陕西省中考数学试题及答案版
- 格式:doc
- 大小:48.50 KB
- 文档页数:4
2022年陕西省中考数学试卷(A卷)(真题)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)(2022•陕西)﹣37的相反数是()A.﹣37 B.37 C.D.2.(3分)(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°3.(3分)(2022•陕西)计算:2x•(﹣3x2y3)=()A.6x3y3B.﹣6x2y3C.﹣6x3y3D.18x3y34.(3分)(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AC B.AC⊥BD C.AB=AD D.AC=BD 5.(3分)(2022•陕西)如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为()A.3B.3C.3D.66.(3分)(2022•陕西)在同一平面直角坐标系中,直线y=﹣x+4与y=2x+m 相交于点P(3,n),则关于x,y的方程组的解为()A.B.C.D.7.(3分)(2022•陕西)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°8.(3分)(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y1二、填空题(共5小题,每小题3分,计15分)9.(3分)(2022•陕西)计算:3﹣=.10.(3分)(2022•陕西)实数a,b在数轴上对应点的位置如图所示,则a﹣b.(填“>”“=”或“<”)11.(3分)(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB 的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为米.12.(3分)(2022•陕西)已知点A(﹣2,m)在一个反比例函数的图象上,点A'与点A关于y轴对称.若点A'在正比例函数y=x的图象上,则这个反比例函数的表达式为.13.(3分)(2022•陕西)如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)(2022•陕西)计算:5×(﹣3)+|﹣|﹣()0.15.(5分)(2022•陕西)解不等式组:.16.(5分)(2022•陕西)化简:(+1)÷.17.(5分)(2022•陕西)如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)18.(5分)(2022•陕西)如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.19.(5分)(2022•陕西)如图,△ABC的顶点坐标分别为A(﹣2,3),B(﹣3,0),C(﹣1,﹣1).将△ABC平移后得到△A'B'C',且点A的对应点是A'(2,3),点B、C的对应点分别是B'、C'.(1)点A、A'之间的距离是;(2)请在图中画出△A'B'C'.20.(5分)(2022•陕西)有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.21.(6分)(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.22.(7分)(2022•陕西)如图,是一个“函数求值机”的示意图,其中y是x 的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.输入x…﹣6 ﹣4 ﹣2 0 2 …输出y…﹣6 ﹣2 2 6 16 …根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.23.(7分)(2022•陕西)某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟A t<60 8 50B60≤t<90 16 75C90≤t<120 40 105D t≥120 36 150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.24.(8分)(2022•陕西)如图,AB是⊙O的直径,AM是⊙O的切线,AC、CD是⊙O的弦,且CD⊥AB,垂足为E,连接BD并延长,交AM于点P.(1)求证:∠CAB=∠APB;(2)若⊙O的半径r=5,AC=8,求线段PD的长.25.(8分)(2022•陕西)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O 垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE=10m,该抛物线的顶点P到OE的距离为9m.(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.26.(10分)(2022•陕西)问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.2022年陕西省中考数学试卷(A卷)参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)(2022•陕西)﹣37的相反数是()A.﹣37 B.37 C.D.【分析】根据相反数的意义即可得到结论.【解答】解:﹣37的相反数是﹣(﹣37)=37,故选:B.【点评】本题主要考查了相反数,熟记相反数的定义是解决问题的关键.2.(3分)(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【分析】根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.【点评】本题考查的是平行线的判定和性质,掌握平行线的性质是解题的关键.3.(3分)(2022•陕西)计算:2x•(﹣3x2y3)=()A.6x3y3B.﹣6x2y3C.﹣6x3y3D.18x3y3【分析】单项式乘以单项式,首先系数乘以系数,然后相同字母相乘,最后只在一个单项式含有的字母照写.【解答】解:原式=2×(﹣3)x1+2y3=﹣6x3y3.故选:C.【点评】本题主要考查了单项式乘单项式,解决本题的关键是掌握单项式乘单项式法则.4.(3分)(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AC B.AC⊥BD C.AB=AD D.AC=BD【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A、▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项A不符合题意;B、∵▱ABCD中,AC⊥BD,∴▱ABCD是菱形,故选项B不符合题意;C、∵▱ABCD中,AB=AD,∴▱ABCD是菱形,故选项C不符合题意;D、∵▱ABCD中,AC=BD,∴▱ABCD是矩形,故选项D符合题意;故选:D.【点评】本题考查了矩形的判定、菱形的判定、平行四边形的性质等知识;熟练掌握矩形的判定和菱形的判定是解题的关键.5.(3分)(2022•陕西)如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为()A.3B.3C.3D.6【分析】利用三角函数求出AD=6,在Rt△ABD中,利用勾股定理可得AB的长.【解答】解:∵2CD=6,∴CD=3,∵tan C=2,∴=2,∴AD=6,在Rt△ABD中,由勾股定理得,AB=,故选:D.【点评】本题主要考查了解直角三角形,勾股定理等知识,熟练掌握三角函数的定义是解题的关键.6.(3分)(2022•陕西)在同一平面直角坐标系中,直线y=﹣x+4与y=2x+m 相交于点P(3,n),则关于x,y的方程组的解为()A.B.C.D.【分析】先将点P代入y=﹣x+4,求出n,即可确定方程组的解.【解答】解:将点P(3,n)代入y=﹣x+4,得n=﹣3+4=1,∴P(3,1),∴关于x,y的方程组的解为,故选:C.【点评】本题考查了一次函数与二元一次方程组的关系,求出两直线的交点坐标是解题的关键.7.(3分)(2022•陕西)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB =()A.44°B.45°C.54°D.67°【分析】根据圆周角定理可得∠AOB的度数,再进一步根据等腰三角形和三角形的内角和定理可求解.【解答】解:如图,连接OB,∵∠C=46°,∴∠AOB=2∠C=92°,∵OA=OB,∴∠OAB==44°.故选:A.【点评】此题综合运用了等腰三角形的性质,三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.8.(3分)(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y1【分析】先求出抛物线的对称轴为直线x=1,由于﹣1<x1<0,1<x2<2,x3>3,于是根据二次函数的性质可判断y1,y2,y3的大小关系.【解答】解:抛物线的对称轴为直线x=﹣=1,∵﹣1<x1<0,1<x2<2,x3>3,而抛物线开口向上,∴y2<y1<y3.故选B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.确定x1,x2,x3离对称轴的远近是解决本题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)(2022•陕西)计算:3﹣=﹣2 .【分析】首先利用算术平方根的定义化简,然后加减即可求解.【解答】解:原式=3﹣5=﹣2.故答案为:﹣2.【点评】本题主要考查了实数的运算,主要利用算术平方根的定义.10.(3分)(2022•陕西)实数a,b在数轴上对应点的位置如图所示,则a<﹣b.(填“>”“=”或“<”)【分析】根据正数大于0,0大于负数即可解答.【解答】解:∵b与﹣b互为相反数∴b与﹣b关于原点对称,即﹣b位于3和4之间∵a位于﹣b左侧,∴a<﹣b,故答案为:<.【点评】本题考查了有理数大小的比较,解决本题的关键是熟记正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小.11.(3分)(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB 的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为﹣1+米.【分析】根据BE2=AE•AB,建立方程求解即可.【解答】解:∵BE2=AE•AB,设BE=x,则AE=(2﹣x),∵AB=2,∴x2=2(2﹣x),即x2+2x﹣4=0,解得:x1=﹣1,x2=﹣1﹣(舍去),∴线段BE的长为(﹣1+)米.故答案为:﹣1+.【点评】本题主要考查了黄金分割,熟练掌握线段之间的关系列出方程是解决本题的关键.12.(3分)(2022•陕西)已知点A(﹣2,m)在一个反比例函数的图象上,点A'与点A关于y轴对称.若点A'在正比例函数y=x的图象上,则这个反比例函数的表达式为y=﹣.【分析】根据轴对称的性质得出点A'(2,m),代入y=x求得m=1,由点A(﹣2,1)在一个反比例函数的图象上,从而求得反比例函数的解析式.【解答】解:∵点A'与点A关于y轴对称,点A(﹣2,m),∴点A'(2,m),∵点A'在正比例函数y=x的图象上,∴m==1,∴A(﹣2,1),∵点A(﹣2,1)在一个反比例函数的图象上,∴反比例函数的表达式为y=﹣,故答案为:y=﹣.【点评】本题考查了一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式,求得A的坐标是解题的关键.13.(3分)(2022•陕西)如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为.【分析】连接AC交BD于O,根据菱形的性质得到BD⊥AC,OB=OD=,OA =OC,根据勾股定理求出OA,证明△DEM∽△DOA,根据相似三角形的性质列出比例式,用含AM的代数式表示ME、NF,计算即可.【解答】解:连接AC交BD于O,∵四边形ABCD为菱形,∴BD⊥AC,OB=OD=,OA=OC,由勾股定理得:OA===,∵ME⊥BD,AO⊥BD,∴ME∥AO,∴△DEM∽△DOA,∴=,即=,解得:ME=,同理可得:NF=,∴ME+NF=,故答案为:.【点评】本题考查的是相似三角形的判定和性质、菱形的性质、勾股定理,掌握相似三角形的判定定理是解题的关键.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)(2022•陕西)计算:5×(﹣3)+|﹣|﹣()0.【分析】根据有理数混合运算法则计算即可.【解答】解:5×(﹣3)+|﹣|﹣()0=﹣15+﹣1=﹣16+.【点评】此题考查了有理数的混合运算,零指数幂,熟练掌握有理数混合运算的法则是解题的关键.15.(5分)(2022•陕西)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x+2>﹣1,得:x>﹣3,由x﹣5≤3(x﹣1),得:x≥﹣1,则不等式组的解集为x≥﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(5分)(2022•陕西)化简:(+1)÷.【分析】根据分式混合运算的法则计算即可.【解答】解:(+1)÷=•==a+1.【点评】本题考查了分式混合运算,熟练掌握运算法则是解题的关键.17.(5分)(2022•陕西)如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)【分析】利用尺规作图作出∠ACD的平分线,得到射线CP.【解答】解:如图,射线CP即为所求.【点评】本题考查的是尺规作图、平行线的判定,能够利用基本尺规作图作出已知角的角平分线是解题的关键.18.(5分)(2022•陕西)如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.【点评】本题主要考查了平行线的性质,全等三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.19.(5分)(2022•陕西)如图,△ABC的顶点坐标分别为A(﹣2,3),B(﹣3,0),C(﹣1,﹣1).将△ABC平移后得到△A'B'C',且点A的对应点是A'(2,3),点B、C的对应点分别是B'、C'.(1)点A、A'之间的距离是 4 ;(2)请在图中画出△A'B'C'.【分析】(1)根据两点间的距离公式即可得到结论;(2)根据平移的性质作出图形即可.【解答】解:(1)∵A(﹣2,3),A'(2,3),∴点A、A'之间的距离是2﹣(﹣2)=4,故答案为:4;(2)如图所示,△A'B'C'即为所求.