人教版高一数学必修一-第一章-知识点与习题讲解
- 格式:docx
- 大小:88.71 KB
- 文档页数:10
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B=由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即SA全册每单元每课时 2例题:1.下列四组对象,能构成集合的是()A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合{a,b,c }的真子集共有个3.若集合M={y|y=x2-2x+1,x∈R},N={x|x≥0},则M与N的关系是 .全册每单元每课时 3全册 每单元 每课时44.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
微课程2:集合的运算子集真子集定义对于两个集合A、B,如果集合A中的任意一个元素都是集合B中的元素,称集合A为集合B的子集若集合A⊆B,但存在元素x ∈B,且x∉A,称集合A是集合B的真子集符号语言若任意x∈A,有x∈B,则A⊆B。
若集合A⊆B,但存在元素x ∈B ,且x∉A,则A B表示方法A为集合B的子集,记作A⊆B或B⊇A。
A不是B的子集时,记作A B或B A。
若集合A是集合B的真子集,记作A B或B A。
性质①A⊆A ②∅⊆A③A⊆B,B⊆C⇒A⊆CA B,且B C⇒A C子集个数含n个元素的集合A的子集个数为n2含n个元素的集合A的真子集个数为n2-1空集不含任何元素的集合,记为∅。
空集是任何集合的子集,用符号语言表示为∅⊆A;若A非空(即A≠∅),则有∅A。
集合的运算:1. 并集的概念(1)自然语言表示:由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。
(2)符号语言表示:A∪B={x|x∈A,或x∈B}。
(3)图形语言(Venn图)表示:。
2. 交集的概念(1)自然语言表示:由属于集合A且属于集合B的所有元素所组成的集合,称为集合A与B的交集。
(2)符号语言表示:A∩B={x|x∈A,且x∈B}。
(3)图形语言表示(Venn图):。
3. 补集的概念(1)自然语言表示:对于集合A,由全集U中不属于集合A的所有元素所组成的集合,称为集合A相对于全集U的补集,简称为集合A的补集。
(2)符号语言表示:A={x|x∈U,且x∉A}。
(3)图形语言表示(Venn图):,阴影部分表示A。
【典例精析】例题1 判断下列说法是否正确,如果不正确,请加以改正。
(1){∅}表示空集;(2)空集是任何集合的真子集;(3){1,2,3}不是{3,2,1};(4){0,1}的所有子集是{0},{1},{0,1};(5)如果A ⊇B 且A≠B ,那么B 必是A 的真子集; (6)A ⊇B 与B ⊆A 不能同时成立。
高中数学必修1知识点总结目录高中数学必修1知识点总结............................. 错误!未定义书签。
第一章集合与函数概念............................... 错误!未定义书签。
〖〗集合 ............................................ 错误!未定义书签。
【】集合的含义与表示................................. 错误!未定义书签。
【】集合间的基本关系................................. 错误!未定义书签。
【】集合的基本运算................................... 错误!未定义书签。
〖〗函数及其表示 .................................... 错误!未定义书签。
【】函数的概念 ...................................... 错误!未定义书签。
【】函数的表示法 .................................... 错误!未定义书签。
〖〗函数的基本性质................................... 错误!未定义书签。
【】单调性与最大(小)值............................. 错误!未定义书签。
【】奇偶性 .......................................... 错误!未定义书签。
【】函数周期性和对称性............................... 错误!未定义书签。
〖补充知识〗函数的图象............................... 错误!未定义书签。
第二章基本初等函数(Ⅰ) ............................. 错误!未定义书签。
高一数学必修一第一章知识点梳理摘要:一、导言- 课程背景- 课程目标- 课程大纲二、知识点梳理1.集合- 集合的概念- 集合的表示- 集合的运算2.函数- 函数的概念- 函数的表示- 函数的性质- 函数的运算3.基本初等函数- 指数函数- 对数函数- 幂函数- 三角函数三、重点与难点解析1.集合与函数的关系2.函数的性质及应用3.函数的求导与微分四、学习建议与策略1.理解概念,掌握基础知识2.熟练运用公式与性质3.大量练习,提高解题能力4.及时复习,形成知识体系正文:【导言】在我国高中数学课程中,必修一是数学基础知识的基石。
本章内容涉及集合、函数及基本初等函数等知识点,这些知识点对于后续数学课程的学习具有重要意义。
通过本章学习,学生应掌握相关概念、性质、公式及运算方法,培养逻辑思维能力与解题技巧。
【知识点梳理】1.集合集合是数学的基本概念,它是一种包含若干个元素的东西。
