弹塑性结构地震反应分析[详细]
- 格式:ppt
- 大小:6.01 MB
- 文档页数:108
弹塑性地震反应分析中的滞回曲线解析我们在进行弹塑性地震反应分析时,经常要用到结构的滞回曲线,今天为大家详细介绍一下这个神秘的东东.滞回曲线,也叫恢复力曲线,是在循环力的往复作用下,得到结构的荷载-变形曲线.它反映结构在反复受力过程中的变形特征、刚度退化及能量消耗.为啥要研究在反复受力过程中各种特性呢?因为地震力就是反复循环作用的.我们弹性设计只是拟静力法,不能体现反复力的作用.大多材料都是具有弹塑性性质的,当荷载大于一定程度后,在卸荷时产生残余变形,即荷载为零而变形不回到零,称之为“滞后”现象,这样经过一个荷载循环,荷载位移曲线就形成了一个环,将此环线叫做滞回环,多个滞回环就组成了滞回曲线!滞回曲线有哪几种呢?1、梭形梭形说明滞回曲线的形状非常饱满,反映出整个结构或构件的塑性变形能力很强,具有很好的抗震性能和耗能能力.例如受弯、偏压、压弯以及不发生剪切破坏的弯剪构件,具有良好塑性变形能力的钢框架结构或构件的P一△滞回曲线即呈梭形.2、弓形弓形具有“捏缩”效应,显示出滞回曲线受到了一定的滑移影响.滞回曲线的形状比较饱满,但饱满程度比梭形要低,反映出整个结构或构件的塑性变形能力比较强,节点低周反复荷载试验研究性能较好,.能较好地吸收地震能量.例如剪跨比较大,剪力较小并配有一定箍筋的弯剪构件和压弯剪构件,一般的钢筋混凝土结构,其滞回曲线均属此类.3、反S形反S形反映了更多的滑移影响,滞回曲线的形状不饱满,说明该结构或构件延性和吸收地震能量的能力较差.例如一般框架、梁柱节点和剪力墙等的滞回曲线均属此类.4、Z形Z形反映出滞回曲线受到了大量的滑移影响,具有滑移性质.例如小剪跨而斜裂缝又可以充分发展的构件以及锚固钢筋有较大滑移的构件等,其滞回曲线均属此类.很多专家做过的实验表明,混凝土构件轴压比为0时(受弯构件),滞回曲线十分饱满,有优越的延性和耗能性能,而轴压比提高时,延性明显下降,滞回环严重捏拢.这就是为何规范限制轴压比的原因.滞回曲线的物理意义为:地震时,结构处于地震能量场内,地震将能量输入结构,结构有一个能量吸收和耗散的持续过程.当结构进入弹塑性状态时,其抗震性能主要取决于构件耗能的能力.滞回曲线中加荷阶段荷载-位移曲线下所包围的面积可以反映结构吸收能量的大小;而卸荷时的曲线与加载曲线所包围的面积即为耗散的能量.这些能量是通过材料的内摩阻或局部损伤(如开裂、塑性铰转动等)而将能量转化为热能散失到空间中去.因此,滞回曲线中滞回环的面积是被用来评定结构耗能的一项重要指标.。
弹塑性反应谱的分析第35卷第4期2011年8月南京理工大学JournalofNanjingUniversityofScienceandTechnologyV0l_35No.4Aug.2011弹塑性反应谱的分析丁建国,陈伟(1.南京理工大学理学院,江苏南京210094;2.东南大学土木工程学院,江苏南京210090)摘要:为了分析结构在地震作用下的弹塑性反应,该文探讨了弹塑性反应谱.该文推导了弹塑性反应谱的基本方程,计算了等延性强度需求谱;描述了通过强度折减系数,延性系数及结构周期之间的关系建立弹塑性反应谱的方法;参照弹性反应谱理论分别得到了四种弹塑性反应谱.计算结果表明:当延性系数较小且土质较硬时,该文计算的弹塑性反应谱与范立础的弹塑性反应谱近似相等;当延性系数较大且土质柔软时,该文计算的弹塑性反应谱相对安全.关键词:强度折减系数;延性系数;弹塑性反应谱中图分类号:TU311.3文章编号:1005—9830(2011)04—0573—06 AnalysisofElasto-plasticResponseSpectraDINGJianguo,CHENWei(1.SchoolofSciences,NUST,Nanjing210094,China;2.CollegeofCivilEngineering,SoutheastUniversity,Nanjing210090,China) Abstract:Inordertoanalysetheelasto—plasticresponseofstructureunderthes eismicaction,this paperstudiesanelasto—plasticresponsespectrum.Thebasicequationofanela sto—plasticresponse