毕业设计驱动桥文献综述(可编辑修改word版)
- 格式:docx
- 大小:20.53 KB
- 文档页数:7
驱动桥壳毕业设计【篇一:驱动桥毕业设计111】某型重卡驱动桥设计摘要驱动桥是构成汽车的四大总成之一,一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成,它位于传动系末端,其基本作用是增矩、降速,承受作用于路面和车架或车身之间的力。
它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要,采用传动效率高的单级减速驱动桥已经成为未来载重汽车的发展方向。
本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计本次设计首先对驱动桥的特点进行了说明,根据给定的数据确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型及参数,并对其强度进行校核。
数据确定后,利用autocad建立二维图,再用catia软件建立三维模型,最后用caita中的分析模块对驱动桥壳进行有限元分析。
关键词:驱动桥;cad;catia;有限元分析abstractdrivie axle is one of the four parts of a car, it is generally constituted by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on it is at the end of the powertrain.its basic function is increasing the torque and reducing speed and bearing the force between the road and the frame or body.its performance will have adirect impact on automobile performance,and it is particularly important for the truck. using single stage and high transmission efficiency of the drive axle has become the development direction of the future trucks.this article referred to the traditional driving axles design method to carry on the truck driving axles design.in this design,first part is the introduction of the characteristics of the drive axle,according to the given date to calculate the parameters of the automobile,then confirm the structure types and parameters of the main reducer, differentialmechanism,half shaft and axle housing,then check thestrength and life of them.after confirming theparameters, using autocad to establish 2 dimensionalmodel,then using catia establish 3 dimensional model. finally using the analysis module in catia to finite element analysis for the axle housing.key words: drive axle;cad;catia;finite element analysis目录1 绪论 (1)1.1 驱动桥简介 (1)1.2 国内外研究现状 (1)1.3 驱动桥设计要求 (1)2 驱动桥设计 (3)2.1 主减速器设计 (3)2.1.1 主减速器的结构形式 (3)2.1.2 主减速器的减速形式 (4)2.1.3 主减速器主,从动锥齿轮的支撑方案 (4)2.1.4 主减速器基本参数选择与计算载荷的确定 (6)2.2 差速器设计 (17)2.2.1 对称锥齿轮式差速器工作原理 (17)2.2.2 对称式圆锥行星齿轮差速器的结构 (17)2.2.3 对称式圆锥行星齿轮差速器的设计 (18)2.3 驱动半轴的设计 (23)2.3.1 结构形式分析 (23)2.3.2全浮式半轴的结构设计 (24)2.3.3 全浮式半轴的强度计算 (24)2.3.4 半轴的结构设计及材料与热处理 (25)2.3.5 半轴花键的强度计算 (25)2.4 驱动桥壳的设计 (26)2.4.1整体式桥壳的结构 (27)2.4.2 桥壳的受力分析与强度计算 ......................................... 27 3 catia三维建模 ........................................ 错误!未定义书签。
目录1 前言 (1)1.1 本课题的来源、基本前提条件和技术要求 (1)1.2 本课题要解决的主要问题和设计总体思路 (1)1.3 预期的成果 (1)2 国内外发展状况及现状的介绍 (3)3 总体方案论证 (4)4 具体设计说明 (7)4.1 主减速器的设计 (7)4.1.1 主减速器的结构型式 (7)4.1.2 主减速器主动锥齿轮的支承型式及安装方法 (9)4.1.3 主减速器从动锥齿轮的支承型式及安装方法 (10)4.1.4 主减速器的基本参数的选择及计算 (10)4.2 差速器的设计 (13)4.2.1差速器的结构型式 (13)4.2.2差速器的基本参数的选择及计算 (15)4.3 半轴的设计 (16)4.3.1半轴的结构型式 (16)4.3.2半轴的设计与计算 (16)4.4驱动桥壳结构选择 (19)5 结论 (21)参考文献 (22)1 前言本课题是进行低速载货汽车后驱动桥的设计。
设计出小型低速载货汽车后驱动桥,包括主减速器、差速器、驱动车轮的传动装置及桥壳等部件,协调设计车辆的全局。
1.1 本课题的来源、基本前提条件和技术要求a.本课题的来源:轻型载货汽车在汽车生产中占有大的比重。
驱动桥在整车中十分重要,设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展。
b.要完成本课题的基本前提条件是:在主要参数确定的情况下,设计选用驱动桥的各个部件,选出最佳的方案。
c.技术要求:设计出的驱动桥符合国家各项轻型货车的标准[1],运行稳定可靠,成本降低,适合本国路面的行驶状况和国情。