集合的概念有三个基本要素:元素、集合和属于关系。
在高中数学中,我们主要学习如何表示集合,以及如何进行集合的运算,如并集、交集、补集等。
2.函数函数是高中数学的一个重要概念,它表示两个或多个变量之间的关系。
在高中数学中,我们主要学习如何表示函数,以及如何研究函数的性质,如单调性、奇偶性、周期性等。
此外,还学习如何对函数进行求导与微分,以研究函数的局部最值和变化趋势。
3.基本初等函数基本初等函数是指在初等数学范围内,具有基本性质和重要应用的函数。
在本章中,我们主要学习指数函数、对数函数、幂函数和三角函数等基本初等函数。
这些函数在数学及其他领域具有广泛的应用,需要熟练掌握其性质和公式。
【重点与难点解析】1.集合与函数的关系集合和函数是密切相关的两个概念。
集合可以看作是函数的输入和输出,而函数则是集合之间的映射关系。
理解集合与函数的关系,有助于更好地把握数学知识体系的核心。
2.函数的性质及应用函数的性质是研究函数变化趋势的重要依据。
了解各种性质及其应用,可以帮助我们解决实际问题,如求解最值、比较大小等。
第一部分集合与函数的概念知识点整理第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/ B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高中数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1集合的含义2、集合的中元素的三个特性:确定性、互异性、无序性3、集合的表示:列举法、描述法(语言描述法) 、文氏图4、常用数集及其记法:(1)非负整数集(即自然数集) N正整数集N*或N+⑵整数集Z(3)有理数集Q⑷实数集R5、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合⑶空集不含任何元素的集合例:{x|x 2=—5}二、集合间的基本关系1、“包含”关系一子集2、“相等”关系:A=B3、不含任何元素的集合叫做空集,记为①4、区分概念:子集、真子集、非空子集、非空真子集5、几个规定:(1) 空集是任何集合的子集(2) 空集是任何非空集合的真子集(3) 任何一个集合是它本身的子集⑷如果A B, B C,那么A C⑸如果A B同时B A,那么A=B(6)有n个元素的集合,有2n个子集,2n-1个真子集,2n-1个非空子集,2n-2个非空真子集四、函数的有关概念1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数X,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A T B为从集合A到集合B的一个函数,记作:y=f(x) , x € A o其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x € A }叫做函数的值域.(1) 定义域:能使函数式有意义的实数x的集合称为函数的定义域。
(2) 求函数的定义域时列不等式组的主要依据是:•分式的分母不等于零;•偶次方根的被开方数不小于零;•对数式的真数必须大于零;•指数、对数式的底必须大于零且不等于 1 ;•如果函数是由一些基本函数结合而成的,那么其定义域要使的各部分函数都有意义;•指数为零底不可以等于零;•实际问题中的函数的定义域还要保证实际问题有意义。
高一数学必修一第一章知识点梳理【原创实用版】目录1.必修一第一章的主要知识点2.知识点的详细解析3.知识点的应用和实践正文一、必修一第一章的主要知识点高一数学必修一的第一章主要包括以下几个知识点:1.有理数和整式有理数包括整数、分数和无理数,整式是由单项式和多项式组成的代数式。
2.一元一次方程与不等式一元一次方程是指含有一个未知数的一次方程,不等式是指用不等号连接的代数式。
3.函数和导数函数是一种将自变量映射到因变量的数学关系,导数是函数在某一点的切线斜率。
二、知识点的详细解析1.有理数和整式有理数是我们日常生活中常用的数字,包括整数、分数和无理数。
整式是由单项式和多项式组成的代数式,其中单项式是只含有一个变量的代数式,多项式是由多个单项式相加或相减而成的代数式。
2.一元一次方程与不等式一元一次方程是指含有一个未知数的一次方程,例如 2x+3=7。
不等式是指用不等号连接的代数式,例如 x>5。
解一元一次方程和不等式的方法主要包括移项、合并同类项、化简等步骤。
3.函数和导数函数是一种将自变量映射到因变量的数学关系,例如 y=2x+1。
导数是函数在某一点的切线斜率,表示函数在该点的变化率。
导数的求法有多种,如极限法、微分法等。
三、知识点的应用和实践在实际生活和学习中,我们可以通过以下方式应用和实践这些知识点:1.解实际问题中的数学题,如利用一元一次方程和不等式求解实际问题。
2.学习其他数学课程,如利用函数和导数研究数学曲线的性质。
3.参加数学竞赛或考试,提高自己的数学能力和成绩。
