随机变量部分和之和的L~r收敛性
- 格式:pdf
- 大小:139.00 KB
- 文档页数:4
迪利克雷收敛定理
一、迪利克雷收敛定理简介
迪利克雷收敛定理(Dirlikov Convergence Theorem)是概率论中一个重要的收敛性定理,主要用于研究随机变量序列的收敛性。
该定理由保加利亚数学家迪利克雷(Kolmogorov)提出,因此得名。
二、迪利克雷收敛定理的条件
迪利克雷收敛定理指出,当且仅当以下两个条件同时满足时,一个随机变量序列收敛:
1.单调性:序列中的每个随机变量具有单调性,即随着自变量的增加,随机变量值也单调增加或减少。
2.矩条件:序列的任意阶矩存在且有限。
三、迪利克雷收敛定理的应用
迪利克雷收敛定理在概率论、统计学和随机过程等领域具有广泛的应用,例如:
1.用于研究随机变量序列的收敛性,判断其极限分布。
2.用于大数定律和中心极限定理的证明。
3.研究稳定分布和无穷可分分布的性质。
四、实例分析
以伯努利试验为例,设随机变量序列:X_n = B(n, p),其中n为试验次数,p为每次试验成功的概率。
1.判断单调性:随着n的增加,X_n的成功次数也单调增加或减少。
2.判断矩条件:计算序列的矩,如E[X_n] = np,Var[X_n] = np(1-p),可知任意阶矩存在且有限。
因此,根据迪利克雷收敛定理,序列X_n收敛。
五、总结与展望
迪利克雷收敛定理为研究随机变量序列的收敛性提供了一个有力的工具。
在实际应用中,判断序列的单调性和矩条件是关键。
通过对迪利克雷收敛定理的学习,我们可以更深入地理解随机变量序列的收敛性,并为后续的研究奠定基础。
中心极限定理的涵和应用在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。
中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。
这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。
故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。
一、独立同分布下的中心极限定理及其应用在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1:定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记nn XY ni in σμ-=∑=1则对任意实数y ,有{}⎰∞--∞→=Φ=≤yt n n t y y Y P .d e π21)(lim 22(1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。
由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。
为此,设μ-n X 的特征函数为)(t ϕ,则n Y 的特征函数为nY n t t n ⎥⎦⎤⎢⎣⎡=)()(σϕϕ又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0ϕ'=0,2)0(σϕ-=''。
于是,特征函数)(t ϕ有展开式)(211)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σϕϕϕϕ从而有=⎥⎦⎤⎢⎣⎡+-=+∞→+∞→nn Y n n t o nt t n )(21lim )(lim 22ϕ22t e -而22t e-正是N(0,1)分布的特征函数,定理得证。
这个中心极限定理是由林德贝格和勒维分别独立的在1920年获得的,定理告诉我们,对于独立同分布的随机变量序列,其共同分布可以是离散分布,也可以是连续分布,可以是正态分布,也可以是非正态分布,只要其共同分布的方差存在,且不为零,就可以使用该定理的结论。