1.2 本课题要解决的主要问题和设计总体思路a. 本课题解决的主要问题:设计出适合本课题的驱动桥。
汽车传动系的总任务是传递发动机的动力,使之适应于汽车行驶的需要。
在一般汽车的机械式传动中,有了变速器还不能完全解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。
首先是因为绝大多数的发动机在汽车上的纵向安置的,为使其转矩能传给左、右驱动车轮,必须由驱动桥的主减速器来改变转矩的传递方向,同时还得由驱动桥的差速器来解决左、右驱动车轮间的转矩分配问题和差速要求。
摘要驱动桥作为传动系的主要组成部件之一,尤其对于越野车,车辆的动力性、通过性、安全性更为重要。
该设计的研究目的就是为了使其在山地和高原以及平原地带进行行驶、救援及勘探等。
因此,该设计论述了高机动越野运输车0.5t驱动桥的结构设计过程,其中主要包括主减速器、差速器和轮边减速器。
根据设计参数选择驱动桥的结构形式,然后根据类似驱动桥结构确定出总体设计方案。
最后,对主减速器的主、从动锥齿轮、差速器齿轮、轮边减速器及全浮式半轴和驱动桥壳进行强度校核;对支承半轴进行寿命校核。
该轮边减速器可通过更换齿轮的的方式来改变传动比,从而较好地适应山地要求。
在提供较大传动比的同时,又能增大离地间隙,提高汽车的通过性,并配合轮边减速器的使用。
最后确定方案,设计出一个高效、可靠的驱动桥。
关键词:越野车;驱动桥;主减速器;轮边减速器ABSTRACTDrive axle transmission system as one of the main components, especially for off-road vehicles, the vehicle's power, by nature, safety is more important.This design research purpose is to make it in the hills and plains of the plateau and driving, rescue and exploration.Therefore, this design discusses high-mobility off-road vehicle structure design of 0.3 t driving axle process which include main reducer, differential and wheel edges reducer.According to the structure of the drive axle design parameters selection, then according to similar forms of driving axle structure determine the overall design scheme.Finally, the main reducer Lord, driven bevel gear, differential gears, wheel edges reducer and complete floating half axle and driving axle shell check intensity; Life for supporting half shaft dynamicrigidity.This wheel edges of gear reducer can by changing the way to change gear ratios, thus better meet the mountain requirements.In provide larger ratio, and meanwhile increases ground clearance is achieved, making cars through sex, and the use of speed reducer with wheel edges.The final determination scheme, design a more efficient and reliable driving axle.Key Words:suvs;axles;main reducer;wheel edges reducer目录摘要 (I)ABSTRACT (II)1引言 (1)1.1设计题目的来源和意义 (1)1.2高机动越野车的发展及车结构的特点 (2)2 驱动桥结构方案分析 (3)3 主减速器的方案论证 (4)3.1主减速器的结构形式的选择 (4)3.1.1 主减速器的齿轮类型选择 (4)3.1.2 主减速器的减速形式选择 (6)3.1.3 主减速器主、从动锥齿轮的支承型式 (8)3.2 主减速器基本参数的选择与计算载荷的确定 (10)3.2.1主减速器齿轮计算载荷的确定 (10)3.2.2主减速器齿轮基本参数的确定 (10)3.3主减速器锥齿轮强度的计算 (12)3.3.1单位齿长上的圆周力 (12)3.3.2轮齿的弯曲强度计算 (13)3.3.3轮齿的接触强度计算 (14)3.4主减速器轴承的计算 (15)3.4.1锥齿轮的轴向力和径向力计算 (15)3.4.2锥齿轮轴承的载荷计算与轴承强度校核 (15)3.4.3主减速器齿轮的材料及热处理 (18)4 差速器总成的设计 (19)4.1差速器结构形式选择 (19)4.2差速器齿轮主要参数选择 (20)4.3差速器齿轮强度计算 (22)5 半轴的设计 (23)5.1半轴的形式选择 (23)5.2半轴的结构设计和校核、材料选择 (24)5.2.1 半轴的结构设计与校核 (24)5.2.2 半轴的材料选择 (25)6 驱动桥壳选择 (25)7 轮边减速器的设计 (26)7.1 中心距的初步确定 (27)7.2 齿轮模数的初步确定 (27)7.3 确定齿轮中心距 (27)7.4 尺宽 (27)7.5 齿轮模数的确定 (28)7.6 确定齿轮几何尺寸 (28)7.7 选择材料及确定许用应力 (29)7.8 计算齿轮的接触强度 (29)8 轴的结构设计 (30)8.1估算轴的直径: (30)8.2轴的强度校核 (30)8.3轴承的选择 (31)8.4减速器壳体 (32)结论 (33)参考文献 (34)致谢 (35)1引言1.1设计题目的来源和意义山地33%,高原26%,盆地19%,平原12%,这是我国的地形分布。
毕业设计文献综述----转向驱动桥一.前言汽车的驱动桥处于传动系的末端,主要由主减速器,差速器,半轴和驱动桥壳等组成。
其功用是:(1)将万向传动装置传来的发动机转矩通过主减速器,差速器,半轴等传到驱动车轮,实现降低转速,增大转矩;(2)通过主减速器圆锥齿轮副改变转矩的传递方向;(3)通过差速器实现两侧车轮差速作用,保证内,外侧车轮以不同转速转向。