第一章集合与函数概念〖 1.1 〗集合【 1.1.1 】集合的含义与表示1)集合的概念集合中的元素具有确定性、互异性和无序性.2)常用数集及其记法N 表示自然数集,N 或N 表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集3)集合与元素间的关系对象a 与集合M 的关系是a M ,或者a M ,两者必居其一.4)集合的表示法①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{ x| x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合.5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集().【 1.1.2 】集合间的基本关系7)已知集合有个元素,则它有n个子集,它有n个真子集,它有n个非空子集,它有2n 2非空真子集(8)交集、并集、补集补充知识】含绝对值的不等式与一元二次不等式的解法1)2)〖 1.2 〗函数及其表示【 1.2.1 】函数的概念1)函数的概念①设A、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A中任何一个数x,在集合B中都有唯一确定的数f ( x)和它对应,那么这样的对应 (包括集合A,B以及A到B的对应法则f ) 叫做集合A到B 的一个函数,记作f : A B .②函数的三要素: 定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.2)区间的概念及表示法①设a, b是两个实数,且a b,满足a x b的实数x的集合叫做闭区间,记做[a,b] ;满足a x b的实数x的集合叫做开区间,记做(a,b);满足a x b,或a x b 的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x a,x a,x b,x b的实数x的集合分别记做[a, ),(a, ),( ,b],( ,b) .注意:对于集合{x|a x b}与区间(a, b) ,前者a可以大于或等于b ,而后者必须a b .3)求函数的定义域时,一般遵循以下原则:①f(x) 是整式时,定义域是全体实数.②f(x) 是分式函数时,定义域是使分母不为零的一切实数.③f(x) 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤ y tanx 中,x k (k Z).2⑥零(负)指数幂的底数不能为零.⑦若f (x) 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f (x) 的定义域为[ a, b] ,其复合函数f[g(x)]的定义域应由不等式a g(x) b 解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数y f ( x)可以化成一个系数含有y的关于x 的二次方程2a(y)x b(y)x c(y) 0 ,则在a(y) 0时,由于x, y为实数,故必须有2b2(y) 4a(y) c(y) 0 ,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【 1.2.2 】函数的表示法5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.6)映射的概念①设A、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应 (包括集合A,B以及A到B的对应法则f )叫做集合A到B 的映射,记作f : A B .②给定一个集合A到集合B的映射,且a A,b B .如果元素a和元素b对应,那么我们把元素b叫做元素a 的象,元素a 叫做元素b 的原象.〖 1.3 〗函数的基本性质 1.3.1 】单调性与最大(小)值1)函数的单调性①定义及判定方法② 在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为 增函数,减函数减去一个增函数为减函数.③对于复合函数 y f[g (x )] ,令 u g (x ) ,若 y f (u )为增, u g (x ) 为增,则y f [ g (x )]为增;若 y f (u )为减, u g ( x )为减,则 y f[g (x )]为增;若 y f (u )为函数的 性质定义如果对于属于定义域 I 内某 个区间上的任意两个自变量 的值x 1、x 2, 当 x .1.<. x .2.时,都有f .(x ..1.).<.f (.x ..2.)., 那 么 就 说 f(x ) 在这个区间上是图象判定方法 函数的 单调性如果对于属于定义域 I 内某 个区间上的任意两个自变量 的值x 1、 x 2,当 x .1.<. x .2.时,都有f.(x ..1.).>.f (.x ..2.)., 那 么 就 说 f(x ) 在这个区间上是(1)利用定义 ( 2)利用已知函数的 单调性 ( 3 )利用函数图象 (在 某个区间图 象上升为增) (4)利用复合函数 (1)利用定义 ( 2)利用已知函数的 单调性 ( 3 )利用函数图象 (在 某个区间图 象下降为减) (4)利用复合函数对于任意的x I ,都有f (x) M ;2)存在x0 I ,使得f (x0) M .那么,我们称M 是函数f (x)的最大值,记作f max (x) M②一般地,设函数y f(x)的定义域为I ,如果存在实数m满足:(1)对于任意的x I ,都有f (x) m ;(2)存在x0 I ,使得f (x0) m .那么,我们称m是函数f (x)的最小值,记作f max(x) m .【 1.3.2 】奇偶性4)函数的奇偶性②若函数f (x)为奇函数,且在x 0处有定义,则f (0) 0.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换y f(x) h 0,左移h个单位yh 0, 右移| h|个单位yf (x h)y f(x)k 0,上移k 个单位yk 0, 下移| k|个单位y f(x) k②伸缩变换y f (x) 011,缩,伸y f ( x)y f (x) 0A A 11,伸,缩y Af (x)③对称变换f( x) yf (x) x 轴y f(x) yf (x) y 轴yyf(x)原点y f( x)yf(x)直线 y xy f 1(x)f (x)去掉 y 轴左边图象f(|x|)y 保留 y 轴右边图象,并作其关于y 轴对称图象y保留x 轴上方图象y f (x) 将x 轴下方图象翻折上去y | f (x)| 2) 识图 对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.3) 用图 函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径, 获得问题结果的重要工具.要重视数形结合解题的思想方法.。