spectrumisestablishedandtheconstant—ductilitystrengthdemandspectraare calculated.Themethodsofelasto-plasticspectraestablishedbyrelationshipamongthestrength reducingcoefficients andtheductilitycoefficientsaswellasthestructuralperiodsaredescribed.Four kindsofelasto- plasticresponsespectraarededucedfromreferringtotheelasticresponsespectr um.Thecalculation resultshowsthattheelasto—plasticresponsespectraproposedherearesimilart oFanLichu’Selasto—plasticresponsespectraundertheconditionofhardsoilandsmallductilitycoefficient,andthe elasto—plasticresponsespectraproposedherearerelativelysafeunderthecon ditionofsoftsoilandlargeductilitycoefficient.Keywords:strengthreducingcoefficients;ductilitycoefficients;elasto—plast icresponsespectra地震是人类所面临最严重的自然灾害之一.特别是从20世纪下半叶以来所发生的几次大地震使人们认识到,在强烈地震作用下建筑结构将产生屈服或部分屈服,从而发生弹塑性反应.依据《中华人民共和国抗震设计规范》规定J,抗震设防目标要求按照”三水准,二阶段”来进行,而抗震设防的第二阶段需要校核结构的弹塑性变形.结构在罕遇地震作用下的弹塑性变形计算是一个非常复杂的问题,目前在规范中所提出的计算方法主要包括静力弹塑性分析方法及弹塑性时程分析方法等.但是,如果要精确应用静力弹塑性分析方法,就需要采用通过由弹塑性反应谱得到的地震反应需求收稿日期:2010—06—04修回日期:2010-11-12作者简介:丁建国(1962~),男,副教授,主要研究方向:工程结构抗震与防灾,E-mail:*****************.cn.574南京理工大学第35卷第4期曲线来决定结构目标位移2J,因此,弹塑性反应谱的研究将具有极其重要的现实意义.近年来,国内外许多学者进行了有关弹塑性反应谱的研究.Miranda_3通过研究地震持续时间在0~3s内,且分别来自岩石地基,冲积土地基和软土地基的124条地震加速度记录曲线,得到了建立在单自由度体系基础上弹塑性需求谱,其研究结果表明:弹塑性需求谱主要依赖于场地条件,频谱特性和持续时间.Vidic’4等人用两种不同的方法获得了弹塑性强度需求谱:一种是通过减少相关因素降低弹性谱;另一种是通过对弹塑性结构在遭受地震作用时获得的反应谱进行统计分析,而直接得到弹塑性反应谱.范立础通过统计平均法和回归分析,给出了平均强度折减系数的函数表达式.其他相关文献[6-9]也介绍了地震力调整系数和相关的弹塑性反应谱.本文将试图根据结构抗震理论推导弹塑性反应谱的基本方程,并输入约200条地震波加速度时程曲线对单自由度体系进行弹塑性时程分析,以平均计算结果获得等延性强度需求谱及弹塑性反应谱,并与根据Vidic,Berrilld及范立础等人提出的R--g—T 关系所得到的弹塑性反应谱进行分析和比较.1基本方程在地震作用下,单自由度体系的运动微分方程如下.(£)+(),)=一眦()(1)式中:m为系统的质量;C为阻尼系数;(t),x(t)和x(t)分别为位移,速度和加速度i厂(,t)为系统恢复力;互(t)为地震作用加速度.为了计算方便,参照弹性系统恢复力公式,弹塑性系统恢复力可表示成式(2)的形式,.厂(,£)=()()(2)将式(2)代入式(1),因此得到()+2o(t)+[k(x)/k0]02(t)=-x(t)(3)式中:设:ko/m,=c/(2mw0),ko为滞回曲线系统的线弹性刚度.设屈服时位移为,则屈服力为(,)=kyX,是当=时系统的割线刚度.