为提出的一种算法,具有强适应性和鲁棒性,因而被广泛应用。
4. 基于蚁群算法的多目标优化蚁群算法是一种模拟蚂蚁觅食行为的算法。
在蚁群算法中,蚂蚁按照信息素浓度和轨迹长度等因素选择路径。
可以通过不同的参数设置使得算法更适用于多目标优化问题。
(1)基本原理在蚁群算法中,最常见的方式是为每个目标函数分配一只蚂蚁。
每只蚂蚁根据已访问过的路径上的信息素来选择下一步的行动,路径信息素表示了上一次得到的最优解。
具体而言,某只蚂蚁遍历路径的顺序是:选择某个位置之前,它需要考虑该位置的信息素和距离,其中信息素的重要性要比距离的重要性高。
通过不断迭代产生越来越好的解。
(2)多目标优化过程多目标优化过程中,要求在不与其他优化目标发生冲突的情况下,蚂蚁从搜索空间中找到尽可能多的解。