【点评】本题考查作图﹣平移变换,解题的关键是掌握平移变换的性质.20.(5分)(2022•陕西)有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有20种等可能的结果,其中所选两个纸箱里西瓜的重量之和为15kg的结果有4种,再由概率公式求解即可.【解答】解:(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是,故答案为:;(2)画树状图如下:共有20种等可能的结果,其中所选两个纸箱里西瓜的重量之和为15kg的结果有4种,∴所选两个纸箱里西瓜的重量之和为15kg的概率为=.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.【分析】先证明△AOD∽△EFG,列比例式可得AO的长,再证明△BOC∽△AOD,可得OB的长,最后由线段的差可得结论.【解答】解:∵AD∥EG,∴∠ADO=∠EGF,∵∠AOD=∠EFG=90°,∴△AOD∽△EFG,∴=,即=,∴AO=15,同理得△BOC∽△AOD,∴=,即=,∴BO=12,∴AB=AO﹣BO=15﹣12=3(米),答:旗杆的高AB是3米.【点评】本题考查相似三角形的判定与性质等知识,解题的关键掌握相似三角形的判定,属于中考常考题型.22.(7分)(2022•陕西)如图,是一个“函数求值机”的示意图,其中y是x 的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.输入x…﹣6 ﹣4 ﹣2 0 2 …输出y…﹣6 ﹣2 2 6 16 …根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为8 ;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.【分析】(1)把x=1代入y=8x,即可得到结论;(2)将(﹣2,2)(0,6)代入y=kx+b解方程即可得到结论;(3)解方程即可得到结论.【解答】解:(1)当输入的x值为1时,输出的y值为y=8x=8×1=8,故答案为:8;(2)将(﹣2,2)(0,6)代入y=kx+b得,解得;(3)令y=0,由y=8x得0=8x,∴x=0<1(舍去),由y=2x+6,得0=2x+6,∴x=﹣3<1,∴输出的y值为0时,输入的x值为﹣3.【点评】本题考查了待定系数法求一次函数的解析式,函数值,正确地求得函数的解析式是解题的关键.23.(7分)(2022•陕西)某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟A t<60 8 50B60≤t<90 16 75C90≤t<120 40 105D t≥120 36 150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在C组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.【分析】(1)利用中位数的定义解答即可;(2)根据平均数的定义解答即可;(3)用样本估计总体即可.【解答】解:(1)(2)把100名学生的“劳动时间”从小到大排列,排在中间的两个数均在C组,故这100名学生的“劳动时间”的中位数落在C组,故答案为:C;(2)=×(50×8+75×16+105×40+105×36)=112(分钟),答:这100名学生的平均“劳动时间”为112分钟;(3)1200×=912(人),答:估计在该校学生中,“劳动时间”不少于90分钟的人数为912人.【点评】本题考查了频数(率)分布表.从频数(率)分布表中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.24.(8分)(2022•陕西)如图,AB是⊙O的直径,AM是⊙O的切线,AC、CD是⊙O的弦,且CD⊥AB,垂足为E,连接BD并延长,交AM于点P.(1)求证:∠CAB=∠APB;(2)若⊙O的半径r=5,AC=8,求线段PD的长.【分析】(1)根据平行线的判定和切线的性质解答即可;(2)通过添加辅助线,构造出直角三角形,利用勾股定理和相似三角形的判定和性质解答即可.【解答】(1)证明:∵AM是⊙O的切线,∴∠BAM=90°,∵∠CEA=90°,∴AM∥CD,∴∠CDB=∠APB,∵∠CAB=∠CDB,∴∠CAB=∠APB.(2)解:如图,连接AD,∵AB是直径,∴∠CDB+∠ADC=90°,∵∠CAB+∠∠C=90°,∠CDB=∠CAB,∴∠ADC=∠C,∴AD=AC=8,∵AB=10,∴BD=6,∵∠BAD+∠DAP=90°,∠PAD+∠APD=90°,∴∠APB=∠DAB,∵∠BDA=∠BAP∴△ADB∽△PAB,∴=,∴PB===,∴DP=﹣6=.故答案为:.【点评】本题主要考查了切线的性质定理,勾股定理,相似三角形的判定和性质,熟练掌握这些性质定理是解题的关键.25.(8分)(2022•陕西)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O 垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE=10m,该抛物线的顶点P到OE的距离为9m.(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.【分析】(1)设抛物线的解析式为y=a(x﹣5)2+9,把(0,0)代入,可得a=﹣,即可解决问题;(2)把y=6,代入抛物线的解析式,解方程可得结论.【解答】解:(1)由题意抛物线的顶点P(5,9),∴可以假设抛物线的解析式为y=a(x﹣5)2+9,把(0,0)代入,可得a=﹣,∴抛物线的解析式为y=﹣(x﹣5)2+9;(2)令y=6,得﹣(x﹣5)2+9=6,解得x1=+5,x2=﹣+5,∴A(5﹣,6),B(5+,6).【点评】本题考查二次函数的应用,待定系数法,一元二次方程等知识,解题的关键是熟练掌握待定系数法,属于中考常考题型.26.(10分)(2022•陕西)问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为75°.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.【分析】(1)根据等边三角形的性质得到AB=AC,∠BAC=60°,根据等腰三角形的三线合一得到∠PAC=30°,根据三角形内角和定理、等腰三角形的性质计算,得到答案;(2)连接PB,证明四边形PBCA为菱形,求出PB,解直角三角形求出BE、PE、OE,根据三角形的面积公式计算即可;(3)过点A作CD的平行线,过点D作AC的平行线,两条平行线交于点F,根据线段垂直平分线的性质得到PA=PF,根据等边三角形的性质得到∠PAF =60°,进而求出∠BAP=15°,根据要求判断即可.【解答】解:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵AD是等边△ABC的中线,∴∠PAC=∠BAC=30°,∵AP=AC,∴∠APC=×(180°﹣30°)=75°,故答案为:75°;(2)如图2,连接PB,∵AP∥BC,AP=BC,∴四边形PBCA为平行四边形,∵CA=CB,∴平行四边形PBCA为菱形,∴PB=AC=6,∠PBC=180°﹣∠C=60°,∴BE=PB•cos∠PBC=3,BE=PB•sin∠PBC=3,∵CA=CB,∠C=120°,∴∠ABC=30°,∴OE=BE•tan∠ABC=,∴S四边形OECA=S△ABC﹣S△OBE=×6×3﹣×3×=;(3)符合要求,理由如下:如图3,过点A作CD的平行线,过点D作AC的平行线,两条平行线交于点F,∵CA=CD,∠DAC=45°,∴∠ACD=90°,∴四边形FDCA为正方形,∵PE是CD的垂直平分线,∴PE是AF的垂直平分线,∴PF=PA,∵AP=AC,∴PF=PA=AF,∴△PAF为等边三角形,∴∠PAF=60°,∴∠BAP=60°﹣45°=15°,∴裁得的△ABP型部件符合要求.【点评】本题考查的是正方形的性质、菱形的性质、等腰三角形的性质、线段垂直平分线的性质,得出△PAF为等边三角形是解题的关键.。
2020年陕西省中考数学试卷(副卷)(Word+答案)2020年陕西省中考数学试卷(副卷)一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.(3分)|-19|的值为()A.19B.-19C.0D.-12.(3分)如图,AC⊥BC,直线EF经过点C,若∠1=35°,则∠2的度数为()A.65°B.55°C.45°D.35°3.(3分)中华民族的母亲河黄河,发源于巴颜喀拉山脉北麓,注入渤海,流域面积约为平方千米。
将平方千米用科学计数法表示为()A.7.5×10^4平方千米B.7.5×10^5平方千米C.75×10^4平方千米D.75×10^5平方千米4.(3分)变量x,y的一些对应值如下表:根据表格中的数据规律,当x=-5时,y的值是()A.75B.-75C.125D.-1255.(3分)计算:(2x-y)^2=()A.4x^2-4xy+y^2B.4x^2-2xy+y^2C.4x^2-y^2D.4x^2+y^26.(3分)如图,在5×5的网格中,每个小正方形的边长均为1,点A、B、O都在格点上。
若将△OAB绕点O逆时针旋转90°,得到△OA'B',A、B的对应点分别为A'、B',则A、B'之间的距离为()A.2B.5C.√10D.√137.(3分)在平面直角坐标系中,将直线y=kx-6沿x轴向左平移3个单位后恰好经过原点,则k的值为()A.-2B.2C.-3D.38.(3分)如图,在菱形ABCD中,AC=8,BD=6,DE⊥AB,垂足为E,DE与AC交于点F,则sin∠DFC的值为()A.1/3B.1/2C.2/3D.3/49.(3分)如图,点A、B、C在⊙O上,BC∥OA,连接BO并延长,交⊙O于点D,连接AC,DC。
2022年陕西省中考数学试卷一、选择题〔本大题共10小题,每题3分,共30分〕1.计算:〔﹣〕2﹣1=〔〕A.﹣B.﹣C.﹣D.0【解析】原式=﹣1=﹣,应选C.2.如下列图的几何体是由一个长方体和一个圆柱体组成的,那么它的主视图是〔〕A.B.C.D.【解析】从正面看下边是一个较大的矩形,上边是一个较小的矩形,应选:B.3.假设一个正比例函数的图象经过A〔3,﹣6〕,B〔m,﹣4〕两点,那么m的值为〔〕A.2B.8C.﹣2D.﹣8【解析】设正比例函数解析式为:y=kx,将点A〔3,﹣6〕代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B〔m,﹣4〕代入可得:﹣2m=﹣4,解得m=2,应选:A.4.如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,假设∠1=25°,那么∠2的大小为〔〕A.55°B.75°C.65°D.85°【解析】∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.应选:C.5.化简:﹣,结果正确的选项是〔〕A.1B.C.D.x2+y2【解析】原式==.应选B.6.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.假设∠ACB=∠AC′B′=90°,AC=BC=3,那么B′C的长为〔〕A.3B.6C.3D.【解析】∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,应选A.7.如图,直线l1:y=﹣2x+4与直线l2:y=kx+b〔k≠0〕在第一象限交于点M.假设直线l2与x轴的交点为A〔﹣2,0〕,那么k的取值范围是〔〕A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k<2【解析】∵直线l2与x轴的交点为A〔﹣2,0〕,∴﹣2k+b=0,∴解得∵直线l1:y=﹣2x+4与直线l2:y=kx+b〔k≠0〕的交点在第一象限,∴解得0<k<2.应选D.8.如图,在矩形ABCD中,AB=2,BC=3.假设点E是边CD的中点,连接AE,过点B作BF ⊥AE交AE于点F,那么BF的长为〔〕A.B.C.D.【解析】如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE =S矩形ABCD=3=•AE•BF,∴BF=.应选B.9.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,假设点P是⊙O上的一点,在△ABP中,PB=AB,那么PA的长为〔〕A.5B.C.5D.5【解析】连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,那么Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,应选D.10.抛物线y=x2﹣2mx﹣4〔m>0〕的顶点M关于坐标原点O的对称点为M′,假设点M′在这条抛物线上,那么点M的坐标为〔〕A.〔1,﹣5〕B.〔3,﹣13〕C.〔2,﹣8〕D.〔4,﹣20〕【解析】y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=〔x﹣m〕2﹣m2﹣4.∴点M〔m,﹣m2﹣4〕.∴点M′〔﹣m,m2+4〕.∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M〔2,﹣8〕.应选C.二、填空题〔本大题共4小题,每题3分,共12分〕11.在实数﹣5,﹣,0,π,中,最大的一个数是________.【解析】根据实数比较大小的方法,可得π>>0>>﹣5,故实数﹣5,,0,π,其中最大的数是π.故答案为:π.12.请从以下两个小题中任选一个作答,假设多项选择,那么按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.假设∠A=52°,那么∠1+∠2的度数为________.B.tan38°15′≈__________.〔结果精确到0.01〕【解析】A、∵∠A=52°,∴∠ABC+∠ACB=180°﹣∠A=128°,∵BD平分∠ABC、CE平分∠ACB,∴∠1=∠ABC、∠2=∠ACB,那么∠1+∠2=∠ABC+∠ACB=〔∠ABC+∠ACB〕=64°,故答案为:64°;B、tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.13.A,B两点分别在反比例函数y=〔m≠0〕和y=〔m≠〕的图象上,假设点A 与点B关于x轴对称,那么m的值为______.【解析】设A〔a,b〕,那么B〔a,﹣b〕,依题意得:,所以=0,即5m﹣5=0,解得m=1.故答案是:1.14.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.假设AC=6,那么四边形ABCD的面积为_______.