必修 1 第一章集合与函数基础知识点整理第 1 讲 §1.1.1 集合的含义与表示¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、 无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }” 括起来,基本形式为{a 1,a 2,a 3,,a n },适用于有限集或元素间存在规律的无限集. 描述法,即 用集合所含元素的共同特征来表示,基本形式为{x A |P (x )},既要关注代表元素 x ,也要把 握其属性P (x ) ,适用于无限集.3. 通常用大写拉丁字母 A ,B ,C ,表示集合. 要记住一些常见数集的表示,如自然数集N , 正整数集N *或N +,整数集 Z ,有理数集 Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号 、 表示,例如3N ,-2N . ¤例题精讲:【例 1】试分别用列举法和描述法表示下列集合: (1)由方程x (x 2 -2x -3)=0的所有实数根组成的集合;(2)大于 2且小于 7的整数. 解:(1)用描述法表示为:{x R |x (x 2 -2x -3)=0}; 用列举法表示为{0,-1,3}.(2)用描述法表示为:{x Z |2 x 7}; 用列举法表示为{3,4,5,6}.【例 2】用适当的符号填空:已知 A ={x |x =3k + 2,k Z }, B ={x | x = 6m -1,m Z },则有:17 A ; - 5 A ; 17 B . 解:由3k +2=17,解得k =5Z ,所以17A ;7 由3k +2=-5,解得k =7Z ,所以-5A ; 3 由6m -1=17,解得m =3Z ,所以17B . 【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数y = x + 3与y = -2x + 6的图象的交点组成的集合;(2)二次函数 y =x 2 - 4的函数值组成的集合;(3)反比例函数 y = 2 的自变量的值组成的集合. x2){y |y =x 2 -4}={y | y -4}. 2(3){x |y = 2}={x |x 0}.x点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4} , 也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同, 分析时一定要细心.*【例4】已知集合A = {a | x +a =1有唯一实数解},试用列举法表示集合 A . 解:化方程 x +a =1为:x 2 - x - (a + 2) = 0 .应分以下三种情况:x 2 - 2 ⑴方程有等根且不是2:由 △=0,得a = - 9 ,此时的解为x = 1 ,合.42 ⑵方程有一解为 2 ,而另一解不是- 2 :将 x = 2 代入得 a =- 2 ,此时另一解 x =1-2, 合.}={(1,4)}.解:(1){(x , y )|y =x +3y = -2x + 6⑶方程有一解为- 2 ,而另一解不是 2 :将x=- 2 代入得a= 2 ,此时另一解为x=2+1,合.综上可知,A={-9,- 2, 2}.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.第 2 讲§1.1.2 集合间的基本关系¤知识要点:1.一般地,对于两个集合A、B ,如果集合A中的任意一个元素都是集合B中的元素,则说两个集合有包含关系,其中集合A是集合B的子集(subset ),记作A B(或B A),读作“A含于B”(或“B包含A”).2.如果集合A是集合B的子集(A B),且集合B 是集合A的子集(B A),即集合A 与集合B的元素是一样的,因此集合A与集合B相等,记作A=B.3.如果集合A B,但存在元素x B,且x A,则称集合A 是集合B 的真子集(proper subset),记作A B(或B A).4.不含任何元素的集合叫作空集(empty set),记作,并规定空集是任何集合的子集.5.性质:A A;若A B,B C,则A C;若A I B= A,则A B;若A U B= A,则B A.¤例题精讲:【例1】用适当的符号填空:(1){菱形}{平行四边形};{等腰三角形}{等边三角形}.(2){x R|x2+2=0};0 {0};{0};N {0}.解:(1),;(2)=,∈,,.【例2】设集合A = {x | x = n ,n Z}, B = {x | x = n + 1 ,n Z},则下列图形能表示A与B关系的 A B B A A B A B是().A .B .C. D .解:简单列举两个集合的一些元素,A = {, - 3-1,-1,0,1,1,3,},B ={,-3,-1,1,3,},易知B A,故答案选A.另解:由B ={x | x = 2n +1 , n Z},易知B A,故答案选A.【例3】若集合M =x|x2+x-6=0,N=x|ax-1=0,且N M,求实数a的值. 