根据弹性反应谱理论(,t)=m3l,其中是动力系数.如果定义”(t):(t),R=厂(,)(,t),/.Z=maxI(t)I=JI/x(被称为强度折减系数,被称为延性系数),则式(3)将变为式(4).)+2)+一Rkr.2(4)根据弹性反应谱理论卢(5)式中:Ot为地震影响系数.因为系统周期和频率的关系为=2~r/w.,那么将式(5)代人式(4)中,则式(4)可以改写成式(6)的形式:u(t))睾)=睾Rky..c)(6)式(6)是等强度延性需求谱及等延性强度需求谱的基本方程.2等延性强度需求谱根据式(6),如果是一个常数,则等延性强度需求谱可以通过迭代计算得到.由于可能对应多个R的值,因此,等延性强度需求谱应选用尺的最小值.在本文中,假设抗震设防烈度为7度,利用如图1所示的退化三线型滞回模型,通过计算得出等延性强度需求谱.j,)图1退化三线型系统的恢复力模型在图1中,分别选择O/0=1,1=0.85,2=0.15,O/3=0.89.并且选择=0.30S,0.40S,0.55s和0.75S分别作为I,Ⅱ,Ⅲ和Ⅳ类场地的特征周期.选用包括EL.centro波,Taft波和天津波等近200条地震波.地震波选用原则,主要依据场地类别及特性进行选择.其中对于I类场地选用了57条地震波;Ⅱ类场地选用了55条地震波;111类场地选用了52条地震波;IV类场地选用了28条地震波.所有地震记录曲线的最大加速度峰值取0.22g. 这些地震记录的平均计算结果如图2所示.总第179期丁建国陈伟弹塑性反应谱的分析575 T/s(a)I类场地T/s(c)ll类场地T/s(b)1I类场地T/s(d)IV类场地图2等延性强度需求谱可改写为式(8).3由一j『1关系建立弹塑性反应谱的原理根据强度折减系数的定义,R={L,=se,.p7,式中:5:是弹性反应谱,5:是弹塑性反应谱.设弹性反应谱的地震影响系数为ot,弹塑性反应谱的地震影响系数为ol,根据S:=otg,则式(7)T/s(a)Berrill的弹塑性反应谱o/=:/g=a/R(8)因此,弹塑性反应谱的地震影响系数Ot可通过弹性反应谱的地震影响系数Ol和R一关系代人式(8)得到.本文分别利用Berrill,Vidic和卓卫东,范立础提出的R-/z—T的关系及本文所得到的等强度延性需求谱(图2),计算出了在I类场地(硬土)上四种弹塑性反应谱的地震影响系数,如图3所示.T/s(b)Vidic的弹塑性反应谱T/sT/s(c)范立础的弹塑性反应谱(d)本文计算出的弹塑性反应谱图3I类场地条件下Berrill,Vidic,范立础及本文计算出的弹塑性反应谱576南京理工大学第35卷第4期在图3中,当等于1时,该曲线则变为弹性反应谱,当=2,3,4,5时,曲线则为弹塑性反应谱.从图3可以发现,弹塑性反应谱中的地震作用明显小于弹性反应谱中的地震作用,这对抗震工程具有重要意义.4四种弹塑性反应谱的效果分析和对比由于没有足够且完整的较长时问软土地震加速度记录,且范立础的R一关系只包含了三种场地类别,同时考虑到等延性强度需求谱(图2 (d))有可能不具有良好的统计特性.因此,本文在对四种弹塑性反应谱进行比较和分析时,分别T/s(a)=2.0考虑了I,Ⅱ和Ⅲ类场地.在上述四种弹塑性反应谱中,Berrill的R一丁关系是建立在位移相同的原则上;Vidic的R一关系则建立在位移和能量相等的两个原则之上,并考虑到土壤条件和滞回模型等因素的影响;范立础的R一关系以及本文提出的等延性强度需求谱(图2)则建立在对单自由度体系的大量弹塑性时程分析的基础上.因此,通过对上述四种弹塑性反应谱分析和比较发现:(1)一般而言,通过Ben’ill的R一关系得到的弹塑性反应谱将相对偏于安全;(2)本文通过等延性强度需求谱计算出的弹塑性反应谱,因为选择了的最小值,在某些情况下也是比较安全的.为了对这四种弹塑性反应谱作进一步比较,更详尽曲线如图4~6所示.T/s(b)g=3.0T/sT/s(c)=4.0(d)5.0图4在I类场地条件下四种弹塑性反应谱参见图4~6,可以发现,一般而言,Berrill的弹塑性反应谱>Vidic的弹塑性反应谱>范立础的弹塑性反应谱.在硬土条件下(图4~5),当>0.1s时,四种弹塑性反应谱近似相同;当T<0.1s,本文计算出的弹塑性反应谱则是相对安全的,但比Berrill的弹塑性反应谱略低,Vidic的弹塑性反应谱接近于范立础的弹塑性反应谱.