【解析】如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN〔AAS〕,∴AM=AN〔设为λ〕;△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.三、解答题〔本大题共11小题,共78分〕15.〔5分〕计算:〔﹣〕×+|﹣2|﹣〔〕﹣1.【解】原式=﹣+2﹣﹣2=﹣2﹣=﹣316.〔5分〕解方程:﹣=1.【解】去分母得,〔x+3〕2﹣2〔x﹣3〕=〔x﹣3〕〔x+3〕,去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.17.〔5分〕如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.〔保存作图痕迹,不写作法〕【解】如图,点P即为所求.18.〔5分〕养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了局部学生,并对这些学生通常情况下一天的早锻炼时间x〔分钟〕进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答以下问题:〔1〕补全频数分布直方图和扇形统计图;〔2〕所抽取的七年级学生早锻炼时间的中位数落在_______区间内;〔3〕该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.〔早锻炼:指学生在早晨7:00~7:40之间的锻炼〕【解】〔1〕本次调查的总人数为10÷5%=200,那么20~30分钟的人数为200×65%=130〔人〕,D工程的百分比为1﹣〔5%+10%+65%〕=20%,补全图形如下:〔2〕由于共有200个数据,其中位数是第100、101个数据的平均数,那么其中位数位于C区间内,故答案为:C;〔3〕1200×〔65%+20%〕=1020〔人〕,答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.19.〔7分〕如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【证明】∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中,∴△ADF≌△CDE〔SAS〕,∴∠DAF=∠DCE,在△AGE和△CGF中,,∴△AGE≌△CGF〔AAS〕,∴AG=CG.【解】如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,那么BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=,解得x≈34〔米〕.答:“聚贤亭〞与“乡思柳〞之间的距离AN的长约为34米.21.〔7分〕在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他快乐地说:“我的日子终于好了〞.品种产量〔斤/每棚〕销售价〔元/每斤〕本钱〔元/每棚〕工程香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答以下问题:〔1〕求出y与x之间的函数关系式;〔2〕求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【解】〔1〕由题意得,y=〔2000×12﹣8000〕x+〔4500×3﹣5000〕〔8﹣x〕=7500x+68000,〔2〕由题意得,7500x+6800≥100000,∴x≥4,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.22.〔7分〕端午节“赛龙舟,吃粽子〞是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子〔记为A〕,豆沙粽子〔记为B〕,肉粽子〔记为C〕,这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你答复以下问题:〔1〕假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?〔2〕假设小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【解】〔1〕由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;〔2〕由题意可得,出现的所有可能性是:〔A,A〕、〔A,B〕、〔A,C〕、〔A,C〕、〔A,A〕、〔A,B〕、〔A,C〕、〔A,C〕、〔B,A〕、〔B,B〕、〔B,C〕、〔B,C〕、〔C,A〕、〔C,B〕、〔C,C〕、〔C,C〕,∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.23.〔8分〕如图,⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,〔1〕求弦AC的长;〔2〕求证:BC∥PA.【证明】〔1〕连接OA,∵PA是⊙O的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC⊥PB,PB过圆心O,∴AD=DC在Rt△ODA中,AD=OA•sin60°=∴AC=2AD=5〔2〕∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°,∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA,∴BC∥PA.24.〔10分〕〔2022•陕西〕在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n 关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.〔1〕求抛物线C1,C2的函数表达式;〔2〕求A、B两点的坐标;〔3〕在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?假设存在,求出P、Q两点的坐标;假设不存在,请说明理由.【解】〔1〕∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;〔2〕在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A 〔﹣3,0〕,B〔1,0〕;〔3〕存在.∵AB的中点为〔﹣1,0〕,且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由〔2〕可知AB=1﹣〔﹣3〕=4,∴PQ=4,设P〔t,t2﹣2t﹣3〕,那么Q〔t+4,t2﹣2t﹣3〕或〔t﹣4,t2﹣2t﹣3〕,①当Q〔t+4,t2﹣2t﹣3〕时,那么t2﹣2t﹣3=〔t+4〕2+2〔t+4〕﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P〔﹣2,5〕,Q〔2,5〕;②当Q〔t﹣4,t2﹣2t﹣3〕时,那么t2﹣2t﹣3=〔t﹣4〕2+2〔t﹣4〕﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P〔2,﹣3〕,Q〔﹣2,﹣3〕,综上可知存在满足条件的点P、Q,其坐标为P〔﹣2,5〕,Q〔2,5〕或P〔2,﹣3〕,Q〔﹣2,﹣3〕.25.〔12分〕问题提出〔1〕如图①,△ABC是等边三角形,AB=12,假设点O是△ABC的内心,那么OA的长为_________;问题探究〔2〕如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?假设存在,求出PQ的长;假设不存在,请说明理由.问题解决〔3〕某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB〔即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.〕同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?〔结果保存根号或精确到0.01米〕【解】〔1〕如图1,过O作OD⊥AC于D,那么AD=AC=×12=6,∵O是内心,△ABC是等边三角形,∴∠OAD=∠BAC=×60°=30°,在Rt△AOD中,cos∠OAD=cos30°=,∴OA=6÷=4,故答案为:4;〔2〕存在,如图2,连接AC、BD交于点O,连接PO并延长交BC于Q,那么线段PQ将矩形ABCD的面积平分,∵点O为矩形ABCD的对称中心,∴CQ=AP=3,过P作PM⊥BC于点,那么PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ===12;〔3〕如图3,作射线ED交AM于点C∵AD=DB,ED⊥AB,是劣弧,∴所在圆的圆心在射线DC上,假设圆心为O,半径为r,连接OA,那么OA=r,OD=r﹣8,AD=AB=12,在Rt△AOD中,r2=122+〔r﹣8〕2,解得:r=13,∴OD=5,=96,AB=24,过点M作MN⊥AB,垂足为N,∵S△ABM∴AB•MN=96,×24×MN=96,∴MN=8,NB=6,AN=18,∵CD∥MN,∴△ADC∽△ANM,∴,∴,∴DC=,∴OD<CD,∴点O在△AMB内部,∴连接MO并延长交于点F,那么MF为草坪上的点到M点的最大距离,∵在上任取一点异于点F的点G,连接GO,GM,∴MF=OM+OF=OM+OG>MG,即MF>MG,过O作OH⊥MN,垂足为H,那么OH=DN=6,MH=3,∴OM===3,∴MF=OM+r=3+13≈19.71〔米〕,答:喷灌龙头的射程至少为19.71米.。
2020年陕西省中考数学试卷一.选择题(共10小题)1.﹣18的相反数是( )A.18B.﹣18C.D.﹣2.若∠A=23°,则∠A余角的大小是( )A.57°B.67°C.77°D.157°3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为( )A.9.9087×105B.9.9087×104C.99.087×104D.99.087×103 4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是( )A.4℃B.8℃C.12℃D.16℃5.计算:(﹣x2y)3=( )A.﹣2x6y3B.x6y3C.﹣x6y3D.﹣x5y46.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD 是△ABC的高,则BD的长为( )A.B.C.D.7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为( )A.2B.3C.4D.68.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC =90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为( )A.B.C.3D.29.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为( )A.55°B.65°C.60°D.75°10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( )A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共4小题)11.计算:(2+)(2﹣)= .12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是 .13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=(k≠0)的图象经过其中两点,则m的值为 .14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l 经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为 .三.解答题(共11小题)15.解不等式组:16.解分式方程:﹣=1.17.如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)18.如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.19.王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是 ,众数是 .(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?20.如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.21.某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?22.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.23.如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.24.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.25.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是 .问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x (m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.2020年陕西省中考数学试卷参考答案与试题解析一.选择题(共10小题)1.﹣18的相反数是( )A.18B.﹣18C.D.﹣【分析】直接利用相反数的定义得出答案.【解答】解:﹣18的相反数是:18.故选:A.2.若∠A=23°,则∠A余角的大小是( )A.57°B.67°C.77°D.157°【分析】根据∠A的余角是90°﹣∠A,代入求出即可.【解答】解:∵∠A=23°,∴∠A的余角是90°﹣23°=67°.故选:B.3.2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示为( )A.9.9087×105B.9.9087×104C.99.087×104D.99.087×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:990870=9.9087×105,故选:A.4.如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是( )A.4℃B.8℃C.12℃D.16℃【分析】根据A市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,故选:C.5.计算:(﹣x2y)3=( )A.