解:由x2+x-6=0x=2或-3,因此,M = 2, -3.(i)若a=0时,得N=,此时,N M;(ii)若a0 时,得N = {}. 若N M,满足= 2或= -3,解得a= 或a= - .a aa 23 故所求实数a的值为0或1或-1.23 点评:在考察“ A B”这一关系时,不要忘记“ ” ,因为A=时存在A B. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A={a,a+b,a+2b},B={a,ax,ax2}. 若A=B,求实数x的值.解:若a+ax2-2ax=0, 所以a(x-1)2=0,即a=0 或x=1.a +2b =ax2 当a=0 时,集合B中的元素均为0 ,故舍去;当x=1 时,集合B2中的元素均相同,故舍去.若a +b =ax 2ax2-ax-a=0.a +2b =ax因为a≠0,所以2x2-x-1=0, 即(x-1)(2x+1)=0. 又x≠1,所以只有x =-1.经检验,此时A=B成立. 综上所述x=-1.2 点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第 3 讲§1.1.3 集合的基本运算(一)¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下.并集交集补集概念由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(union set )由属于集合A且属于集合B的元素所组成的集合,称为集合A与B的交集(intersection set)对于集合A,由全集U中不属于集合A的所有元素组成的集合,称为集合A相对于全集U的补集(complementary set)记号A U B (读作“A并B”)A I B (读作“A交B”)ðU A (读作“A的补集”)符号A U B={x|x A,或x B}A I B ={x|x A,且x B}ðA ={x|x U,且x A}图形表示U A¤例题精讲:【例1解:在数轴上表示出集合A、B,如右图所示:BA I B={x|3x5},A A BC (A U B)={x| x-1,或x9}-1 3 5 9 x4【例2】设A ={x Z | | x | 6}, B =1, 2,3, C =3,4,5,6,求: (1)A I(B I C ); (2)A Ið(B U C ).解:Q A =-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6.(1)又Q B I C =3,∴ A I ( B I C ) = 3; (2)又Q B U C =1,2,3,4,5,6,∴ A I C (B U C )=-6,-5,-4,-3,-2,-1,0.例3】已知集合A = {x | - 2 x 4} , B = {x | x m } ,且A I B = A ,求实数m 的取值范围. 解:由A I B = A ,可得A B . 在数轴上表示集合A 与集合 B ,如右图所示: B A由图形可知, m 4. 4-2m x 4 m x点评:研究不等式所表示的集合问题,常常由集合之 间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集U ={x |x 10,且x N *},A ={2,4,5,8},B ={1,3,5,8},求C (A U B ),C (A I B ), (C U A )I (C U B ), (C U A ) U (C U B ) ,并比较它们的关系. 解:由A U B ={1,2,3,4,5,8},则C U (A U B )={6,7,9}. 由A I B ={5,8},则C U (A I B )={1,2,3,4,6,7,9} 由C U A ={1,3,6,7,9},C U B ={2,4,6,7,9}, 则(C U A )I (C U B )={6,7,9}, (C U A )U(C U B )={1,2,3,4,6,7,9}. 由计算结果可以知道,(C U A )U(C U B ) =C U (A I B ),(C U A )I(C U B ) =C U (A U B ). 另解:作出 Venn 图,如右图所示,由图形可以直接观察出来结果. 点评:可用 Venn 图研究(CA )U(CB ) =C (A I B ) 与(C A )I(C B ) =C (A U B ) ,在理解的 基础记住此结论,有助于今后迅速解决一些集合问题.¤知识要点:Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图 形,我们还可以发现一些集合性质: C U (A I B ) = (C U A ) U (C U B ) , C U (A U B ) = (C U A ) I (C U B ) .2. 集合元素个数公式:n (A U B ) =n (A )+n (B )-n (A I B ).3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查 创新思维.¤例题精讲:【例 1】设集合A =-4,2a -1,a 2,B =9,a -5,1-a,若A I B =9,求实数a 的值. 解:由于A =-4,2a -1,a 2,B =9,a -5,1-a ,且A I B =9 ,则有:当2a -1=9时, 解得a =5,此时A ={-4, 9, 25},B ={9, 0, -4},不合题意,故舍去; 当 a 2=9 时,解得 a =3或-3 .a =3时, A ={-4,5,9}, B ={9,-2,-2},不合题意,故舍去; a =-3,A ={-4, -7, 9},B ={9, -8, 4} ,合题意. 