同时,驱动桥还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。
驱动桥的结构型式与驱动车轮的悬挂型式密切相关。
对于各种不同类型和用途的汽车,正确地确定上述机件的结构型式并成功地将它组合成一个整体,是设计中的关键问题。
二.转向驱动桥的主要形式目前世界上使用最多的汽车驱动桥的类型有断开式驱动桥和非断开式驱动桥两种。
一般汽车的驱动桥总体构造由驱动桥壳,主减速器,差速器,半轴和轮毂组成。
从变速器或分动器经万向传动装置输入驱动桥的转矩首先传到主减速器,在此增大转矩并相应降低转速后,经差速器分配给左,右两半轴,最后通过半轴外端的凸缘盘传至驱动车轮的轮毂。
驱动桥壳由主减速器壳和半轴套管组成。
轮毂借助轴承支承在半轴套管上。
整个驱动桥通过弹性悬架与车架连接,由于半轴套管与主减速器壳是刚性地连成一体的,因而两侧的半轴和驱动轮不可能在横向平面内作相对运动,故称这种驱动桥为非断开式驱动桥,亦称为整体式驱动桥。
为了提高汽车行驶平顺性和通过性,有些轿车和越野车全部或部分驱动轮采用独立悬架,即将两侧的驱动轮分别用弹性悬架与车架相连,两轮可彼此独立地相对车架上下跳动。
与此相对,主减速器壳固定在车架上。
驱动桥壳应制成分段并通过铰链连接,这种驱动桥称为断开式驱动桥,主减速器固定在车架或车身上,两侧车轮分别通过各自的弹性元件,减震器和摆臂组成的弹性悬架与车架相连。
为适应车轮绕摆臂轴上下跳动的需要,差速器与轮毂之间的半轴两端用万向节连接。
驱动桥的组成驱动桥主要由主减速器、差速器、半轴和驱动桥壳等组成。
驱动桥综述张勤辉(重庆工学院汽车学院 104040501 班)摘要:本文阐述了汽车驱动桥的作用和重要性,总结了国内外驱动桥的主要零部件技术现状及其发展趋势。
同时,指出了我国驱动桥设计开发中存在的问题,提及到驱动桥设计的先进开发模式。
并从众多车桥厂生产的产品中总结、分析了未来驱动桥的发展方向。
关键词: 重要性现状设计新方法发展趋势Abstract: This paper provides an overview of the driving axles’role and importance, Technology Status and trends of drive axles’main Components in home and abroad has being summed up. Meanwhile, the national R&D of drive axle existing problems was analyzed. And from numerous Axles plants' products it Summarize and Analysis the future development of driving axles.K e y W o r d s:Importance;Status;New Design Method;Development trend1、引言近十几年来,我国汽车工业发展迅猛。
汽车工业的发展带动了零部件及相关产业的发展,作为汽车关键零部件之一的汽车驱动桥也得到相应的发展,各生产厂家在研发和生产过程中基本上形成了专业化、系列化、批量化的局面[1]。
汽车驱动桥是汽车的重要总成之一,驱动桥处于动力传动系的末端,主要由主减速器、差速器、车轮传动装置和驱动桥壳等组成,其基本功能是增大由传动轴或变速器传递的转矩,并将转矩合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力、纵向力和横向力[2]。
第五章驱动桥设计第一节概述驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。
驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。
驱动桥设计应当满足如下基本要求:1) 所选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。
2) 外形尺寸要小,保证有必要的离地间隙。
3) 齿轮及其它传动件工作平稳,噪声小。
4) )在各种转速和载荷下具有高的传动效率。
5) 在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。
6) 与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。
7) 结构简单,加工工艺性好,制造容易,拆装,调整方便。
第二节驱动桥的结构方案分析驱动桥的结构形式与驱动车轮的悬架形式密切相关。
当车轮采用非独立悬架时,驱动桥应为非断开式(或称为整体式),即驱动桥壳是一根连接左右驱动车轮的刚性空心梁(图5—1),而主减速器、差速器及车轮传动装置(由左、右半轴组成)都装在它里面。
当采用独立悬架时,为保证运动协调,驱动桥应为断开式。
这种驱动桥无刚性的整体外壳,主减速器及其壳体装在车架或车身上,两侧驱动车轮则与车架或车身作弹性联系,并可彼此独立地分别相对于车架或车身作上下摆动,车轮传动装置采用万向节传动(图5—2)。
为了防止运动干涉,应采用滑动花键轴或一种允许两轴能有适量轴向移动的万向传动机构。
具有桥壳的非断开式驱动桥结构简单、制造工艺性好、成本低、工作可靠、维修调整容易,广泛应用于各种载货汽车、客车及多数的越野汽车和部分小轿车上。
但整个驱动桥均属于簧下质量,对汽车平顺性和降低动载荷不利。
断开式驱动桥结构较复杂,成本较高,但它大大地增加了离地间隙;减小了簧下质量,从而改善了行驶平顺性,提高了汽车的平均车速;减小了汽车在行驶时作用于车轮和车桥上的动载荷,提高了零部件的使用寿命;由于驱动车轮与地面的接触情况及对各种地形的适应性较好,大大增强了车轮的抗侧滑能力;与之相配合的独立悬架导向机构设计得合理,可增加汽车的不足转向效应,提高汽车的操纵稳定性。
载重汽车驱动桥设计2253摘要驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。
当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。
所以采用传动效率高的单级减速驱动桥已成为未来重载汽车的发展方向。
本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计。
本文首先确定主要部件的结构型式和主要设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支承轴承进行了寿命校核。
本文不是采用传统的双曲面锥齿轮作为载重汽车的主减速器而是采用弧齿锥齿轮,希望这能作为一个课题继续研究下去。