﹣2x6y3B.x6y3C.﹣x6y3D.﹣x5y4【分析】根据积的乘方运算法则计算即可,积的乘方,等于每个因式乘方的积.【解答】解:(﹣x2y)3==.故选:C.6.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD 是△ABC的高,则BD的长为( )A.B.C.D.【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.【解答】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=3.5,∴,∴,∴BD=,故选:D.7.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为( )A.2B.3C.4D.6【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.【解答】解:在y=x+3中,令y=0,得x=﹣3,解得,,∴A(﹣3,0),B(﹣1,2),∴△AOB的面积=3×2=3,故选:B.8.如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC =90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为( )A.B.C.3D.2【分析】依据直角三角形斜边上中线的性质,即可得到EF的长,再根据梯形中位线定理,即可得到CG的长,进而得出DG的长.【解答】解:∵E是边BC的中点,且∠BFC=90°,∴Rt△BCF中,EF=BC=4,∵EF∥AB,AB∥CG,E是边BC的中点,∴F是AG的中点,∴EF是梯形ABCG的中位线,∴CG=2EF﹣AB=3,又∵CD=AB=5,∴DG=5﹣3=2,故选:D.9.如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为( )A.55°B.65°C.60°D.75°【分析】连接CD,根据圆内接四边形的性质得到∠CDB=180°﹣∠A=130°,根据垂径定理得到OD⊥BC,求得BD=CD,根据等腰三角形的性质即可得到结论.【解答】解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=BDC=65°,故选:B.10.在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据平移规律得到平移后抛物线的顶点坐标,然后结合m的取值范围判断新抛物线的顶点所在的象限即可.【解答】解:∵y=x2﹣(m﹣1)x+m=(x﹣)2+m﹣,∴该抛物线顶点坐标是(,m﹣),∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(,m﹣﹣3),∵m>1,∴m﹣1>0,∴>0,∵m﹣﹣3===﹣﹣1<0,∴点(,m﹣﹣3)在第四象限;故选:D.二.填空题(共4小题)11.计算:(2+)(2﹣)= 1 .【分析】先利用平方差公式展开得到原式=22﹣()2,再利用二次根式的性质化简,然后进行减法运算.【解答】解:原式=22﹣()2=4﹣3=1.12.如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是 144° .【分析】根据正五边形的性质和内角和为540°,求得每个内角的度数为108°,再结合等腰三角形和邻补角的定义即可解答.【解答】解:因为五边形ABCDE是正五边形,所以∠C==108°,BC=DC,所以∠BDC==36°,所以∠BDM=180°﹣36°=144°,故答案为:144°.13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=(k≠0)的图象经过其中两点,则m的值为 ﹣1 .【分析】根据已知条件得到点A(﹣2,1)在第三象限,求得点C(﹣6,m)一定在第三象限,由于反比例函数y=(k≠0)的图象经过其中两点,于是得到反比例函数y=(k≠0)的图象经过B(3,2),C(﹣6,m),于是得到结论.【解答】解:∵点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限,点A (﹣2,1)在第二象限,∴点C(﹣6,m)一定在第三象限,∵B(3,2)在第一象限,反比例函数y=(k≠0)的图象经过其中两点,∴反比例函数y=(k≠0)的图象经过B(3,2),C(﹣6,m),∴3×2=﹣6m,∴m=﹣1,故答案为:﹣1.14.如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l 经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为 2 .【分析】过点A和点E作AG⊥BC,EH⊥BC于点G和H,可得矩形AGHE,再根据菱形ABCD中,AB=6,∠B=60°,可得BG=3,AG=3=EH,由题意可得,FH=FC ﹣HC=2﹣1=1,进而根据勾股定理可得EF的长.【解答】解:如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE,∴GH=AE=2,∵在菱形ABCD中,AB=6,∠B=60°,∴BG=3,AG=3=EH,∴HC=BC﹣BG﹣GH=6﹣3﹣2=1,∵EF平分菱形面积,∴FC=AE=2,∴FH=FC﹣HC=2﹣1=1,在Rt△EFH中,根据勾股定理,得EF===2.故答案为:2.三.解答题(共11小题)15.解不等式组:【分析】分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【解答】解:,由①得:x>2,由②得:x<3,则不等式组的解集为2<x<3.16.解分式方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程﹣=1,去分母得:x2﹣4x+4﹣3x=x2﹣2x,解得:x=,经检验x=是分式方程的解.17.如图,已知△ABC,AC>AB,∠C=45°.请用尺规作图法,在AC边上求作一点P,使∠PBC=45°.(保留作图痕迹.不写作法)【分析】根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使∠PBC=45°即可.【解答】解:如图,点P即为所求.18.如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.【分析】根据等边对等角的性质求出∠DEC=∠C,在由∠B=∠C得∠DEC=∠B,所以AB∥DE,得出四边形ABCD是平行四边形,进而得出结论.【解答】证明:∵DE=DC,∴∠DEC=∠C.∵∠B=∠C,∴∠B=∠DEC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形.∴AD=BE.19.王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是 1.45kg ,众数是 1.5kg .(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?【分析】(1)根据中位数和众数的定义求解可得;(2)利用加权平均数的定义求解可得;(3)用单价乘以(2)中所得平均数,再乘以存活的数量,从而得出答案.【解答】解:(1)∵这20条鱼质量的中位数是第10、11个数据的平均数,且第10、11个数据分别为1.4、1.5,∴这20条鱼质量的中位数是=1.45(kg),众数是1.5kg,故答案为:1.45kg,1.5kg.(2)==1.45(kg),∴这20条鱼质量的平均数为1.45kg;(3)18×1.45×2000×90%=46980(元),答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元.20.如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.【分析】过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,可得四边形AMEC和四边形AMFB均为矩形,可以证明△BFN≌△CEM,得NF=EM=49,进而可得商业大厦的高MN.【解答】解:如图,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,∴∠CEF=∠BFE=90°,∵CA⊥AM,NM⊥AM,∴四边形AMEC和四边形AMFB均为矩形,∴CE=BF,ME=AC,∠1=∠2,∴△BFN≌△CEM(ASA),∴NF=EM=31+18=49,由矩形性质可知:EF=CB=18,∴MN=NF+EM﹣EF=49+49﹣18=80(m).答:商业大厦的高MN为80m.21.某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?【分析】(1)分段函数,利用待定系数法解答即可;(2)利用(1)的结论,把y=80代入求出x的值即可解答.【解答】解:(1)当0≤x≤15时,设y=kx(k≠0),则:20=15k,解得k=,∴y=;当15<x≤60时,设y=k′x+b(k≠0),则:,解得,∴y=,∴;(2)当y=80时,80=,解得x=33,33﹣15=18(天),∴这种瓜苗移至大棚后.继续生长大约18天,开始开花结果.22.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.【分析】(1)由频率定义即可得出答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球中一个是白球、一个是黄球的情况,利用概率公式求解即可求得答案.【解答】解:(1)小亮随机摸球10次,其中6次摸出的是红球,这10次中摸出红球的频率==;(2)画树状图得:∵共有16种等可能的结果,两次摸出的球中一个是白球、一个是黄球的有2种情况,∴两次摸出的球中一个是白球、一个是黄球的概率==.23.如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=8,可证四边形OAFC 是正方形,可得CF=AF=4,由锐角三角函数可求EF=12,即可求解.【解答】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=,∴AD==8,∴OA=OC=4,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=4,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=,∴EF=AF=12,∴CE=CF+EF=12+4.24.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.【分析】(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式,即可求解;(2)由题意得:PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,分点P在抛物线对称轴右侧、点P在抛物线对称轴的左侧两种情况,分别求解即可.【解答】解:(1)将点(3,12)和(﹣2,﹣3)代入抛物线表达式得,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)抛物线的对称轴为x=﹣1,令y=0,则x=﹣3或1,令x=0,则y=﹣3,故点A、B的坐标分别为(﹣3,0)、(1,0);点C(0,﹣3),故OA=OC=3,∵∠PDE=∠AOC=90°,∴当PD=DE=3时,以P、D、E为顶点的三角形与△AOC全等,设点P(m,n),当点P在抛物线对称轴右侧时,m﹣(﹣1)=3,解得:m=2,故n=22+2×2﹣5=5,故点P(2,5),故点E(﹣1,2)或(﹣1,8);当点P在抛物线对称轴的左侧时,由抛物线的对称性可得,点P(﹣4,5),此时点E坐标同上,综上,点P的坐标为(2,5)或(﹣4,5);点E的坐标为(﹣1,2)或(﹣1,8).25.问题提出(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是 CF、DE、DF .问题探究(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.问题解决(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x (m),阴影部分的面积为y(m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.【分析】(1)证明四边形CEDF是正方形,即可得出结果;(2)连接OP,由AB是半圆O的直径,=2,得出∠APB=90°,∠AOP=60°,则∠ABP=30°,同(1)得四边形PECF是正方形,得PF=CF,在Rt△APB中,PB=AB•cos∠ABP=4,在Rt△CFB中,BF==CF,推出PB=CF+BF,即可得出结果;(3)①同(1)得四边形DEPF是正方形,得出PE=PF,∠APE+∠BPF=90°,∠PEA =∠PFB=90°,将△APE绕点P逆时针旋转90°,得到△A′PF,PA′=PA,则A ′、F、B三点共线,∠APE=∠A′PF,证∠A′PB=90°,得出S△PAE+S△PBF=S△PA2=′B=PA′•PB=x(70﹣x),在Rt△ACB中,AC=BC=35,S△ACB=AC1225,由y=S△PA′B+S△ACB,即可得出结果;②当AP=30时,A′P=30,PB=40,在Rt△A′PB中,由勾股定理得A′B==50,由S△A′PB=A′B•PF=PB•A′P,求PF,即可得出结果.【解答】解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,∴四边形CEDF是矩形,∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∴四边形CEDF是正方形,∴CE=CF=DE=DF,故答案为:CF、DE、DF;(2)连接OP,如图2所示:∵AB是半圆O的直径,=2,∴∠APB=90°,∠AOP=×180°=60°,∴∠ABP=30°,同(1)得:四边形PECF是正方形,∴PF=CF,在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=8×=4,在Rt△CFB中,BF====CF,∵PB=PF+BF,∴PB=CF+BF,即:4=CF+CF,解得:CF=6﹣2;(3)①∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵CA=CB,∴∠ADC=∠BDC,同(1)得:四边形DEPF是正方形,∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,∴将△APE绕点P逆时针旋转90°,得到△A′PF,PA′=PA,如图3所示:则A′、F、B三点共线,∠APE=∠A′PF,∴∠A′PF+∠BPF=90°,即∠A′PB=90°,∴S△PAE+S△PBF=S△PA′B=PA′•PB=x(70﹣x),在Rt△ACB中,AC=BC=AB=×70=35,∴S△ACB=AC2=×(35)2=1225,∴y=S△PA′B+S△ACB=x(70﹣x)+1225=﹣x2+35x+1225;②当AP=30时,A′P=30,PB=AB﹣AP=70﹣30=40,在Rt△A′PB中,由勾股定理得:A′B===50,∵S△A′PB=A′B•PF=PB•A′P,∴×50×PF=×40×30,解得:PF=24,∴S四边形PEDF=PF2=242=576(m2),∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.。