在软土条件下(图6),当结构周期为中长周期时,则本文计算出的弹塑性反应谱大于其他三种弹塑性反应谱,并且越大,则差值越大;当结构周期为长周期时,四种弹塑性反应谱几乎是相同的.当等于2时(图4(a),图5(a)及图6(a)),一般来说,Berrill的弹塑性反应谱大于Vidic的弹塑性反应谱,而Vidic的弹塑性反应谱大于范立础的弹塑性反应谱,同时也略大于本文计算出的弹塑性反应谱.当T<0.2s时,Vidic的弹塑性反应谱以及范立础的弹塑性反应谱与本文得到的弹塑性反应谱几乎是相同的.当结构周期是中长周期时,本文计算的弹塑性反应谱值比范立础的弹塑性反应谱值大.当等于5时(图4(d),图5(d)及图6(d)),本文计算出的弹塑性反应谱是相对安全,并接近Berrill的弹塑性反应谱,范立础的弹塑性反应谱和Vidic的弹塑性反应谱则非常相近.总第179期丁建国陈伟弹塑性反应谱的分析577 5结论T/s(a)=2.0T/s(b)=3.0T/sT/s(c)=40(d)5.0图5在Ⅱ类场地条件下四种弹塑性反应谱T/s(a)=2.0T/s(c)=4.0T/s(b)=3.0图6在Ⅲ类场地条件下四种弹塑性反应谱(1)本文建立了弹塑性反应谱的基本方程,并根据大量地震加速度记录计算得到了等延性强度需求谱;(2)当延性系数较小且土质较硬,本文计算的弹塑性反应谱与范立础的弹塑性反应谱几乎近T/s(d)=5.0似相同;而Vidic的弹塑性反应谱比前两者大; Berrill的弹塑性反应谱相对安全.当值较大且土质柔软时,本文计算的弹塑性反应谱则相对安全一些;而在大多数情况下,弹塑性反应谱有以下关系:本文计算出的弹塑性反应谱>Vidic的弹塑性反应谱>范立础的弹塑性反应谱.但Vidic的弹塑性反应谱与范立础的弹塑性反应谱的差别不大;(3)范立础的R一关系是建立对单自由578南京理工大学第35卷第4期度系统大量的弹塑性时程分析的基础上,但这种关系不能充分考虑阻尼比,滞回模型等影响因素,而Vidic的一关系较简单但可以清楚地反映这些因素的影响,Vidic的弹塑性反应谱比较接近范立础的弹塑性反应谱.参考文献:[2][3][4]GB50011_-20o1.中华人民共和国抗震设计规范[s].北京:中国建筑工业出版社,2001. AppliedTechnologyCouncil.A TC一40.V o1.1.Seismic evaluationandretrofitofconcretebuildings[S].1996. MirandaE.Evaluationofsite—dependentinelasticseismic designspectra[J].JoumalofStruetEngngASCE,1993, 117(8):1319-1338.VidicT,FajfarP,FischingerM.Consistentinelastic designspectra:Strengthanddisplacement[J].[5][6][7][8][9] EarthquakeEngineeringandStructuralDynamics,1994, 24(5):507—521.卓卫东,范立础.结构抗震设计中的强度折减系数研究[J].地震工程与工程振动,2001,21(1):84—88. BerrillJB,PriestleyMJ,ChapmaanHE.Design earthquakeloadingandductilitydemand[A].Bulletin oftheNewZealandNationalSocietyforEarthquake Engineering[C].Wellington,NewZealand~New ZealandSocietyforEarthquakeEngineeringInc,1980, 13(3):232—241.丁建国.弹塑性反应谱及其在抗震设计中应用[J]. 南京理工大学,2007,31(6):780—783. ElghadamsiFE,MohrazB.Inelasticearthquakespectra [J].EarthquakeEngineeringandStructuralDynamics, 1987.15:91一lo4.MirandaE,JorgeRG.Influenceofstiffnessdegradation onstrengthdemandsofstmcturesbuiltonsoftsoilsites [J].EngineeringStructures,2002,24:1271-1281.。