关键字:载重汽车 驱动桥 单级减速桥 弧齿锥齿轮The Designing of Heavy Truck Rear Drive AxlesAbstractDrive axle is the one of automobile four important assemblies.It` performance directly influence on the entire automobile,especially for the heavy truck .Because using the big power engine with the big driving torque satisfied the need of high speed,heavy-loaded, high efficiency, high benefit today`heavy truck,must exploiting the high driven efficiency single reduction final drive axle is becoming the heavy truck`developing tendency. This design following the traditional designing method of the drive axle. First ,make up the main parts`structure and the key designing parameters; thus reference to the similar driving axle structure , decide the entire designing project ; fanially check the strength of the axle drive bevel pinion ,bevel gear wheel ,the differentional planetary pinion, differential side gear , full-floating axle shaft and the banjo axle housing , and the life expection of carrier bearing . The designing take the spiral bevel gear for the tradional hypoid gear ,as the gear type of heavy truck`s final drive,with the expection of the question being discussed, further .Key words:heavy truck drive axle single reduction final drivethe spiral bevel gear目录摘要 (I)ABSTRACT (II)前言 (1)第一章驱动桥结构方案分析 (2)第二章主减速器设计 (4)2.1主减速器的结构形式 (4)2.1.1 主减速器的齿轮类型 (4)2.1.2 主减速器的减速形式 (4)2.1.3 主减速器主,从动锥齿轮的支承形式 (4)2.2主减速器的基本参数选择与设计计算 (4)2.2.1 主减速器计算载荷的确定 (4)2.2.2 主减速器基本参数的选择 (6)2.2.3 主减速器圆弧锥齿轮的几何尺寸计算 (8)2.2.4 主减速器圆弧锥齿轮的强度计算 (10)2.2.5 主减速器齿轮的材料及热处理 (14)2.2.6 主减速器轴承的计算 (15)第三章差速器设计 (21)3.1对称式圆锥行星齿轮差速器的差速原理 (21)3.2对称式圆锥行星齿轮差速器的结构 (22)3.3对称式圆锥行星齿轮差速器的设计 (22)3.3.1 差速器齿轮的基本参数的选择 (22)3.3.2 差速器齿轮的几何计算 (24)3.3.3 差速器齿轮的强度计算 (26)第四章驱动半轴的设计 (28)4.1全浮式半轴计算载荷的确定 (28)4.2全浮式半轴的杆部直径的初选 (29)4.3全浮式半轴的强度计算 (29)4.4半轴花键的强度计算 (30)第五章驱动桥壳的设计 (31)5.1铸造整体式桥壳的结构 (31)5.2桥壳的受力分析与强度计算 (32)5.2.1 桥壳的静弯曲应力计算 (32)5.2.2 在不平路面冲击载荷作用下的桥壳强度计算 (34)5.2.3 汽车以最大牵引力行驶时的桥壳强度计算 (34)5.2.4 汽车紧急制动时的桥壳强度计算 (36)结论 (39)致谢 (40)参考文献 (41)附录 (42)前言汽车驱动桥位于传动系的末端。
1 前言本设计课题是改进CA7204型汽车驱动桥的设计。
故本说明书将以“驱动桥设计”内容对驱动桥及其主要零部件的结构型式、设计计算及性能分析作一一介绍。
汽车驱动桥位于传动系的末端,其基本功用是增大由传动轴或直接从变速器传来的转矩,将转矩合理的分配给左、右驱动车轮具有汽车行驶运动学所要求的差速功能。
驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式、设计计算方法与性能分析。
汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。
汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。
另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分总成等的品种最多的大总成。
例如,驱动桥包含主减速器、差速器、半轴、桥壳和各种齿轮。
由上述可见,汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械制造工艺。
因此,通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能。
他有以下两大难题,一是将发动机输出扭矩通过变速箱将动力传递到差速器上,达到更好的车轮牵引力与转向力的有效发挥,从而提高汽车的行驶能力。
二是差速器向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。
本课题的设计思路可分为以下几点:首先选择初始方案,CA7204型轿车属于乘用车,采用发动机横置前轮驱动,所以设计的驱动桥结构需要符合乘用车的结构要求;接着选择各部件的结构形式;最后选择各部件的具体参数,设计出各主要尺寸,再通过各部件的具体参数进行cruise的性能分析,然后对各参数进行优化设计所设计的CA7204型轿车驱动桥制造工艺性好、外形美观,工作更稳定、可靠。
毕业设计(论文)文献综述题目某车型汽车驱动桥设计专业机械设计制造及其自动化班级学生指导教师x x x x x x x x大学2016摘要驱动桥作为汽车的四大总成之一位于汽车传动系统末端,一般由主减速器、车轮传动装置、差速器和驱动桥壳等组成。
驱动桥在整车系统的功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右驱动轮,实现汽车行驶运动中所要求的左、右驱动轮的差速功能。