所以, a =-3.【例2】设集合A ={x |(x -3)(x -a )=0,a R },B ={x |(x -4)(x -1)=0},求A U B , A I B .(教 材 P 14 B 组题 2 ) 解:B ={1,4}.当a =3时,A ={3},则A U B ={1,3,4},A I B =; 当a = 1时, A = {1,3} ,则A U B = {1,3,4}, A I B ={1}; 当a = 4时, A = {3, 4} ,则A U B = {1,3,4}, A I B ={4}; 当a 3且a 1且a 4时,A ={3,a },则A U B ={1,3,4,a },A I B =. 点评:集合 A 含有参数 a ,需要对参数 a 进行分情况讨论. 罗列参数 a 的各种情况时, 需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x|x2+4x=0},B ={x|x2+2(a+1)x+a2-1=0,a R},若A I B=B,求实数a的值.解:先化简集合A={-4,0}. 由A I B=B,则B A,可知集合B可为,或为{0},或{-4},或{-4,0}.(i)若B=,则=4(a+1)2-4(a2-1)0,解得a<-1;(ii)若0 B,代入得a2-1=0a=1或a=-1,当a =1 时,B=A,符合题意;当a = -1时,B={0} A,也符合题意.(iii)若-4B,代入得a2-8a + 7 = 0 a=7或a=1,当a =1时,已经讨论,符合题意;当a=7时,B={-12,-4},不符合题意.综上可得,a=1或a≤-1.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A=B和B=的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【例4】对集合A与B,若定义A-B={x|x A,且x B},当集合A={x|x8,x N*},集合B = {x | x(x - 2)(x - 5)(x - 6) = 0}时,有A - B = . (由教材P12 补集定义“集合A相对于全集U的补集为C U A={x| x U,且x A}”而拓展)解:根据题意可知,A={1,2,3,4,5,6,7,8},B={0,2,5,6} 由定义A-B={x| x A,且x B},则A-B={1,3,4,7,8}.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A中排除B的元素. 如果再给定全集U,则A-B也相当于A I (C U B).¤知识要点:1.设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function),记作y = f(x),x A.其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{ f (x) | x A}叫值域(range).2.设a、b是两个实数,且a<b,则:{x|a≤x≤b}=[a,b] 叫闭区间;{x|a<x<b}=(a,b) 叫开区间;6{x |a ≤x <b }=[a ,b ) , {x |a <x ≤b }=(a ,b ],都叫半开半闭区间. 符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{x | x a } = (a , +) , {x | x a }=[a ,+),{x | x b }=(-,b ),{x |x b }=(-,b ],R =(-,+).3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分 别相同时,函数才是同一函数.¤例题精讲:(2)由,解得 x 3且 x 9,3x -1-2所以原函数定义域为[3,9)U(9,+).【例 2】求下列函数的定义域与值域:(1) y = 3x + 25- 4x解:(1)要使函数有意义,则5-4x 0,解得x 5. 所以原函数的定义域是{x | x 5}.3x + 2 1 12 x + 8 1 3(4 x - 5) + 23 3 23 3 3 3 y = = = =- + - +0=- ,所以值域为{y | y - }.5- 4x 4 5-4x 4 5- 4x 4 5- 4x444(2) y = -x 2+ x + 2 = -(x - 1)2+ 9. 所以原函数的定义域是 R ,值域是(-,9]. 24 4【例3】已知函数 f (1-x )=x . 求:(1) f (2)的值; (2) f (x )的表达式1 + x解:( 1)由1-x =2,解得x =-1,所以 f (2)=-1.1 + x3 32)设1+x =t ,解得x =1+t ,所以 f (t )=1+t ,即 f (x )=1+x. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函 数的研究,常常需要结合换元法、特值代入、方程思想等.2【例 4】已知函数 f (x )=x ,x R .1 + x 21)求 f (x )+ f (1)的值;(2)计算:x(2)原式= f (1)+(f (2)+ f (12))+(f (3)+ f (13))+(f (4)+ f (14))=12+3=72 点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的 关键.¤知识要点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象, 反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看 出函数值).