高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究一、本文概述本文旨在探讨高层建筑结构在地震作用下的弹塑性分析方法及其抗震性能评估。
地震是自然界中常见的灾害性事件,对人类社会和建筑结构产生深远影响。
高层建筑由于其特殊的结构特点和高度,使其在地震中更容易受到破坏。
因此,研究高层建筑结构的抗震性能,特别是在弹塑性阶段的分析和评估,对于提高建筑结构的抗震能力,减少地震灾害损失具有重要意义。
本文将首先介绍高层建筑结构抗震弹塑性分析的基本理论和方法,包括弹塑性力学基础、结构分析模型、地震动输入等。
在此基础上,探讨高层建筑结构在地震作用下的弹塑性响应特点,包括结构变形、内力分布、能量耗散等。
然后,本文将重点介绍高层建筑结构抗震性能评估的方法和技术,包括静力弹塑性分析、动力弹塑性分析、易损性分析等。
这些方法和技术可以用于评估高层建筑结构在地震中的安全性能和抗震能力。
本文还将对高层建筑结构抗震弹塑性分析方法和抗震性能评估的应用进行案例研究。
通过实际工程案例的分析,探讨不同分析方法和技术在实际工程中的应用效果,为高层建筑结构的抗震设计和评估提供参考和借鉴。
本文将对高层建筑结构抗震弹塑性分析方法和抗震性能评估的未来发展趋势进行展望,提出相关的研究建议和展望。
通过本文的研究,可以为高层建筑结构的抗震设计和评估提供更为科学、合理的方法和技术支持,有助于提高高层建筑结构的抗震能力,减少地震灾害损失。
二、高层建筑结构抗震弹塑性分析方法的研究高层建筑结构的抗震弹塑性分析是评估建筑在地震作用下的响应和性能的重要手段。
随着建筑高度的增加,结构的柔性和非线性特性愈发显著,因此,采用弹塑性分析方法可以更准确地模拟结构在地震中的实际行为。
材料本构关系的研究:高层建筑的抗震性能与其组成材料的力学特性密切相关。
研究材料在循环加载下的应力-应变关系、滞回特性以及损伤演化规律,是弹塑性分析的基础。
通过试验和数值模拟,可以建立更精确的材料本构模型,为结构分析提供数据支持。
结构动力弹塑性分析方法1. 动力理论动力理论是直接通过动力方程求解地震反应。
由于地震波为复杂的随机振动,对于多自由度体系振动不可能直接得出解析解,只可采用逐步积分法•通过直接动力分析可得到结构响应随时间的变化关系,因而该方法又称为时程分析法。
时程分析法能更真实地反映结构地震响应随时间变化的全过程,并可以得到强震下结构的弹塑性变形,因此己成为抗震分析的一种重要方法。
多自由度体系地震反应方程为:M {x(t)} - C{x(t)} - K{x(t)} - {x g(t)} (1.1)在弹塑性反应中刚度矩阵与阻尼矩阵亦随时间变化,因此不可能求出解析解,只能采取数值分析方法求解。
把整个地震反应的过程分为短而相等的时间增量缸,并假定在每一个时间区间上体系的各物理参数均为常数,它们均按区间起点的值来确定,这样就可以把非线性体系的分析近似按照一系列连续变化的线性体系来分析。
方程(1 .2)适用于结构的任何时刻,则对于结构. ■:t时刻的地震反应方程可以表示为:M {lx(t:•一t)} - C {x(t :•一t)}门K { x(t :*t)} - _ M {x g(t :xt)} (1.2)令:{ , :x} ={x(t •.⑴} -{x(t)} (1.3) { .:X} ={x(t •••L t)} -{ x (t)}(1.4){ :x} ={x(t • . :t)} -{x(t)} (1.5) { >X g}二{X g(t •: =t)} -{ x g(t)} (1.6) 择将式(1.3)与式(1.2)相减得到结构的增量平衡方程:M { x} C {「:x} - K {.:x} - -I M { .%} (1.7) 2. 方法介绍时程分析法的基本过程是将地震波按时段进行数值化后,输入结构体系的微分方程中,采用逐步积分法对结构进行弹性或弹塑性地震反应分析,得到结构在整个时域中的振动状态全过程,并描述各个时刻结构构件的内力和变形。
隔震结构地震反应弹塑性分析方法隔震结构是在建筑物的基础和上部结构之间设置一种可以产生相对滑移的滑板,也就是层可靠性很高的隔离层。
隔震结构的隔震原理:由于隔震层水平刚度较小,能延长了结构自振周期,避免了地震动的卓越周期,使结构的加速度反应减低而结构的位移反应增大。