它的性能的好坏直接影响着汽车整车性能的好坏,所以驱动桥对于汽车非常重要。
同时汽车在行驶的过程中面临的道路环境多种多样,这样就使得驱动桥的工作环境变得极其恶劣,要承受来自路面和车体的各种振动、冲击和作用力。
而汽车在运行过程中的平顺性、舒适性、耐久性、通过性、振动噪声、传动效率都与驱动桥密切相关[1]。
本文主要介绍汽车驱动桥的研发现状、发展前景、应用现状、内部主要零件的组成、传动方案等。
关键词:汽车驱动桥,模块化设计,开发模式,整体性能,车桥市场前言随着我国经济的不断发展,目前我国已经成为世界第二大经济体,在经济发展的同时我国的汽车工业也迅猛的发展壮大,汽车工业随之带动了个汽车领域的零部件相关的产业链的发展。
驱动桥作为汽车四大总成之一,也跟随着汽车工业的发展而得到了相应的发展,国内的零部件厂家已经在研发生产过程中逐步形成了专业化、系列化、批量化生产的局面。
驱动桥位于汽车动力传动系的末端,其主要部分为:主减速器(轮边减速器)、差速器、车轮传动装置和驱动桥壳等,驱动桥的基本功能是传递扭矩、增大扭矩,同时合理的将扭矩分配给左、右驱动轮并实现差速功能,还需要承受各种复杂的力的作用。
驱动桥还对整车的机械性、可靠性、经济性等起着至关重要的作用。
虽然目前我国汽车工业已经得到了一定的发展,但就汽车驱动桥方面而言,我国仍旧存在诸多需要继续提升的地方,例如我们自主的研发能力还是有一定的局限性,现代先进的电子技术运用在产品的研发生产上的不够全面,现代产品设计分析方法没有得到充分的运用,生产自动化、智能化不够明显等。
摘要变速器用来改变发动机传到驱动轮上的转矩和转速,目的是在原地起步、爬坡、转弯、加速等各种行驶工况下,使汽车获得不同的牵引力和速度,同时使发动机在最有利的工况范围内工作。
所以变速器的结构设计的合理性直接影响到汽车动力性和经济性。
设计要求达到换挡迅速、省力、方便、有较高的工作效率、工作噪声低。
因此变速器在汽车中得到广泛应用。
本次设计的是五个前进档加一个倒档的中型专用车的变速器。
为了使该变速器应用范围更加的广泛,应用到不同工程上,使得本变速器带有取力器。
变速器采用中间轴式,换档形式采用的是同步器和滑移齿轮换档,使的换档方便,可靠。
操纵机构设有自锁和互锁装置。
先利用已知参数确定各挡传动比,再后确定齿轮的模数、压力角、齿宽等参数。
由中心矩确定箱体的长度、高度和中间轴及二轴的轴径,然后对中间轴和各挡齿轮进行校核。
在设计过程中,利用CAXA绘图,运用MATALAB软件编程。
最后绘制装配图及零件图。
通过本次设计,使所设计的变速器工作可靠,传动效率更高。
关键词:变速器,同步器,齿轮,取力器AbstractTo change the engine used to spread transmission of torque and wheel speed, the aim of starting in place, climb, turn and accelerate a variety of driving conditions, different vehicle traction and speed, while the engine in the most favorable range conditions.Therefore, the reasonability of the structure design of a transmission gearbox directly affects the vehicle's dynamic performance. It is usually required shifting gears rapidly and conveniently, saving force, and having a higher working efficiency and low working noises.The design of the five forward file plus a reverse of the transmission medium-sized special vehicle. In order to make the transmission more broad range of applications, application to a different project, make a check of the power transmission device. Transmission use of the middle axis, shifting the form of using the synchronizer gear shift and sliding to make the shift easy and reliable. Manipulation of institutions with self-locking and interlocking devices.Using the given basic parameters, it was firstly determined the transmission ratio of each shift, the shaft center distances, the gear modulus, the gear pressing angles and widths, and so on. And then the general dimension of the gearbox, including its length, width and height , and then on the intermediate shaft and the block to check gear. During the design process, using CAXA mapping, the use of software programming MATALAB. The final assembly drawing and components drawing Fig.Through this design, so that the design of the transmission of reliable, efficient transmission.Key words:Transmission,,Synchronizer,Gear,Take out of power目录第一章前言 (1)第二章变速器结构概述 (2)第三章变速器各主要参数的设计计算 (3)3.1变速器传动比的确定 (3)3.2中心距的初步确定 (4)3.3轴的直径的初步确定 (4)3.4齿轮模数的确定 (5)3.5齿轮压力角的选择 (5)3.6各档齿轮齿数的分配 (6)3.7变位系数的选择 (7)3.8齿轮齿宽的设计计算 (8)3.9变速器同步器的设计计算 (8)第四章变速器中间轴的校核 (11)4.1中间轴常啮合齿轮处进行校核 (12)4.2对中间轴四挡齿轮处进行校核 (13)4.3对中间轴三挡齿轮进行校核 (14)4.4对中间轴二挡齿轮处进行校核 (15)4.5对中间轴一档挡齿轮处进行校核 (15)第五章变速器各档齿轮强度的校核 (17)5.1齿轮弯曲应力计算 (17)5.1.1二轴一挡直齿轮校核 (17)5.1.2倒挡直齿轮校核 (17)5.1.3二轴二挡斜齿轮校核 (18)5.1.4二轴三挡斜齿轮校核 (18)5.1.5二轴四挡斜齿轮校核 (18)5.1.6二轴常啮合斜齿轮校核 (19)5.1.7中间轴一档齿轮校核 (19)5.1.8中间轴二档齿轮校核 (19)5.1.9中间轴三档齿轮校核 (20)5.1.1.0中间轴四档齿轮校核 (20)5.1.1.1中间轴常啮合齿轮校核 (20)5.2齿轮接触应力计算 (20)5.2.1 二轴一挡直齿轮校核 (21)5.2.2二轴二挡斜齿轮校核 (22)校核 (22)5.2.3 二轴三挡斜齿轮Z7校核 (23)5.2.4二轴四挡斜齿轮Z5校核 (23)5.2.5二轴常啮合斜齿轮Z35.2.6中间轴一档齿轮校核 (24)5.2.7中间轴二档齿轮校核 (24)5.2.8中间轴三档齿轮校核 (24)5.2.9中间轴四档齿轮校核 (25)5.2.1.0中间轴常啮合齿轮校核 (25)5.2.1.1倒档齿轮校核 (25)第六章变速器操纵机构的设计 (27)第七章变速器轴承的选择 (28)第八章取力器的设计与计算 (29)8.1取力器的布置 (29)8.2取力器齿轮、轴和轴承的参数选择和强度计算 (29)第九章结论 (33)参考文献 (34)致谢 (35)附录一 (36)外文翻译 (36)附录二 (45)第一章前言变速器是传动系的重要部件,它的任务就是充分发挥发动机的性能,使发动机发出的动力有效而经济地传到驱动轮,以满足汽车行驶上的各项要求。
五菱汽车驱动桥结构设计毕业设计论文第1章驱动桥总成的结构型式与布置§1.1 总体方案论证驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力力和横向力。
驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。
§1.2驱动桥的分类驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。
当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。
因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。
独立悬架驱动桥结构可以大大提高汽车在不平路面上的行驶平顺性。
§1.2.1非断开式驱动桥普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。
他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。
这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。
驱动桥的轮廓尺寸主要取决于主减速器的型式。
在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。
在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。
在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。
对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。
诚信声明本人郑重声明:本论文及其研究工作是本人在指导教师的指导下独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。
本人签名:年月日毕业设计任务书设计题目:驱动桥差速器的设计系部:机械工程系专业:机械设计及其自动化学号: 1350111 15 学生:指导教师(含职称):1.课题意义及目标。
通过毕业设计,能够对机械传动的原理及差速器的结构有深刻的理解和掌握,对设计规范、计算方法及设计思想等内容有一定的了解,为学生在毕业后能尽快适应所从事的工作奠定一些基础。
2.主要任务1.确定叉车驱动桥差速器的结构形式,并进行必要的设计计算。
2.绘制叉车驱动桥差速器装配图及零件图。
3.编写设计说明书一本4.电子资料一份。
附:1.车型:3吨叉车;2.空载质量:5400kg3.满载质量:8400kg4.轮距:前20%;5.最高车速:20km/h 最大爬坡度:3000;6.传动系最小传动比:;主减速器传动比:6;轮边传动比:2;7.最大起升高度:2000mm ;8.载荷中心:500;9.自由起升高度:155;10.最大转速:3700;3.主要参考资料[1]刘惟信编着.叉车车桥设计 .北京:清华大学出版社,2004[2]徐颢主编.机械设计手册(第3,4卷).北京:机械工业出版社,1991[3]吉林大学王望予主编.叉车设计(第四版).北京:机械工业出版社,2004[4]吉林大学陈家瑞主编.叉车构造(下册).北京:机械工业出版社,2005[5] 朱孝录主手册.北京:化学工业出版社,2005[6]邱宣怀主编.机械设计.北京:高等教育出版社,1997[7]廖念钊等编 .互换性与技术测量(第四版).北京:中国计量出版社,2000[8]王明珠主编 .工程制图学及计算机绘图 .北京:国防工业出版社,19984.进度安排审核人:年月日摘要:本次毕业设计主要是对安装在驱动桥的两个半轴之间的差速器进行设计,主要涉及到了差速器非标准零件如齿轮结构和标准零件的设计计算,同时也介绍了差速器的发展现状和差速器的种类,对于差速器的方案选择和工作原理也作出了简略的说明,在设计中参考了大量的文献,因此对差速器的机构和作用有了更透彻的了解,通过利用Proe软件对差速器进行建模工作,也让我学习方面得到了提高。
第1章绪论1.1 概述1.1.1驱动桥总成概述随着汽车工业的发展及汽车技术的提高,驱动桥的设计,制造工艺都在日益完善。
驱动桥也和其他汽车总成一样,除了广泛采用新技术外,在机构设计中日益朝着“零件标准化、部件通用化、产品系列化”的方向发展及生产组织的专业化目标前进。
汽车驱动桥位于传动系的末端, 一般由主减速器,差速器,车轮传动装置和桥壳组成。
其基本功用是增扭、降速和改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。
根据车桥上车轮的作用,车桥又可分为转向桥、驱动桥、转向驱动桥和支持桥四种类型。
其中,转向桥和支持桥都属于从动桥,一般越野车多以前桥为转向桥,而后桥为驱动桥。
驱动桥的结构型式与驱动车轮的悬挂型式密切相关。
当驱动车轮采用非独立悬挂时,例如在绝大多数的载货汽车和部分小轿车上,都是采用非断开式驱动桥;当驱动车轮采用独立悬挂时,则配以断开式驱动桥。