例 1 】求下列函数的定义域: ( 1 ) y =x +12-1;(2) x -3 y = 3 x -1-2.解:( 1)由 x +2 -10,解得x -1且x -3, 所以原函数定义域为(-,-3)U(-3,-1)U(-1,+).解:( 1)由 f (x )+ f (1)=x 2x 2x2 1 + x 21 + x 21+x2+= 1 + x 1 + x 1 + x=1.2) y = - x + x + 2.f (1)+ f (2)+ f (3)+ f (4)+2.分段函数的表示法与意义(一个函数,不同范围的x,对应法则不同).3.一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B 中都有唯一确定的元素y与之对应,那么就称对应f : A→ B 为从集合A 到集合B的一个映射(mapping).记作“ f : A→ B”.判别一个对应是否映射的关键:A中任意,B中唯一;对应法则f. ¤例题精讲:【例1】如图,有一块边长为a的正方形铁皮,将其四个角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出体积V以x为自变量的函数式是______________ ,这个函数的定义域为______ .解:盒子的高为x,长、宽为a-2x,所以体积为V=x(a-2 x)2. 又由a-2 x0 ,解得x a.2所以,体积V以x为自变量的函数式是V =x(a-2x)2,定义域为{x|0x a}.【例2】已知f(x)= x+2x+2 x(-,1),求f [f(0)]的值.x3+ x-3x(1,+)解:∵ 0(-,1),∴ f(0)= 3 2.又∵ 3 2 >1 ,∴ f(32)=(3 2)3+(3 2)-3=2+1=5,即f[f(0)]= 5.【例3】画出下列函数的图象:(1)y=|x-2|; (教材P26 练习题3)(2) y =| x-1|+|2x+4|.解:( 1)由绝对值的概念,有y =| x - 2 |= x - 2, x2.2 -x, x 2 所以,函数y=| x - 2 |的图象如右图所示.3x+3, x 1(2)y =|x-1|+|2x+4|=x+5, -2x 1,-3 x- 3, x -2所以,函数y=|x -1|+|2x+4|的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数f(x)=[x]的函数值表示不超过x的最大整数,例如[-3.5]=-4,[2.1]=2,当x(-2.5,3]时,写出f(x)的解析式,并作出函数的图象.-3, -2.5 x -2-2, -2 x -1-1, -1x0 解:f(x)=0, 0x 11, 1x 2函数图象如右:2, 2 x 33, x = 3点评:解题关键是理解符号m的概念,抓住分段函数的对应函数式.8域 I 内的某个区间 D 内的任意两个自变量 x 1 , x 2 ,当 x 1<x 2 时, 都有 f (x 1)<f (x 2),那么就说 f (x )在区间 D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数 f (x )在某个区间 D 上是增函数或减函数,就 说 f (x )在这一区间上具有(严格的)单调性,区间 D 叫 f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图 1),减函数的图象 从左向右是下降的(如右图 2). 由此,可以直观观察函数图象上升与下降的变化趋势,得 到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1 、x 2 ∈给定区间,且 x 1<x 2;→计算 f (x 1 )-f (x 2 ) →判断符 号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数 f (x )= 2x 在区间(0,1)上的单调性.x - 1解:任取x 1, x 2 ∈(0,1),且x 1 x 2 . 则 f (x 1)- f (x 2)= 2x 1 - 2x 2 = 2(x 2-x 1) .x - 1 x -1 (x -1)(x -1) 由于0x x 1,x -10,x -10,x -x0,故 f (x )-f (x )0,即 f (x ) f (x ).所以,函数 f (x )= 2 x 在(0,1)上是减函数.x -1【例2】求二次函数 f (x )=ax 2+bx +c (a 0)的单调区间及单调性. 解:设任意x ,x R ,且x x . 则f (x )- f (x )=(ax 2+bx +c )-(ax 2+bx +c )=a (x 2-x 2)+b (x -x ) =(x -x )[a (x +x )+b ]. 若 a 0 ,当x x -时,有x -x 0 , x +x - ,即a (x +x )+b 0 ,从而122 a12 12a12f (x 1)-f (x 2)0,即 f (x 1)f (x 2 ) ,所以 f (x )在(-,- b]上单调递增. 同理可得 f (x )在[- b ,+) 2a 2a上单调递减.【例 3】求下列函数的单调区间: (1)y =|x -1|+|2x +4|;(2)y =-x 2 +2|x |+3.3x +3, x1解:(1)y =|x -1|+|2x +4|=x +5, -2x 1,其图象如右. -3 x - 3, x -2由图可知,函数在[-2,+)上是增函数,在(-,-2]上是减函数.(2)y =-x2+2|x|+3=-x +2x +3, x 0,其图象如右.