陕西省西安中考数学试卷及答案第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.下列计算正确的是 【 】A .(-2)0=-1B .-23=-8C .-2-(-3)=-5D .3-2=-62.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是【 】A .12b-a>0 B .a-b>0C .2a+b>0D .a+b>03. 如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,且CD 、BE 交于一点P ,若∠A=50°,则∠BPC 的度数是【 】A .150°B .130°C .120°D .100° 4. 下列函数中,当x<0时,y 随x 的增大而减小的函数是【 】A .y=-3xB .y=4xC .y=-x 2D .y=-x25. 在下列图形中,是中心对称图形的是【 】6. 如图,⊙O1和⊙O2内切,它们的半径分别为3和1,过O1作⊙O2的切线,切点为A ,则OA 的长为【 】A .2B .4 CDA B a b -1 0 1(第2题图) DA BE (第3题图)CP A. B.D. (第6题图7. 已知圆锥形模具的母线长和底面圆的直径均是10cm ,求得这个模具的侧面积是【 】 A .50πcm2 B .75πcm2 C .100πcm2 D .150πcm2 8. 二次函数y=ax2+bx+c 的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是【 】 A.ab<0 B.bc<0 C.a+b+c>0 D.a-b+c<09. 在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm ,那么x 满足的方程是【 】A .x2+130x-1400=0B .x2+65x-350=0C .x2-130x-1400=0D .x2-65x-350=010. 如图,矩形ABCD ,AD=a ,AB=b ,要使BC 边上至少存在一点P ,使△ABP 、△APD 、△CDP 两两相似,则a,b 间的关系一定满足【 】a ≥12bB .a ≥bC. a ≥32bD .a ≥2b第Ⅱ卷(非选择题,共90分)二、填空题(共7小题,每小题3分,计21分) 11. 不等式1-2x>0的解集是 . 12. 分解因式:x3y2-4x= .13.若反比例函数y=kx 经过点(-1,2),则一次函数y=-kx+2的图象一定不经过第象限.15. 已知:在ABCD 中,AB=4cm,AD=7cm,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF= cm.(第8题图)(第10题图)AD CB(第15题图)F E (第9题图)16. 用科学计算器或数学用表求:如图,有甲、乙两楼,甲楼高AD 是23米,现在想测量乙楼CB 的高度.某人在甲楼的楼底A 和楼顶D ,分别测得乙楼的楼顶B 的仰角为65°13′和45°,处用这些数据可求得乙楼的高度为 米.(结果精确到0.01米) 注:用数学用表求解时,可参照下面正切表的相关部分.如图,有一腰长为5cm ,底边长为4cm 的等腰三角形纸片,沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有 个不同的四边形.三、解答题(共8小题,计69分.解答应写出过程) (本题满分5分)解方程:2211.11x x -=--(本题满分6分)如图,点C 在以AB 为直径的半圆上,连结AC 、BC ,AB=10,tan ∠BAC=34,求阴影部分的面积20.(本题满分8分) 某研究性学习小组,为了了解本校初一学生一天中做家庭作业所用的大致时间(时间以整数记.单位:分钟),对本校的初一学生做了抽样调查,并把调查得到的所有数据(时间)进行整理,分成五个时间段,绘制成统计图(如图所示),请结合统计图中提供的信息,回答下(第17题图) 剪开A B(第19题图)(第20题图) 60.5 90.5 120.5 150.5 180.5 210.5 A D CB (第16题图) 45°65°13′ (甲楼) (乙楼)列问题:(1)这个研究性学习小组所抽取样本的容量是多少?(2)在被调查的学生中,一天做家庭作业所用的大致时间超过120分钟(不包括120分钟)的人数占被调查学生总人数的百分之几?(3)这次调查得到的所有数据的中位数落在了五个时间段中的哪一段内? 21. (本题满分8分)已知:如图,在△ABC 中,AB=BC=2,∠ABC=120°,BC ∥x 轴,点B 的坐标是(-3,1). (1)画出△ABC 关于y 轴对称的△A ′B ′C ′;(2)求以点A 、B 、B ′、A ′为顶点的四边形的面积.22. (本题满分10分)足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分. 请问:(1)前8场比赛中,这支球队共胜了多少场? (2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的解析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.请你解析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标? 23. (本题满分10分)已知:如图,⊙O 是△ABC 的外接圆,且AB=AC=13,BC=24,PA 是⊙O 的切线,A 为切点,割线PBD 过圆心,交⊙O 于另一点D,连结CD. (1)求证:PA ∥BC;(2)求⊙O 的半径及CD 的长.24. (本题满分10分)如图,在Rt △ABC 中,∠ACB=90°,BC>AC,以斜边AB 所在直线为x 轴,以斜边AB 上的高所在直线为y 轴,建立直角坐标系,若OA2+OB2=17,且线段OA 、OB 的长度是关于x 的一元二次方程x2-mx+2(m-3)=0的两个根.(第21题图)(第24题图)(第23题图)(1)求C 点的坐标;(2)以斜边AB 为直径作圆与y 轴交于另一点E ,求过A 、B 、E 三点的抛物线的解析式,并画出此抛物线的草图;(3)在抛物线上是否存在点P ,使△ABP 与△ABC 全等?若存在,求出符合条件的P 点的坐标;若不存在,说明理由.25. (本题满分12分)李大爷有一个边长为a 的正方形鱼塘(图-1),鱼塘四个角的顶点A 、B 、C 、D 上各有一棵大树.现在李大爷想把原来的鱼塘扩建成一个圆形或正方形鱼塘(原鱼塘周围的面积足够大),又不想把树挖掉(四棵大树要在新建鱼塘的边沿上).(1)若按圆形设计,利用(图-1)画出你所设计的圆形鱼塘示意图,并求出网形鱼塘的面积;(2)若按正方形设计,利用(图-2)画出你所设计的正方形鱼塘示意图; (3)你在(2)所设计的正方形鱼塘中,有无最大面积?为什么?(4)李大爷想使新建鱼塘面积最大,你认为新建鱼塘的最大面积是多少?(第25题图-1)A (第25题图-2) DBC GH E F参照答案 一、二、11.12x12.(2)(2)x xy xy +- 13. 2 14.四 15. 3 16. -2.7317. 4(因还有一个凹四边形,所以填5也对) 三、18.解:去分母,得222(1) 1.20.,2,1.x x x x x x x x x -+=-∴+-==-=∴12解这个方程得=-2,=1.经检验:是原方程的根是增根原方程的根是=-2.2:,90,3tan ,43sin .5sin ,10,344106,68.533112558624.222ABC AB ACB BAC BAC BCBAC AB ABBC AC BC S S S ππ∴∠=︒∠=∴∠=∠==∴=⨯==⨯=⨯=∴⨯⨯-⨯⨯=-阴影半圆19.解为直径又=-= 解:(1)3+4+6+8+9=30.∴ 这个研究性学习小组抽取样本的容量是30. (2)(9+8+4)÷30=0.7=70%.∴一天做家庭作业所用的时间超过120分钟的学生人数占被调查学生总人数的70%. (3)中位数落在了120.5分钟~150.5分钟这个时间段内. 解:(1)(2),,180********.Rt ,1cos 21,2sin 22(3,1),(4,1,,,A AD BC CB D ABD ABC ABD BD AB ABD AD AB ABD B A AA y BB y AA BB AB A B A B B A A ∠=︒-∠=︒-︒=︒=∠=⨯==∠=⨯=-∴-''''∴''''∴过点作交的延长线于点则在中又知点的坐标为点的坐标为轴,轴,.与不平行,以点为顶点的四边形是等腰梯形.由点,48,23 6.11()(86)22B AA BB ABB A AA BB AD ''⨯==⨯=''''∴=+=⨯+=的坐标可求得=2梯形的面积解:(1)设这个球队胜x 场,则平了(8-1-x)场.根据题意,得3x+(8-1-x)=17. 解之,得x=5.答:前8场比赛中,这个球队共胜了5场.(2)打满14场比赛最高能得17+(14-8)×3=35分.(3)由题意知,以后的6场比赛中,只要得分不低于12分即可.∴胜不少于4场,一定达到预期目标,而胜3场、平3场,正好达到预期目标. ∴在以后的比赛中这个球队至要胜3场. 23.证明:(1)∵PA 是⊙O 的切线, ∴∠PAB=∠2. 又∵AB=AC ,∴∠1=∠2.∴∠PAB=∠1. ∴PA ∥BC.(2)连结OA 交BC 于点G ,则OA ⊥PA.由(1)可知,PA ∥BC ,∴OA ⊥BC.∴G 为BC 的中点. ∵BC=24, ∴BG=12. 又∵AB=13, ∴AG=5.设⊙O 的半径为R , 则OG=OA-AG=R-5. 在Rt △BOG 中, ∵OB2=BG2+OG2,∴R2=122+(R-5)2. ∴R=16.9,OG=11.9. ∵BD 是⊙O 的直径, ∴DC ⊥BC. 又∵OG ⊥BC , ∴OG ∥DC.∵点O 是BD 的中点, ∴DC=2OG=23.8. 24.解:(1)∵线段OA 、OB 的长度是关于x 的一元二次方程x2-mx+2(m-3)=0的两个根,∴,(1)2(3).(2)OA OB m OA OB m +=⎧⎨=-⎩又∵OA2+OB2=17,∴(OA+OB )2-2·OA ·OB=17.(3) ∴把(1)(2)代入(3),得m2-4(m-3)=17. ∴m2-4m-5=0.解之,得m=-1或m=5. 又知OA+OB=m>0, ∴m=-1应舍去.∴当m=5时,得方程x2-5x+4=0. 解之,得x=1或x=4. ∵BC>AC, ∴OB>OA. ∴OA=1,OB=4.在Rt △ABC 中,∠ACB=90°,CO ⊥AB , ∴OC2=OA ·OB=1×4=4. ∴OC=2.∴C (0,2).(2)∵OA=1,OB=4,C 、E 两点关于x 轴对称, ∴A(-1,0),B(4,0),E(0,-2).设经过A 、B 、E 三点的抛物线的解析式为y=ax2+bx+c,则1,20,31640,,,22. 2.a b c a b c b c c ⎧⎪-+=⎧⎪⎪⎪++==-⎨⎨⎪⎪=-⎩=-⎪⎪⎩a=解之得∴所求抛物线解析式为2132.22y x x =--(3)存在.∵点E 是抛物线与圆的交点,∴Rt △ACB ≌△AEB. ∴E (0,-2)符合条件.∵圆心的坐标(32,0)在抛物线的对称轴上,∴这个圆和这条抛物线均关于抛物线的对称轴对称. ∴点E 关于抛物线对称轴的对称点E ′也符合题意. ∴可求得E ′(3,-2).∴抛物线上存在点P 符合题意,它们的坐标是(0,-2)和(3,-2).25.(1)如(图-1)所示.S ⊙O=12πa2.(2)如(图-2)所示. (3)有最大面积. 如(图-2),由作图知,Rt △ABE ,Rt △BFC 、Rt △CDG 和Rt △AHD 为四个全等的三角形.因此,只要Rt △ABE 的面积最大,就有正方形EFGH 的面积最大.然而,Rt △ABE 的斜边AB=a 为定值,所以,点E 在以AB 为直径的半圆上,当点E 正好落在线段AB 的中垂线上时,面积最大(斜边为定值的直角三角形以等腰直角三角形面积最大),其最大面积为14a2,从而得正方形EFGH 的最大面积为4×14a2+a2=2a2.(4)由(图-1)可知,所设计的圆形鱼塘的面积为12πa2<2a2,所以,我认为李大爷新建鱼塘的最大面积是2a2,它是一个正方形鱼塘.(第25题图-1) A (第25题图-2)B DC GH E F。
2021年陕西省中考数学试卷一、选择题〔共10小题,每题3分,计30分。
每题只有一个选项是符合题意的〕1.〔3.00分〕〔2021•陕西〕﹣的倒数是〔〕A.B.C.D.2.〔3.00分〕〔2021•陕西〕如图,是一个几何体的外表展开图,那么该几何体是〔〕A.正方体B.长方体C.三棱柱D.四棱锥3.〔3.00分〕〔2021•陕西〕如图,假设l1∥l2,l3∥l4,那么图中与∠1互补的角有〔〕A.1个 B.2个 C.3个 D.4个4.〔3.00分〕〔2021•陕西〕如图,在矩形AOBC中,A〔﹣2,0〕,B〔0,1〕.假设正比例函数y=kx的图象经过点C,那么k的值为〔〕A.B.C.﹣2 D.25.〔3.00分〕〔2021•陕西〕以下计算正确的选项是〔〕A.a2•a2=2a4B.〔﹣a2〕3=﹣a6C.3a2﹣6a2=3a2D.〔a﹣2〕2=a2﹣4 6.〔3.00分〕〔2021•陕西〕如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD ⊥BC,垂足为D,∠ABC的平分线交AD于点E,那么AE的长为〔〕A.B.2C.D.37.〔3.00分〕〔2021•陕西〕假设直线l1经过点〔0,4〕,l2经过点〔3,2〕,且l1与l2关于x轴对称,那么l1与l2的交点坐标为〔〕A.〔﹣2,0〕B.〔2,0〕 C.〔﹣6,0〕D.〔6,0〕8.〔3.00分〕〔2021•陕西〕如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.假设EH=2EF,那么以下结论正确的选项是〔〕A.AB=EF B.AB=2EF C.AB=EF D.AB=EF9.〔3.00分〕〔2021•陕西〕如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,那么∠DBC的大小为〔〕A.15°B.35°C.25°D.45°10.〔3.00分〕〔2021•陕西〕对于抛物线y=ax2+〔2a﹣1〕x+a﹣3,当x=1时,y >0,那么这条抛物线的顶点一定在〔〕A.第一象限B.第二象限C.第三象限D.第四象限二、填空题〔共4小题,每题3分,计12分〕11.〔3.00分〕〔2021•陕西〕比拟大小:3〔填“>〞、“<〞或“=〞〕.12.〔3.00分〕〔2021•陕西〕如图,在正五边形ABCDE中,AC与BE相交于点F,那么∠AFE的度数为.13.〔3.00分〕〔2021•陕西〕假设一个反比例函数的图象经过点A〔m,m〕和B 〔2m,﹣1〕,那么这个反比例函数的表达式为.14.〔3.00分〕〔2021•陕西〕如图,点O是▱ABCD的对称中心,AD>AB,E、F 是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,假设S1,S2分别表示△EOF和△GOH的面积,那么S1与S2之间的等量关系是.三、解答题〔共11小题,计78分。