1.1.2 驱动桥设计的要求设计驱动桥时应当满足如下基本要求:1)选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性。
外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的要求。
2)齿轮及其它传动件工作平稳,噪声小。
在各种载荷和转速工况下有较高的传动效率。
3)具有足够的强度和刚度,以承受和传递作用于路面和车架或车身间的各种力和力矩;在此条件下,尽可能降低质量,尤其是簧下质量,减少不平路面的冲击载荷,提高汽车的平顺性。
与悬架导向机构运动协调。
4)结构简单,加工工艺性好,制造容易,维修,调整方便。
1.2 驱动桥设计方案的确定1.2.1 主减速器结构方案的确定1)主减速器齿轮的类型螺旋锥齿轮能承受大的载荷,而且工作平稳,即使在高速运转时其噪声和振动也是很小的。
本次设计采用螺旋锥齿轮。
2)主减速器主动锥齿轮的支承形式及安装方式的选择本次设计选用:主动锥齿轮:骑马式支撑(圆锥滚子轴承)从动锥齿轮:骑马式支撑(圆锥滚子轴承)3)从动锥齿轮的支承方式和安装方式的选择从动锥齿轮的两端支承多采用圆锥滚子轴承,安装时应使它们的圆锥滚子大端相向朝内,而小端相向朝外。
首先由本次手中的资料中《汽车构造》一书的驱动桥一章的内容来介绍一下主减速器一功能与作用驱动桥的功能是将主减速器装置传来的动力改变其传递方向并由主减速器减速增扭后传给差速器再分配到左右半轴最后传至驱动轮使汽车行驶。
一般的汽车的驱动桥由减速器差速器半轴桥壳等组成。
万向传动装置传来的动力一次经主减速器减速器可以渐低转速增加扭矩并改变转矩的传递方向以适应汽车的行驶的方向。
差速器的功用是在必要时可使汽车两侧的车轮以不同的转速旋转以适应汽车转弯及在必要时可使汽车两侧的车轮以不同的转速旋转以适应汽车转弯及在不平道路上行驶。
半轴的功用是将扭矩从差速器传到驱动轮。
桥壳用以支撑汽车的部分重量并承受驱动论上的各种作用力并同时它有事主减速器差速器等传动装置的外壳。
二结构类型按悬架结构不同驱动桥分为整体式驱动桥和段开始驱动桥两种。
整体式驱动桥和断开式驱动桥通过悬架和车架连接左右两半轴始终太一条直线上即左右驱动轮不能相互独立地跳动。
当某一侧车轮通过地面的突出物或凹坑升高或下降时整个驱动桥及车身都要随之发生倾斜车身波动大。
主减速器是汽车传动系中减小转速、增大扭矩的主要部件。
对发动机纵置的汽车来说主减速器还利用锥齿轮传动以改变动力方向。
汽车正常行驶时发动机的转速通常在2000至3000r/min左右如果将这么高的转速只靠变速箱来降低下来那么变速箱内齿轮副的传动比则需很大而齿轮副的传动比越大两齿轮的半径比也越大换句话说也就是变速箱的尺寸会越大。
另外转速下降而扭矩必然增加也就加大了变速箱与变速箱后一级传动机构的传动负荷。
所以在动力向左右驱动轮分流的差速器之前设置一个主减速器可使主减速器前面的传动部件如变速箱、分动器、万向传动装置等传递的扭矩减小也可以使变速箱的尺寸、质量减小操纵省力。
现代汽车的主减速器广泛采用螺旋锥齿轮和双曲面齿轮。
双曲面齿轮工作时齿面间的压力和滑动较大齿面油膜易被破坏必须采用双曲面齿轮油润滑绝不允许用普通齿轮油代替否则将使齿面迅速擦伤和磨损大大降低使用寿命。
驱动桥综述张勤辉(重庆工学院汽车学院 104040501 班)摘要:本文阐述了汽车驱动桥的作用和重要性,总结了国内外驱动桥的主要零部件技术现状及其发展趋势。
同时,指出了我国驱动桥设计开发中存在的问题,提及到驱动桥设计的先进开发模式。
并从众多车桥厂生产的产品中总结、分析了未来驱动桥的发展方向。
关键词: 重要性现状设计新方法发展趋势Abstract: This paper provides an overview of the driving axles’role and importance, Technology Status and trends of drive axles’main Components in home and abroad has being summed up. Meanwhile, the national R&D of drive axle existing problems was analyzed. And from numerous Axles plants' products it Summarize and Analysis the future development of driving axles.K e y W o r d s:Importance;Status;New Design Method;Development trend1、引言近十几年来,我国汽车工业发展迅猛。
汽车工业的发展带动了零部件及相关产业的发展,作为汽车关键零部件之一的汽车驱动桥也得到相应的发展,各生产厂家在研发和生产过程中基本上形成了专业化、系列化、批量化的局面[1]。
汽车驱动桥是汽车的重要总成之一,驱动桥处于动力传动系的末端,主要由主减速器、差速器、车轮传动装置和驱动桥壳等组成,其基本功能是增大由传动轴或变速器传递的转矩,并将转矩合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力、纵向力和横向力[2]。
它的结构形式和设计参数除对汽车的可靠性与耐久性有很大影响外,也对汽车的性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。
因此,对驱动桥设计方法的研究就显得尤为重要[3]。
2、国外驱动桥产品发展历程及研究现状主减速器是汽车传动系中减小转速、增大扭矩的主要部件。
对发动机纵置的汽车来说,主减速器还利用锥齿轮传动以改变动力方向。
现代汽车驱动桥的主减速器,广泛采用螺旋锥齿轮和双曲面齿轮。
2.1齿轮技术的发展历史齿轮技术历史可追溯到3000~5000年前,几乎和人类文明史同步[4]。
1890~1930年,赫兹(Hertz)公式(1891年)和Lewis公式(1892年)的提出奠定了现代齿轮强度计算的基础,齿轮制造进入工业化生产,在欧洲和北美洲出现不少齿轮工厂。
以铸造齿轮为主,进入2O世纪则出现了滚齿机、插齿机和磨齿机等加工机床。
后来渐开线直齿轮、斜齿轮、锥齿轮,准双曲面齿轮和蜗轮蜗杆等传动形式出现。
1930~1960年,四五十年代基本完成了各种类型啮合几何学和切齿刀具设计的研究,20o齿形角得到更多的应用,60年代多头滚刀的应用显著地提高了切齿效率。
随着机械工业的发展,各种机器对齿轮精度的要求发展到一个新的高度,齿轮技术也相应的发展到一个新的层次。
1960~1980年,齿轮技术在这一时期有了快速的进展。
航天事业时发展要求运载工具和航空齿轮以很小的体积传递较大功率,并要求有99.9%以上的高可靠度。
中硬齿面和硬齿面重载齿轮广泛应用,珩齿技术使齿面光洁度空前提高,同时,促进了各种润滑添加剂和二元酸酯合成油的发展和应用。
