非完整约束轮式移动机器人运动控制系统研究
- 格式:pdf
- 大小:277.18 KB
- 文档页数:4
0引言世界技能大赛由世界技能组织举办,被誉为“技能奥林匹克”,是世界技能组织成员展示和交流职业技能的重要平台,比赛项目共分为6个大类,分别为结构与建筑技术、创意艺术和时尚、信息与通信技术、制造与工程技术、社会与个人服务、运输与物流。
移动机器人项目属于制造与工程技术领域的赛事之一,随着制造业的转型升级,技能人才的培养也扮演着越来越重要的角色,为了更好地推广移动机器人项目,让更多的院校参与世界技能大赛,让更多的学生学会利用自动控制技术设计世界技能大赛所需的移动机器人,笔者将几年来对移动机器人电机控制、运动规划方面的一些技巧及实现做了总结,旨在让更多的参与者快速学会对移动机器人的控制,更好地推动移动机器人相关专业的发展。
1系统组成1.1系统基本构成世界技能大赛移动机器人项目一般要求参赛队伍所制作的移动机器人具有较为灵活的移动能力,为了满足这一条件,普遍采用全方位移动的机器人设计。
全方位移动机器人具有全方位运动能力,其实现方式关键在于全方位的轮系结构,该结构具备每一个大轮边缘套有小轮的机构,能够避免普通轮系不能侧滑带来的非完整性运动限制,从而实现全方位运动。
在比赛中,机器人较为常用的底盘是用 3 个全向轮组成的底盘运动控制系统。
其中,三个全向轮运动轴心夹角按照 120°进行设计,之间通过3条横梁互为60°连接构成,如图1所示,底盘三个全向轮由独立的电机驱动。
底盘运动信息主要通过三个360线的编码器和一个9轴陀螺仪获取。
图1 三轮机器人效果图(左)及实物图(右)1.2系统主体框架世界技能大赛移动机器人项目所设计的机器人,既要考虑到实用性,又要考虑到使用提供指定套件来搭建。
整个指定套件提供了4个直流电机、3个舵机、1个陀螺仪、2个超声波传感器、2个红外传感器、2个限位开关,设计的机器人需要依赖于上述提供的电气元件。
笔者所使用的三轮平台由核心控制模块(MYRIO)、传感器检测模块、世界技能大赛移动机器人运动控制系统设计 章安福(广州市工贸技师学院,广州,510000)摘 要世界技能大赛移动机器人项目要求设计的机器人能够在2m×4m的平面场地中完成一定的任务,而全向轮式移动机器人为非完整性约束系统,机器人可向任意方向做直线运动而不需事先做旋转运动,同时可执行复杂的弧线运动。
轮式移动机器人运动学基础,自由度计算
轮式移动机器人的运动学基础包括轮式移动机器人的运动学模型、运动学约束和运动学控制等方面。
其中,自由度计算是其中比较重要的一部分。
首先,轮式移动机器人的运动学模型可以分为非完整模型和完整模型。
其中,非完整模型指的是机器人的所有约束都不完整,例如,机器人在运动时可以在任
意方向上运动;而完整模型指的是机器人的所有运动都受到一定的限制,例如,机器人在运动时只能沿着特定的路径运动。
其次,轮式移动机器人的运动学约束还包括机器人的几何约束和运动约束。
其中,几何约束指的是机器人在运动时必须满足的形态约束,例如,机器人在运动时必须保持平稳;而运动约束指的是机器人在运动时必须满足的运动约束,例如,机器人在运动时必须按照预定的运动路径运动。
最后,轮式移动机器人的运动学控制包括轮式移动机器人的动力学控制和运动学控制。
其中,动力学控制指的是机器人在运动时要满足机器人的动力学约束,
例如,机器人在运动时必须保持平稳;而运动学控制指的是机器人在运动时要满足机器人的运动学约束,例如,机器人在运动时必须按照预定的运动路径运动。
综上所述,轮式移动机器人的运动学基础涉及到轮式移动机器人的运动学模型、运动学约束和运动学控制等方面,其中,自由度计算则是其中比较重要的一部分。
非完整轮式移动机器人反演滑模轨迹跟踪控制器设计杨敏;梅劲松;廖里程【摘要】For tracking the trajectory of wheeled mobile robots, a backstepping-based sliding-mode control scheme is presented. An equivalent control law is obtained by using Pl-type sliding surface and a switching control law is gotten by replacing sign function by variable rate function. The stability of the system is proved by Lyapunov theory. Simulation results show the effectiveness and cor-rectness of the proposed method and the improvement of the chattering phenomenon in the system. Even though external disturb-ances exist, the proposed approach is of a satisfactory control quality.%针对轮式移动机器人的轨迹跟踪问题,提出了一种反演滑模控制方法。