2022年陕西省中考数学试卷(B卷)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)﹣37的相反数是()A.﹣37B.−137C.37D.1372.(3分)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°3.(3分)计算:2x•(﹣3x2y3)=()A.﹣6x3y3B.6x3y3C.﹣6x2y3D.18x3y34.(3分)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AD B.AC⊥BD C.AB=AC D.AC=BD5.(3分)如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为()A.3√2B.3√5C.6√2D.3√76.(3分)在同一平面直角坐标系中,直线y=﹣x+4与y=2x+m相交于点P(3,n),则关于x,y的方程组{x+y−4=0,2x−y+m=0的解为()A.{x=−1,y=5B.{x=3,y=1C.{x=1,y=3D.{x=9,y=−57.(3分)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°8.(3分)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3二、填空题(共5小题,每小题3分,计15分)9.(3分)计算:3−√25=.10.(3分)实数a,b在数轴上对应点的位置如图所示,则a﹣b.(填“>”“=”或“<”)11.(3分)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为米.12.(3分)已知点A(﹣2,m)在一个反比例函数的图象上,点A'与点A关于y轴对称.若点A'在正比例函数y=12x的图象上,则这个反比例函数的表达式为.13.(3分)如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为.三、解答题(共13小题,计81分.解答应写出过程) 14.(5分)计算:5×(﹣3)+|−√6|﹣(17)0.15.(5分)解不等式组:{x +2>−1x −5≤3(x −1).16.(5分)化简:(a+1a−1+1)÷2aa 2−1. 17.(5分)如图,已知△ABC ,CA =CB ,∠ACD 是△ABC 的一个外角. 请用尺规作图法,求作射线CP ,使CP ∥AB .(保留作图痕迹,不写作法)18.(5分)如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .19.(5分)如图,△ABC 的顶点坐标分别为A (﹣2,3),B (﹣3,0),C (﹣1,﹣1).将△ABC 平移后得到△A 'B 'C ',且点A 的对应点是A '(2,3),点B 、C 的对应点分别是B '、C '.(1)点A 、A '之间的距离是 ; (2)请在图中画出△A 'B 'C '.20.(5分)有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.21.(6分)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O 三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.22.(7分)如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.输入x…﹣6﹣4﹣202…输出y…﹣6﹣22616…根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.23.(7分)某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟A t<60850B60≤t<901675C90≤t<12040105D t≥12036150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.24.(8分)如图,AB是⊙O的直径,AM是⊙O的切线,AC、CD是⊙O的弦,且CD⊥AB,垂足为E,连接BD并延长,交AM于点P.(1)求证:∠CAB=∠APB;(2)若⊙O的半径r=5,AC=8,求线段PD的长.25.(8分)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE=10m,该抛物线的顶点P到OE的距离为9m.(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.26.(10分)问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC 的度数为.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.2022年陕西省中考数学试卷(B卷)参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)﹣37的相反数是()A.﹣37B.−137C.37D.137【解答】解:﹣37的相反数是37.故选:C.2.(3分)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.3.(3分)计算:2x•(﹣3x2y3)=()A.﹣6x3y3B.6x3y3C.﹣6x2y3D.18x3y3【解答】解:2x•(﹣3x2y3)=﹣6x3y3.故选:A.4.(3分)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AD B.AC⊥BD C.AB=AC D.AC=BD 【解答】解:A.∵▱ABCD中,AB=AD,∴▱ABCD是菱形,故选项A不符合题意;B.∵▱ABCD中,AC⊥BD,∴▱ABCD是菱形,故选项B不符合题意;C.▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项C不符合题意;D.∵▱ABCD中,AC=BD,∴▱ABCD是矩形,故选项D符合题意;故选:D.5.(3分)如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为()A.3√2B.3√5C.6√2D.3√7【解答】解:∵BD=2CD=6,∴CD=3,BD=6,∵tan C=ADCD=2,∴AD=6,∴AB=√2AD=6√2故选:C.6.(3分)在同一平面直角坐标系中,直线y=﹣x+4与y=2x+m相交于点P(3,n),则关于x,y的方程组{x+y−4=0,2x−y+m=0的解为()A.{x=−1,y=5B.{x=3,y=1C.{x=1,y=3D.{x=9,y=−5【解答】解:将点P(3,n)代入y=﹣x+4,得n=﹣3+4=1,∴P(3,1),∴原方程组的解为{x=3 y=1,故选:B.7.(3分)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°【解答】解:如图,连接OB,∵∠C=46°,∴∠AOB=2∠C=92°,∵OA=OB,∴∠OAB=180°−92°2=44°.故选:A.8.(3分)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3【解答】解:∵抛物线y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴x=1,顶点坐标为(1,﹣4),当y=0时,(x﹣1)2﹣4=0,解得x=﹣1或x=3,∴抛物线与x轴的两个交点坐标为:(﹣1,0),(3,0),∴当﹣1<x1<0,1<x2<2,x3>3时,y2<y1<y3,故选:D.二、填空题(共5小题,每小题3分,计15分)9.(3分)计算:3−√25=﹣2.【解答】解:原式=3﹣5=﹣2.故答案为:﹣2.10.(3分)实数a,b在数轴上对应点的位置如图所示,则a<﹣b.(填“>”“=”或“<”)【解答】解:∵b与﹣b互为相反数∴b与﹣b关于原点对称,即﹣b位于3和4之间∵a位于﹣b左侧,∴a<﹣b,故答案为:<.11.(3分)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为﹣1+√5米.【解答】解:∵BE2=AE•AB,设BE=x,则AE=(2﹣x),∵AB=2,∴x2=2(2﹣x),即x2+2x﹣4=0,解得:x1=﹣1+√5,x2=﹣1−√5(舍去),∴线段BE的长为(﹣1+√5)米.故答案为:﹣1+√5.12.(3分)已知点A(﹣2,m)在一个反比例函数的图象上,点A'与点A关于y轴对称.若点A'在正比例函数y=12x的图象上,则这个反比例函数的表达式为y=−2x.【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =12x 的图象上, ∴m =12×2=1, ∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图象上, ∴反比例函数的表达式为y =−2x, 故答案为:y =−2x .13.(3分)如图,在菱形ABCD 中,AB =4,BD =7.若M 、N 分别是边AD 、BC 上的动点,且AM =BN ,作ME ⊥BD ,NF ⊥BD ,垂足分别为E 、F ,则ME +NF 的值为√152.【解答】解:连接AC 交BD 于O , ∵四边形ABCD 为菱形,∴BD ⊥AC ,OB =OD =72,OA =OC ,由勾股定理得:OA =√AB 2−OB 2=√42−(72)2=√152,∵ME ⊥BD ,AO ⊥BD , ∴ME ∥AO , ∴△DEM ∽△DOA , ∴ME OA=DM AD,即√152=4−AM 4,解得:ME =4√15−√15AM8, 同理可得:NF =√15AM8,∴ME +NF =√15,故答案为:√152.三、解答题(共13小题,计81分.解答应写出过程) 14.(5分)计算:5×(﹣3)+|−√6|﹣(17)0.【解答】解:5×(﹣3)+|−√6|﹣(17)0=﹣15+√6−1 =﹣16+√6.15.(5分)解不等式组:{x +2>−1x −5≤3(x −1).【解答】解:由x +2>﹣1,得:x >﹣3, 由x ﹣5≤3(x ﹣1),得:x ≥﹣1, 则不等式组的解集为x ≥﹣1. 16.(5分)化简:(a+1a−1+1)÷2aa 2−1. 【解答】解:(a+1a−1+1)÷2aa 2−1=a+1+a−1a−1•a 2−12a=2aa−1⋅(a+1)(a−1)2a=a +1.17.(5分)如图,已知△ABC ,CA =CB ,∠ACD 是△ABC 的一个外角. 请用尺规作图法,求作射线CP ,使CP ∥AB .(保留作图痕迹,不写作法)【解答】解:如图,射线CP 即为所求.18.(5分)如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .【解答】证明:∵DE ∥AB , ∴∠EDC =∠B , 在△CDE 和△ABC 中, {∠EDC =∠B CD =AB ∠DCE =∠A, ∴△CDE ≌△ABC (ASA ), ∴DE =BC .19.(5分)如图,△ABC 的顶点坐标分别为A (﹣2,3),B (﹣3,0),C (﹣1,﹣1).将△ABC 平移后得到△A 'B 'C ',且点A 的对应点是A '(2,3),点B 、C 的对应点分别是B '、C '.(1)点A 、A '之间的距离是 4 ; (2)请在图中画出△A 'B 'C '.【解答】解:(1)∵A (﹣2,3),A '(2,3), ∴点A 、A '之间的距离是2﹣(﹣2)=4, 故答案为:4;(2)如图所示,△A 'B 'C '即为所求.20.(5分)有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg ,6kg ,7kg ,7kg ,8kg .现将这五个纸箱随机摆放. (1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg 的概率是25;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg 的概率.【解答】解:(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg 的概率是25,故答案为:25;(2)画树状图如下:共有20种等可能的结果,其中所选两个纸箱里西瓜的重量之和为15kg 的结果有4种, ∴所选两个纸箱里西瓜的重量之和为15kg 的概率为420=15.21.(6分)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO ⊥OD ,EF ⊥FG .已知小明的身高EF 为1.8米,求旗杆的高AB .【解答】解:∵AD ∥EG , ∴∠ADO =∠EGF , ∵∠AOD =∠EFG =90°, ∴△AOD ∽△EFG , ∴AO EF=OD FG,即AO 1.8=202.4,∴AO =15,同理得△BOC ∽△AOD , ∴BO AO=OC OD,即BO 15=1620,∴BO =12,∴AB =AO ﹣BO =15﹣12=3(米), 答:旗杆的高AB 是3米.22.(7分)如图,是一个“函数求值机”的示意图,其中y 是x 的函数.下面表格中,是通过该“函数求值机”得到的几组x 与y 的对应值. 输入x … ﹣6 ﹣4 ﹣2 0 2 … 输出y…﹣6﹣22616…根据以上信息,解答下列问题:(1)当输入的x 值为1时,输出的y 值为 8 ; (2)求k ,b 的值;(3)当输出的y 值为0时,求输入的x 值.【解答】解:(1)当输入的x 值为1时,输出的y 值为y =8x =8×1=8, 故答案为:8;(2)将(﹣2,2)(0,6)代入y =kx +b 得{2=−2k +b 6=k ,解得{k =2b =6;(3)令y =0, 由y =8x 得0=8x , ∴x =0<1(舍去), 由y =2x +6,得0=2x +6, ∴x =﹣3<1,∴输出的y 值为0时,输入的x 值为﹣3.23.