对滑板之间的滑移摩擦力进行控制控制阻尼,由于隔震层具有较大的阻尼从而使结构的加速度反应和位移反应也有所减小。
结构地震反应是现代减震和隔震设计理论的核心内容,是验证结构减震和隔震性能的关键步骤。
根据计算分析理论的不同,地震反应弹塑性分析方法可分为FNA法、反应谱分析法、pushover分析法和动力反应法。
快速非线性分析(FNA)方法是一种非线性分析的有效方法,在这个方法中,非线性被作为外部荷载来处理,形成考虑非线性荷载并修正的模态方程。
该模态方程与结构线性模态方程相似,因此可以对模态方程进行类似于线性振型的分解求解,然后基于泰勒级数对解的近似表示,使用精确分段多项式积分对模态方程迭代求解。
最后基于前面分析所得到的非线性单元的变形和速度历史计算非线性力向量,并形成模态力向量,形成下一步迭代新的模态方程求解。
FNA方法适用于非线性结构动力分析求解,同时也可以对静力荷载分析工况进行求解。
反应谱法是一种拟动力方法,也是一种统计方法。
反应谱法考虑地面运动的强弱、场地土的性质以及结构的动力特性对地震的影响,因此可近似反应地震对结构的作用。
另外由于反应谱法与传统设计方法比较接近,因此得到了广泛的应用。
各国规范都给出了设计反应谱曲线。
反应谱法首先用动力方法计算质点体系地震反应去建立反应谱,再用加速度反应谱计算结构的最大惯性力作为结构的等效地震荷载,然后按照静力方法进行结构的计算和设计。
加速度反应谱是通过对一系列具有不同自振特性的单自由度体系输入地震动数据,记录每个单自由度体系的加速度最大反应,以结构的自振周期为横坐标对应的加速度反应为纵坐标绘出。
非线性静力分析法又称pushover分析法又称倾覆分析,指的是结构分析模型在一个结构高度为某种规定分布形式且逐渐增加的侧向力或侧向位移作用下,直至结构控制点达到目标位移的过程。
4.2 单自由度弹塑性体系的地震反应掌握单自由度体系的地震反应,是研究结构抗震性能的最基本方法。
有了前述恢复力模型,并利用第3章的数值积分方法,即可通过计算机分析获得弹塑性单自由度体系的地震反应。
图4.10下面以Clough 滞回模型为例说明弹塑性单自由度体系地震反应的特点。
如图4.10所示,设体系的初始刚度为k ,屈服强度为F y ,屈服后强化系数β=0,(4.3)式中的卸载刚度系数α=0.4。
假定具有同样初始刚度k 的弹性体系的最大地震反应在A 点,对应最大弹性恢复力为F e ,最大弹性位移为d e 。
则弹塑性体系的地震反应在很大程度上取决于其屈服强度与最大弹性恢复力的比值,记,RF F ey =(4.11) 式中,R 称为承载力降低系数。
图4.11为初始周期0.1/2==k m πT sec ,R 分别等于1、2、5、10情况(R =1为具有同样初始刚度k 的弹性体系)在El Centro 地震波作用下的位移反应时程,图4.12为相应加速度反应时程。
由图4.11可见,承载力降低系数R 较小时(R =2),其振动规律大体与弹性体系一致,但由于屈服导致刚度降低,振动周期比弹性体系有所增长,注意最大位移反应却有所减少;随着承载力降低系数R 的增大,振动越来越没有明显的规律性,且具有较大的不可恢复的残余变形。
由图4.12可见,随着承载力降低系数R 的增大,屈服强度的降低,加速度反应也越来越小。
位移(c m )El Centro 1940 NS A max =0.32T =1.0sec, 阻尼比 h =0.05t (sec)-15R=1 R=10位移(c m ) -15 15R=1 R=5位移(c m )15-15 15 R=1 R=20 2 4 6810121416 18图4.11 不同地震力降低系数的位移反应时程-600 600 El Centro 1940 NS A max =0.32T =1.0sec, 阻尼比 h =0.05t (sec)R=1 R=10600-600 R=1 R=5600-600 R=1 R=2加速度(c m /s 2)加速度(c m /s 2)加速度(c m /s 2)0 2 4 6810121416 18图4.12 不同地震力降低系数的加速度反应时程(a) 绝对加速度谱9 T (sec)87650 1 2 3 43 21 1.6 1.41.2 1 0.8 0.6 0.4 0.29T (sec) 0 1 2 3 45678(b) 相对位移谱图4.13图4.13为R 分别等于1、2、5、10情况在El Centro 地震波作用下的加速度和位移反应谱。