在此期间,刀具齿形角更多采用为20至25度,并对齿轮疲劳寿命和材料疲劳特性进行广泛研究,美国(AGMA,)、德国(DIN)以及国际标准化组织(IS0)先后制订了较为全面的齿轮配套标准到1980年后,齿轮技术有了飞速发展;硬面渐开线齿轮居主导地位,其承载能力、制造精度和生产效率显著提高。
计算机及其他微电子控制技术在齿轮设计、制造、热处理、试验过程控制和生产管理等方面广泛应用,技术日臻成熟,效果显著。
齿轮现代设计方法开始应用,强度计算方怯渐趋完善,优化和CAD应用更加广泛,动态设计、振动噪声控制及可靠性分析进入应用性研究。
质量保证体系和质量管理作为一门技术分支进入齿轮工业。
2.2驱动桥技术现状2.2.1模块化技术的采用模块化设计是对在一定范围内的不同功能或相同功能不同性能、不同规格的机械产品进行功能分析的基础上,划分并设计出一系列功能模块,然后通过模块的选择和组合构成不同产品的一种设计方法.以DANA为代表的意大利企业多已采用了该类设计方法, 优点是: 减少设计及工装制造的投入, 减少了零件种类, 提高规模生产程度, 降低制造费用, 提高市场响应速度等。
2.2.2模态分析模态分析是对工程结构进行振动分析研究的最先进的现代方法与手段之一。
它可以定义为对结构动态特性的解析分析(有限元分析)和实验分析(实验模态分析),其结构动态特性用模态参数来表征。
模态分析技术的特点与优点是在对系统做动力学分析时,用模态坐标代替物理学坐标,从而可大大压缩系统分析的自由度数目,分析精度较高。
驱动桥的振动特性不但直接影响其本身的强度,而且对整车的舒适性和平顺性有着至关重要的影响。
因此,对驱动桥进行模态分析,掌握和改善其振动特性,是设计中的重要方面[5]。
2.2.3配置高性能制动器的驱动桥技术在世界各国的生机产品中, 已出现了自循环冷却功能的湿式制动器桥、带散热风送的盘式制动器桥、适于A B S的蹄、鼓式和盘式制动器桥、带自动补偿间隙的盘式制动器等配置高性能制动器桥,同时制动器的布置位置也出现了从桥臂处分别向桥包总成和轮边端部转移的趋势。
前种处理方式易于散热,后种处理方式为了降低成本, 甚至有厂商把制动器的壳体与桥壳铸为一体, 既易于散热,又利于降低材料成本, 但这对铸造技术、铸造精度和加工精度都提出了极高的要求。
[6]3、国内驱动桥技术研究水平3.1国内驱动桥技术现状我国驱动桥制造企业的开发模式主要由测绘、引进、自主开发三种组成。
主要存在技术含量低,开发模式落后,技术创新力不够,计算机辅助设计应用少等问题[7]。
3.1.1以测绘和引进为主的开发模式在国内的大多数中小企业中,测绘市场销路较好的产品是它们的主要开发模式。
特别是一些小型企业或民营企业由于自身的技术含量低,开发资金的不足,专门测绘、仿制市场上销售较旺的汽车的车桥售往我国不健全的配件市场。
这种开发模式是无法从根本上提高我国驱动桥产品开发水平的。
另外一些企业技术力量相对要好些,它们虽然也同样是测绘,但它们测绘的是从国外引进的原装桥,并且这些企业一般具有较为完善的开发体系和流程,也具有较完善的试验手段,但无论它们多努力,它们自身的技术原因和我国基础工业(如原材料等)的问题,制造的汽车车桥与原装车桥始终存在一定的差距[8]。
3.1.2自主研发的开发模式同样,国内也有一些实力较强的企业,它们有自己的技术中心,其开发流程和手段健全。
采用自主开发的模式,与主机厂同步开发或预见性的开发,利用自身的开发优势影响主机厂的开发思路,使开发的产品与整车达到较为理想的匹配。
这种开发模式能很好地锻炼技术队伍,提升开发人员素质[9]。
主要以一汽、汉德、安庆、红岩重型车桥等大型车桥企业为代表。
这些企业都具有自己独立的研发机构,自主创新设计已经起步,且在驱动桥技术方面已经有了一定的研究成果,比如,汉德车桥公司首次实现技术出口,一汽自主研发的 500 单级桥达到国际水平,2005年安庆车桥厂的转向驱动桥出口加拿大。
3.2国内驱动桥设计方法传统设计是以生产经验为基础,以运用力学、数学和回归方法形成的公式、图表、手册等为依据进行的。
3.2.1驱动桥壳常规设计方法早期驱动桥壳设计通常采用设计和试验交叉进行。
在驱动桥壳结构定型之前往往经过多轮设计,设计面对的对象是实物,需要经过样品试制-试验-修改-再设计的往复,这种方式不可避免地导致整个设计周过期长,造成人力、物力和财力资源的严重浪费。
随着设计经验的积累,人们将计算技术应用于汽车驱动桥壳结构性能的分析及设计中。
初期的驱动桥壳结构性能计算是通汽车驱动桥壳优化设计过将驱动桥壳简化成单根纵梁,进行弯曲强度校核。
这种计算方法至今还在沿用,但它显然满足不了汽车驱动桥壳结构性能的设计要求。
后来提出的驱动桥壳结构扭转强度计算方法,只能计算纯扭转工况,不能考虑驱动桥壳的实际工况,而且,计算比较复杂,工作量大,在实际运用中存在着很大的困难。
再后来,人们将比较设计的思想应用于驱动桥壳设计中。
这种设计方法是以同一类型的成熟样车为参考来进行驱动桥壳的设计,目前依然是驱动桥壳结构初步设计的主要方法。
但是,这种方法可能造成驱动桥壳各处材质不均匀,某些局部强度富裕较大,产生材料浪费等现象[10]。
3.2.2弧齿锥齿加工方法传统的Gleason 技术[11]是以“局部共轭原理”为基础的。
首先切出大轮齿面, 然后选取一个计算参考点,求出与大轮齿面做线接触的小轮齿面在参考点处的位置、法向量以及法曲率等一阶、二阶接触参数,然后根据要求修正小轮齿面在参考点处的法曲率,并以此为基础来确定小轮切齿调整参数。
由此可见,修正小轮齿面在参考点处的法曲率是弧齿锥齿轮与准双曲面齿轮技术的关键和难点,并且修正后的齿面啮合性能只能通过试切滚检或通过仿真分析后才能知道。
因此,为了得到满意的啮合性能往往需要反复多次,且需要经验的积累。
目前国内的齿轮加工企业大都采用这种加工方式,但也有更先进技术的使用如綦江齿轮厂引进的洛克威尔单级桥齿轮技术,采用特殊的“HYPOID GENEROID”锥齿轮传动,该齿轮运用了计算机辅助设计与制造技术,运转时有较多对齿同时啮合,强度高、噪音小、寿命长。
4、驱动桥关键技术及先进开发模式4.1驱动桥壳有限元分析法20 世纪 60 年代以来,由于电子计算机的迅速发展,有限元法在工程上获得了广泛应用。
有限元法不需要对所分析的结构进行严格的简化,既可以考虑各种计算要求和条件,也可以计算各种工况,而且计算精度高。
有限元法将具有无限个自由度的连续体离散为有限个自由度的单元集合体,使问题简化为适合于数值解法的问题。
只要确定了单元的力学特性,就可以按照结构分析的方法求解,使分析过程大为简化,配以计算机就可以解决许多解析法无法解决的复杂工程问题[12]。
目前,有限元法己经成为求解数学、物理、力学以及工程问题的一种有效的数值方法,也为驱动桥壳设计提供了强有力的工具。
4.2驱动桥的参数化设计参数化设计(Parametrie)(也叫尺寸驱动 Dimension-Driven)是指设计对象模型的尺寸用变量及其关系表示,而不需要确定具体数值[13],是 CAD 技术在实际应用中提出的课题,它不仅可使 CAD 系统具有交互式绘图功能,还具有自动绘图的功能。