(7分)某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表: 组别 “劳动时间”t /分钟频数 组内学生的平均“劳动时间”/分钟A t <60 8 50B 60≤t <90 16 75C 90≤t <120 40 105 Dt ≥12036150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在 C 组; (2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数. 【解答】解:(1)(2)把100名学生的“劳动时间”从小到大排列,排在中间的两个数均在C组,故这100名学生的“劳动时间”的中位数落在C组,故答案为:C;(2)x=1100×(50×8+75×16+105×40+105×36)=112(分钟),答:这100名学生的平均“劳动时间”为112分钟;(3)1200×40+36100=912(人),答:估计在该校学生中,“劳动时间”不少于90分钟的人数为912人.24.(8分)如图,AB是⊙O的直径,AM是⊙O的切线,AC、CD是⊙O的弦,且CD⊥AB,垂足为E,连接BD并延长,交AM于点P.(1)求证:∠CAB=∠APB;(2)若⊙O的半径r=5,AC=8,求线段PD的长.【解答】(1)证明:∵AM是⊙O的切线,∴∠BAM=90°,∵∠CEA=90°,∴AM∥CD,∴∠CDB=∠APB,∵∠CAB=∠CDB,∴∠CAB=∠APB.(2)解:如图,连接AD,∵AB是直径,∴∠CDB+∠ADC=90°,∵∠CAB+∠C=90°,∠CDB=∠CAB,∴∠ADC=∠C,∴AD=AC=8,∵AB=10,∴BD =6,∵∠BAD +∠DAP =90°,∠P AD +∠APD =90°, ∴∠APB =∠DAB , ∵∠BDA =∠BAP ∴△ADB ∽△P AB , ∴AB PB=BD AB,∴PB =AB 2BD =1006=503,∴DP =503−6=323. 故答案为:323.25.(8分)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE 表示水平的路面,以O 为坐标原点,以OE 所在直线为x 轴,以过点O 垂直于x 轴的直线为y 轴,建立平面直角坐标系.根据设计要求:OE =10m ,该抛物线的顶点P 到OE 的距离为9m . (1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A 、B 处分别安装照明灯.已知点A 、B 到OE 的距离均为6m ,求点A 、B 的坐标.【解答】解:(1)由题意抛物线的顶点P (5,9), ∴可以假设抛物线的解析式为y =a (x ﹣5)2+9, 把(0,0)代入,可得a =−925,∴抛物线的解析式为y=−925(x﹣5)2+9;(2)令y=6,得−925(x﹣5)2+9=6,解得x1=5√33+5,x2=−5√33+5,∴A(5−5√33,6),B(5+5√33,6).26.(10分)问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC 的度数为75°.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.【解答】解:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵AD是等边△ABC的中线,∴∠P AC=12∠BAC=30°,∵AP=AC,∴∠APC=12×(180°﹣30°)=75°,故答案为:75°;(2)如图2,连接PB,∵AP∥BC,AP=BC,∴四边形PBCA为平行四边形,∵CA=CB,∴平行四边形PBCA为菱形,∴PB=AC=6,∠PBC=180°﹣∠C=60°,∴BE=PB•cos∠PBC=3,BE=PB•sin∠PBC=3√3,∵CA=CB,∠C=120°,∴∠ABC=30°,∴OE=BE•tan∠ABC=√3,∴S四边形OECA=S△ABC﹣S△OBE=12×6×3√3−12×3×√3=15√32;(3)符合要求,理由如下:如图3,过点A作CD的平行线,过点D作AC的平行线,两条平行线交于点F,∵CA=CD,∠DAC=45°,∴∠ACD=90°,∴四边形FDCA为正方形,∵PE是CD的垂直平分线,∴PE是AF的垂直平分线,∴PF=P A,∵AP=AC,∴PF=P A=AF,∴△P AF为等边三角形,∴∠P AF=60°,∴∠BAP=60°﹣45°=15°,∴裁得的△ABP型部件符合要求.。
2015年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-032)(( )A.1B.23- C.0 D.322.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =•B.2224)2(b a ab =-C.532)(a a =D.ab b a b a 332223=÷ 4.如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( )A.2B.-2C.4D.-4 6.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>xx x 的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度 9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( )A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧 二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。
陕西省中考数学试题及答案、选择题(共10小题,每小题,3分,计30分,每小题只有一个选项符合题意的。
)1、4的算术平方根是()C 、-丄D -2 22、下图是一个正方体被截取一个直三棱柱得到的几何体,则该几何体的左视图为()-x的图像上,则m的值()(2题图)A B D1 1A1 B 、- C4 44、小军旅行箱的密码是一个六位数,、-1由于他忘记密码的末位数字,则小军能一次打开该旅行箱的概率是A丄B 、105、把不等式组:{19x+2 >1的解集表示在数轴上,正确的是(3 - x > 0-1 0-1- 2 3- -1 0- 1- 2 3-D0- 1- 2 3-0- 1- 2 3-A -2 B9、如图,在平行四边形 ABCD 中,AB 5,对角线AC 6,若过点A作AE BC ,垂足为E,则AE 的长( A 4B 12、5 C 24D、5510、二次函数y 是() A c ?-1 C 2a b 02ax bx c(aB b?0 、9a 2 0)的图象如图所示,则下列结论正确的c 3b6、某区10名学生参加市级汉子听写大赛,他们得分情况如下表: 人数 3 4 2 1 分数80859095那么这10名学生所得分数的平均数和众数分别是多少?()A 、85 和 82.5 C 、85 和 857、如图 AB|| CD,/ A=45°,Z C=28° ,则/AEC 的大小为(&若x 2是关于x 的一元二次方程x 2 -ax a 2 0的一个根,则a 的2值是()A 、1 或 4B 、-1 或-4C 、-1 或 4D 、1 或-4、85.5 和 85 、85.5 和 80A 、17B 、 620C 630D 、730X第10题图第II 卷(非选择题90分)二、填空题(共6小题,每小题3分,计18分) 11、 计算(I )2。
3--------12、 _________________________________________ 因式分解: m (x y ) n(x y ) ___________________________________________ 。
最新中考模拟题 数学试卷第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分)1.如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作( ) A .-7 ℃ B .+7 ℃ C .+12 ℃ D .-12 ℃ 2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )3.计算23)5(a -的结果是( )A .510a -B .610aC .525a -D .625a4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )分数(分) 89 92 95 96 97 评委(位) 12211 A .92分B .93分C .94分D .95分5.如图,在BE AD ABC ,中,∆是两条中线,则=∆∆ABC EDC S S :( )A .1∶2B .2∶3C .1∶3D .1∶46.下列四组点中,可以在同一个正比例函数图象上的一组点是( ) A .(2.-3),(-4,6) B .(-2,3),(4,6) C .(-2,-3),(4,-6) D .(2,3),(-4,6) 7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为( )A .75°B .65°C .55°D .50° 8.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标为( ) A .(-1,4) B .(-1,2) C .(2,-1) D .(2,1)9.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .32D .2410.在平面直角坐标系中,将抛物线62--=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( )A .1B .2C .3D .6第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:()2cos 45-38+1-2=︒ .12.分解因式:3223-2+=x y x y xy .13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A .在平面内,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过的面积为 .B .用科学计算器计算:7sin 69︒≈ (精确到0.01).14.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 瓶甲饮料.15.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可).16.如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分) 化简:22a bb a b a b a b a b--⎛⎫÷⎪+-+⎝⎭-. 18.(本题满分6分)如图,在ABCD 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB AF =; (2)当35AB BC ==,时,求AEAC的值.19.(本题满分7分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图.请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?20.(本题满分8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C处位于北偏东65︒方向,然后,他从凉亭A处沿湖岸向正东方向走了100、、在同一水平面上).请你米到B处,测得湖心岛上的迎宾槐C处位于北偏东45︒方向(点A B C利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据:,,,,sin250.4226cos250.9063tan250.4663sin650.9063︒≈︒≈︒≈︒≈,)cos650.4226tan65 2.1445︒≈︒≈21.(本题满分8分)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米. (1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少? 22.(本题满分8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局. 依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率. (骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.) 23.(本题满分8分)如图,PA PB 、分别与O 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ,垂足为N . (1)求证:=OM AN ;(2)若O 的半径=3R ,=9PA ,求OM 的长. 24.(本题满分10分)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是 三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由. 25.(本题满分12分) 如图,正三角形ABC 的边长为3+3.(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''EFPN ,且使正方形''''EFPN 的面积最大(不要求写作法);(2)求(1)中作出的正方形''''EFPN 的边长; (3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由.参考答案1、【答案】A【解析】通过题意我们可以联想到数轴,零摄氏度即原点,大于零摄氏度为正方向,数值为正数, 小于零摄氏度为负数.故选A . 2、【答案】C【解析】三视图主要考查学生们的空间想象能力,是近几年中考的必考点,从图中我们可以知道正 面为三个正方形,(下面两个,上面一个),左视图即从左边观看,上边有一个正方形,下 面两个正方体重叠,从而看到一个正方形,故选C . 3、【答案】D【解析】本题主要考查了数的乘方以及幂的乘方,从整体看,外边是个平方,那么这个数肯定是正 数,排除A ,C ,然后看到5的平方,是25,3a 的平方是6a ,积为625a ,选D . 4、【答案】C【解析】统计题目也是年年的必考题,注重学生们的实际应用能力,根据题目规则,去掉一个最高 分和一个最低分,也就是不算89分和97分,然后把其余数求平均数,得到94分.其实这 种计算有个小技巧,我们看到都是90多分,所以我们只需计算其个位数的平均数,然后再 加上90就可以快速算出结果.