- x - 2x + 3, x 0由图可知,函数在(-,-1]、[0,1]上是增函数,在[-1,0]、[1,+) 上是减函数. 点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第 2 小题也可以由偶函数的对称性,先作 y 轴右侧的图象,并把 y 轴右侧的图象对折 到左侧,得到 f (| x |) 的图象. 由图象研究单调性,关键在于正确作出函数图象.1.定义最大值:设函数y = f (x)的定义域为I,如果存在实数M满足:对于任意的x∈I,都有f (x) ≤M;存在x0∈I,使得f(x0) = M. 那么,称M是函数y = f (x)的最大值(Maximum Value). 仿照最大值定义,可以给出最小值(Minimum Value)的定义.2.配方法:研究二次函数y=ax2+bx+c (a0) 的最大(小)值,先配方成y=a(x+ b )2+4ac-b后,当a0时,函数取最小值为4ac-b;当a0时,函数取最大值2a4a4a4ac - b24a3.单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4.图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数y= 6的最大值.x+x+1解:配方为y= 6,由(x+1)2+33,得068.y=1)2 +3 (x+2)+4 4 0(x+1)2 +38(x+24 24 所以函数的最大值为8.【例2】某商人如果将进货单价为8 元的商品按每件10 元售出时,每天可售出100 件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10 件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x元,则提高了(x-10)元,减少了10g(x-10)件,所赚得的利润为y = (x -8)g[100-10g(x -10)].即y=-10x2+280x-1600=-10(x-14)2+360. 当x=14时,y =360. 所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360 元. 【例3】求函数y = 2x + x - 1的最小值.解:此函数的定义域为1, +) ,且函数在定义域上是增函数,所以当x =1时,y min =2+ 1-1 = 2 ,函数的最小值为2.点评:形如y = ax + b cx+d的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令x-1=t,则t0 ,x=t2+1 ,所以y=2t2+t+2=2(t+1)2+15,在t0时是增函数,当t =0时,y =2,故48函数的最小值为2.【例4】求下列函数的最大值和最小值:53(1)y=3-2x-x , x[-2,2]; (2)y=|x+1|-|x-2|. 解:( 1)二次函数y =3-2x-x2的对称轴为x =-b,即x=-1.2a画出函数的图象,由图可知,当x=-1时,y max=4;当x = 23时,y min10所以函数y =3-2x -x 2, x [-5,3]的最大值为 4,最小值为- 9 . 3(x 2)(2) y =|x +1|-|x -2|=2x -1 (-1 x 2).-3 ( x -1)作出函数的图象,由图可知, y [-3,3]. 所以函数的最大值为 3, 最小值为-3. 点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图 象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函 数的图象注意分段作出.¤知识要点:1. 定义:一般地,对于函数 f (x )定义域内的任意一个x ,都有 f (- x ) = f (x ) ,那么函数 f (x )叫偶函数(even function ). 如果对于函数定义域内的任意一个 x ,都有 f (-x ) =-f (x ) ),那么 函数 f (x )叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函 数图象关于 y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判 别 f (-x )与 f (x )的关系.¤例题精讲:【例 1】判别下列函数的奇偶性:(1) f (x )=x 3-1; (2) f (x )=|x -1|+|x +1|;(3) f (x )=x 2-x 3.x 解:( 1)原函数定义域为{x | x 0} ,对于定义域的每一个 x ,都有 f (-x )=(-x )3- 1=-(x 3- 1)=-f (x ), 所以为奇函数.- xx(2)原函数定义域为 R ,对于定义域的每一个 x ,都有 f (-x )=|-x -1|+|-x +1|=|x -1|+|x +1|= f (x ) ,所以为偶函数. (3) 由于 f (-x )=x 2+x 3f (x ),所以原函数为非奇非偶函数. 【例2】已知 f (x )是奇函数,g (x )是偶函数,且 f (x )-g (x )=1 ,求 f (x )、g (x ).x +1 解:∵ f (x )是奇函数,g (x )是偶函数,∴ f (-x )=-f (x ),g (-x )=g (x ).两式相减,解得 f (x )= x ;两式相加,解得 g (x )= 1x 2 - 1 x 2 - 1则f ( x ) -g ( x ) =1x +1 f (-x )-g (-x ) = 1-x +1即f (x )-g (x )=x1+1-f (x )-g (x )=1 -x +1。