采用PI型滑模面设计等效控制律,利用变速函数代替了符号函数得到切换控制律,并利用Lypunov定理证明了系统的稳定性。
仿真结果表明了该方法的有效性和正确性,控制中出现的抖振现象得到改善,在外界干扰影响下,也具有良好的控制品质。
【期刊名称】《机械制造与自动化》【年(卷),期】2015(000)005【总页数】4页(P152-154,196)【关键词】轮式移动机器人;反演;滑模控制【作者】杨敏;梅劲松;廖里程【作者单位】南京航空航天大学自动化学院,江苏南京210016;南京航空航天大学自动化学院,江苏南京210016;南京航空航天大学自动化学院,江苏南京210016【正文语种】中文【中图分类】TP242近年来,非完整移动机器人的运动控制一直是控制工作者研究的热点。
一、绪论(一)引言移动机器人技术是一门多科学交叉及综合的高新技术,是机器人研究领域的一个重要分支,它涉及诸多的学科,包括材料力学、机械传动、机械制造、动力学、运动学、控制论、电气工程、自动控制理论、计算机技术、生物、伦理学等诸多方面。
第一台工业机器人于20世纪60年代初在美国新泽西州的通用汽车制造厂安装使用。
该产品在20世纪60年代出口到日本,从20世纪80年代中期起,对工业机器人的研究与应用在日本迅速发展并步入了黄金时代。
与此同时,移动机器人的研究工作也进入了快速发展阶段。
移动机器人按其控制方式的不同可以分为遥控式、半自动式和自主式三种;按其工作环境的不同可以分为户外移动机器人和室内机器人两种。
自主式移动机器人可以在没有人共干预或极少人共干预的条件下,在一定的环境中有目的的移动和完成指定的任务。
自主式移动机器人是一个组成及结构非常复杂的系统,具有加速、减速、前进、后退以及转弯灯功能,并具有任务分析,路径规划,导航检测和信息融合,自主决策等类似人类活动的人工智能。
(二)移动机器人的主要研究方向1.体系结构技术1)分布式体系结构分布式体系结构【1。
2.3】是多智能体技术在移动机器人研究领域的应用。
智能体是指具有各自的输入、输出端口,独立的局部问题求解能力,同时可以彼此通过协商协作求解单个或多个全局问题的系统。
移动机器人系统,特别是具有高度自组织和自适应能力的系统,它们的内部功能模块与智能体相仿,因此可以应用多智能体技术来分析和设计移动机器人系统的结构,实现系统整体的灵活性和高智能性。
在分布式体系结构中,各个功能模块具有不同的输入输出对象和自身的不同功能,并行各工作,整个系统通过一个调度器实现整体的协调,包括制定总体目标、任务分配、运动协调和冲突消解等。
2)进化控制体系结构面对任务的复杂性和环境的不确定性以及动态特性,移动机器人系统应该具有主动学习和自适应的能力。
将进化控制的思想融入到移动机器人体系结构的设计中,使得系统哎具备较高反应速度大的同时,也具备高性能的学习和适应能力。
受非完整性约束的移动机器人路径跟踪算法郁伉;肖本贤;李艳红【摘要】文章讨论了受非完整约束限制的两轮差动驱动机器人的路径跟踪问题,研究移动机器人在一个运动周期内的轨迹,找出该周期内机器人起点坐标和终点坐标之间的联系,推导出一种新模型;针对机器人跟踪任意期望几何路径,提出了斜率算法;对于期望路径是圆弧的特例,提出曲率半径算法,进一步提高跟踪速度平稳性和跟踪精度.【期刊名称】《合肥工业大学学报(自然科学版)》【年(卷),期】2010(033)009【总页数】5页(P1315-1319)【关键词】路径跟踪;运动周期;曲率;两轮差动驱动机器人;非完整系统【作者】郁伉;肖本贤;李艳红【作者单位】合肥工业大学,电气与自动化工程学院,安徽,合肥,230009;合肥工业大学,电气与自动化工程学院,安徽,合肥,230009;咸阳师范学院,物理系,陕西,咸阳,712000【正文语种】中文【中图分类】TP240 引言由于存在非完整约束,移动机器人路径跟踪控制十分具有挑战性。
文献[1]对系统在期望路径附近Taylor线性化,对得到的线性时变系统设计控制律,从而实现原系统的局部跟踪;文献[2]采用输入输出反馈线性化的方法,将非线性系统分解为2个子系统,再根据性能指标逐一设计控制律,以达到跟踪目的;文献[3]采用后退(back steping)方法的思想,将系统分解为低阶系统,利用中间虚拟变量和部分Lyapunov函数,设计了具有全局渐进稳定的跟踪控制器。
目前常见机器人模型有运动学模型、动力学模型以及位姿误差模型。
自文献[4]提出位姿误差模型以来,还很少见到新的模型。
本文针对两轮差动驱动移动机器人,在仔细分析其工作过程的基础上,推导出新的模型,并给出2种算法。
该模型在表达式上具有运动学模型简洁的优点,经过简单变换,得到1个运动周期内机器人位姿误差。
2种算法针对机器人初始位置在期望路径附近,相对于传统的基于Lyapunov函数的控制律设计,不必计算大量偏导数,在保证跟踪精度、跟踪速度的前提下,具有计算量小的优点;和反馈线性化算法相比,不存在奇异性问题[5]。