个位数平均数为45)62522(=÷+⨯+⨯,所以其余这些数 的平均数为94分.故选C . 5、【答案】D【解析】本题主要考查了三角形的中位线的性质,由题意可知,ED 为ABC ∆的中位线,则面积比 =∆∆ABC EDC S S :4:1)21()(22==AB ED ,故选D . 6、【答案】A【解析】本题考查了一次函数的图象性质以及应用,若干点在同一个正比例函数图像上,由kx y =, 可知,y 与x 的比值是相等的,代进去求解,可知,A 为正确解.选A . 7、【答案】B【解析】本题考查了菱形的性质,我们知道菱形的对角线互相平分且垂直,外加OE AB ⊥,即可得 出︒=︒⨯=∠⨯=∠=∠651302121ABC OBE AOE .选B . 8、【答案】D【解析】一次函数交点问题可以转化为二元一次方程组求解问题,解得x=2,y=1.选D . 9、【答案】C 【解析】本题考查圆的弦与半径之间的边角关系,连接OB ,OD ,过O 作OH AB ⊥,交AB 于点H . 在OBH Rt ∆中,由勾股定理可知,OH =3,同理可作AB OE ⊥,OE =3,且易证 OPH OPE ∆≅∆,所以OP =23,选C . 10、【答案】B【解析】本题考查了抛物线的平移以及其图像的性质,由)2)(3(62+-=--=x x x x y ,可知其与 x 轴有两个交点,分别为()()30-20,,,.画图,数形结合,我们得到将抛物线向右平移2个单位,恰好使得抛物线经过原点,且移动距离最小.选B . 11、【答案】【解析】原式=22⨯⨯12、【答案】()2-xy x y【解析】()()2322322-2-2-x y x y xy xy x xy y xy x y +=+=13、A 【答案】23π【解析】将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过部分的形状为半径为2,圆心角度数为30°的两个扇形,所以其面积为230222=3603ππ⨯⨯. B 【答案】2.4714、【答案】3【解析】设小宏能买x 瓶甲饮料,则买乙饮料()10-x 瓶.根据题意,得 ()7+410-50x x ≤ 解得133x ≤ 所以小宏最多能买3瓶甲饮料.15、【答案】18=y x (只要=k y x 中的k 满足9>2k 即可) 【解析】设这个反比例函数的表达式是=ky x()0k ≠.由==-2+6ky xy x ⎧⎪⎨⎪⎩,,得22-6+=0x x k . 因为这个反比例函数与一次函数的图象没有交点,所以方程22-6+=0x x k 无解. 所以()2=-6-42=36-8<0k k ∆⨯,解得9>2k .16、【解析】方法一:设这一束光与x 轴交与点C ,过点C 作x 轴的垂线CD ,过点B 作BE x ⊥轴于点E .根据反射的性质,知ACO BCE ∠=∠.所以Rt ACORt BCE ∆∆.所以=AO BECO CE. 已知=2AO ,=3BE ,+=4OC CE ,则23=4-CE CE. 所以12=5CE ,8=5CO .由勾股定理,得AC =BC =+AB AC BC方法二:设设这一束光与x 轴交与点C ,作点B 关于x 轴的对称点'B ,过'B 作'B D y ⊥轴 于点D .由反射的性质,知'A C B ,,这三点在同一条直线上. 再由对称的性质,知'=BC BC . 则=+=''AB AC CB AC CB AB +=.由题意易知=5AD ,'=4BD ,由勾股定理,得AB =AB AB17、【答案】解:原式=(2)()()()()2a b a b b a b a ba b a b a b---++⋅+--=22222()(2)a ab ab b ab b a b a b --+----=224()(2)a aba b a b ---=2(2)()(2)a ab a b a b ---=2aa b-. 18、【答案】解:(1)如图,在ABCD 中,//AD BC , ∴23∠=∠.∵BF 是ABC ∠的平分线, ∴12∠=∠. ∴13∠=∠. ∴AB AF =.(2)23AEF CEB ∠=∠∠=∠,, ∴△AEF ∽△CEB , ∴35AE AF EC BC ==,∴38AE AC =. 19、【答案】解:(1)如图所示一周内该校学生从图书馆借出各类图书数量情况统计图(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类:600×40%=240(本),科普类:600×35%=210(本), 文学类:600×10%=60(本),其它类:600×15%=90(本). 20、【答案】解:如图,作CD AB ⊥交AB 的延长线于点D ,则4565BCD ACD ∠=︒∠=︒,. 在Rt △ACD 和Rt △BCD 中, 设AC x =,则sin 65AD x =︒, cos65BD CD x ==︒.∴100cos65sin65x x +︒=︒.∴100207sin 65cos65x =≈︒-︒(米). ∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米.21、【答案】解:(1)设+y kx b =,则有299,2000235.b k b =⎧⎨+=⎩解之,得4125299.k b ⎧=-⎪⎨⎪=⎩,∴4299125y x =-+. (2)当1200x =时,41200299260.6125y =-⨯+=(克/立方米).∴该山山顶处的空气含氧量约为260.6克/立方米. 22、【答案】解:(1)随机掷两枚骰子一次,所有可能出现的结果如右表:右表中共有36种等可能结果,其中点数和 为2的结果只有一种. ∴P (点数和为2)=136. (2)由右表可以看出,点数和大于7的结果 有15种.∴P (小轩胜小峰)= 1536=512.23、【答案】解:(1)证明:如图,连接OA ,则OA AP ⊥. ∵MN AP ⊥, ∴//MN OA . ∵//OM AP ,∴四边形ANMO 是矩形. ∴=OM AN .(2)连接OB ,则OB BP ⊥.∵=OA MN ,=OA OB ,//OM AP , ∴=OB MN ,=OMB NPM ∠∠. ∴Rt OBM Rt MNP ∆≅∆. ∴=OM MP .设=OM x ,则=9-NP x .在Rt MNP ∆中,有()222=3+9-x x .∴=5x .即=5OM . 24、【答案】解:(1)等腰(2)∵抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,∴该抛物线的顶点224b b ⎛⎫ ⎪⎝⎭,满足2=24b b ()>0b .∴=2b .(3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称, 则四边形ABCD 为平行四边形.当=OA OB 时,平行四边形ABCD 为矩形. 又∵=AO AB ,∴△OAB 为等边三角形. 作AE OB ⊥,垂足为E . ∴=AE 3OE .∴()2''=3'>042b b b ⋅. 骰子2 骰子11 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 91056 7 8 910 116 78910 11 12。
2019年陕西中考数学试卷
第Ⅰ卷(选择题 共30分)
一.选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)
的算术平方根是( )
A.-2 B.2 C. D.
2.下面是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是( )
3.若点A(-2,m)在正比例函数y=x的图像上,则m的值是( )
A. B. D. -1
4.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( )
A. B. C. D.
5.把不等式组的解集表示在数轴上,正确的是( )
6.某区10名学生参加市级汉字听写大赛,他们得分情况如下表:
人数 3 4 2 1
得分 80 85 90 95
那么这10名学生所得分数的平均数和众数分别是( )
和 和85 C.85和85 和80
7.如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为( )
° ° ° °
8.若x=-2是关于x的一元二次方程的一个根,则a的值为 ( )
或4 B. -1或-4 C. -1或4 D. 1或-4
9.如图,在菱形ABCD中,AB=5,对角线AC=6,若过点A作AE⊥BC,垂足为E,则AE的长为( )
A.4 B. C.
10.二次函数的图像如图所示,则下列结论中正确的是( )
A.c>-1 >0 C.2a+b≠0 D. 9+c>3b
第Ⅱ卷(非选择题 共90分)
二.填空题(共6小题,每小题3分,计18分)
11.计算:=______.
12.因式分解:m(x-y)+n(x-y)=_____________.
13.请从以下两个小题中任选一个....作答,若多选,则按所选做的第一题计分.
A.一个正五边形的对称轴共有_____条.
B.用科学计算器计算:≈________.(结果精确到
14.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,
则DE的长度为_______.
15.已知,是同一个反比例函数图像上的两点.若,且
,则这个反比例函数的表达式为_________.
16.如图,⊙O的半径是2,直线与⊙O相交于A、B两点,M、N是⊙O上两个动点,且在直线的异侧,若∠AMB=45°,
则四边形MANB面积的最大值是________.
三.解答题(共9小题,计72分.解答应写出过程)
17.(本题满分5分)
先化简,再求值:
,其中x=.
18.(本题满分6分)
如图,在Rt△ABC中,∠ABC=90°,点D在边AB上,使DB=BC,过点D作EF⊥AC,分别交AC于点E、CB
的延长线于点F.
求证:AB=BF.
19.(本题满分7分)
根据《2019年陕西省国民经济和社会发展统计公报》提供的大气污染物(A—二氧化硫,B—氮氧化物,C—
化学需氧量,D—氨氮)排放量的相关数据,我们将这些数据用条形统计图和扇形统计图统计如下:
根据以上统计图提供的信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)国务院总理李克强在十二届全国人大二次会议的政府工作报告中强调,建设美好家园、加大节能减排
力度,今年二氧化硫、化学需氧量的排放量在去年基础上都要减少2%.按此指示精神,求出陕西省2019年二氧
化硫、化学需氧量的排放量共需减少约多少万吨(结果精确到)
20.(本题满分8分)
某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情
况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).
①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时
小亮测得小明眼睛距地面的距离AB=米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重
心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=米,小明的
眼睛距地面的距离CB=米.
根据以上测量过程及测量数据,请你求出河宽BD是多少米
21.(本题满分8分)
小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包
装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快
寄樱桃的费用为y(元),所寄樱桃为x(kg).
(1)求y与x之间的函数关系式;
(2)已知小李给外婆快寄了樱桃,请你求出这次快寄的费用是多少元
22.(本题满分8分)
小英与她的父亲、母亲计划外出旅游,初步选择了延安、西安、汉中、安康四个城市.由于时间仓促,他们只能
去其中一个城市,到底去哪一个城市三人意见不统一.在这种情况下,小英父亲建议,用小英学过的摸球游戏来
决定.规则如下:
①在一个不透明的袋子中装一个红球(延安)、一个白球(西安)、一个黄球(汉中)和一个黑球(安康),
这四个球除颜色不同外,其余完全相同;
②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然
后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;
③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直
到两人所摸出球的颜色相同为止.
按照上面的规则,请你解答下列问题:
(1)已知小英的理想旅游城市是西安,小英和母亲随机各摸球一次,均摸出白球的概率是多少
(2)已知小英母亲的理想旅游城市是汉中,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少
23.(本题满分8分)
如图,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6.过点B作⊙O的切线BD,切点为D,延长BO交⊙O
于点A,过点A作切线BD的垂线,垂足为C.
(1)求证:AD平分∠BAC;
(2)求AC的长.
24.(本题满分10分)
已知抛物线C:经过A(-3,0)和B(0,3)两点.将这条抛物线的顶点记为M,它的对称轴于x轴的交点记为N.
(1)求抛物线C的表达式;
(2)求点M的坐标;
(3将抛物线C平移到C′,抛物线C′的顶点记为M′,它的对称轴于x轴的交点记为N′.如果以点M、N、M′、
N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移为什么
25.(本题满分12分)
问题探究
(1)如图①,在矩形ABCD中,AB=3,BC=4.如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条
件的一个..等腰△APD,并求出此时BP的长;
(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点.当AD=6时,
BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;
问题解决
(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安监控装置,用来
监视边AB.现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳.已知∠A=∠E=∠D=90°,AB=270m,
AE=400m,ED=285m,CD=340m.问在线段CD上是否存在点M,使∠AMB=60°若存在,请求出符合条件的DM的长;
若不存在,请说明理由.
图① 图② 图③
参考答案
1、B 2、A 3、C 4、A 5、D 6、B 7、D 8、B 9、C 10、D