船舶动力系统仿真模型综述
- 格式:pdf
- 大小:2.82 MB
- 文档页数:7
舰船操纵性能的仿真和分析近年来,随着科技的不断发展,船舶的操纵性能仿真和分析成为了一个热门的研究领域。
舰船操纵性能的仿真和分析可以帮助我们更好地探究船舶的性能优化和设计改进,为实际船舶操作提供指导,进而提高船舶的安全性和经济性。
一、舰船操纵性能的仿真和分析意义船舶的操纵性能是指船舶在不同的水动力条件下,完成各种操纵任务时的性能表现。
对于航海和港口操作等领域,优异的操纵性能是保证船舶航行安全和效率的关键因素。
而舰船操纵性能仿真和分析能够对船舶的设计、操作和维护等方面提供可靠的技术支持。
首先,舰船操纵性能仿真和分析可以帮助优化船舶的设计和构造。
通过对船舶的操纵性能进行系统分析和优化,找出船舶设计中的缺陷和瓶颈,进一步改进船舶的造型、结构和设备等方面,提高船舶的性能表现。
其次,舰船操纵性能仿真和分析还可以指导船员进行实际的操作。
通过仿真软件模拟船舶操纵情况,让船员实现实时操作,并观察船舶在不同场景下的操纵性能表现,提高操作技能,减少船舶操作中的错误和事故发生。
最后,舰船操纵性能仿真和分析还可以提高船舶的安全性和经济性。
通过对船舶操纵性能的分析和实验模拟,可以找出船舶在不同环境和气象条件下的响应特性,提高船舶的安全性和可靠性。
同时还可以优化船舶操作和船舶系统,减少船舶的能耗和运营成本,提高船舶的经济效益。
二、舰船操纵性能仿真和分析技术舰船操纵性能的仿真和分析技术主要包括实验室试验、数值模拟以及船模试验方法。
实验室试验是通过模型试验设备,对船舶在不同操纵条件下的表现进行定量实验,查找船舶操纵性能的优缺点和区间限制。
这种试验方法常使用的设备有万能试验机、流体试验台和光学测量设备等。
实验室试验具备实验易控、测试精确、数据检测能力强等优点,但是仅能模拟单一的操纵场景,且较难满足大尺度船舶复杂运动的需求。
数值模拟是利用计算机数值分析方法,模拟船舶在不同环境下的操纵性能,包括CFD(Coamputational Fluid Dynamics)流水动力学模拟方法、船舶运动数学模型等。
开题报告电气工程及其自动化基于MATLAB/simulink的船舶电力系统建模与故障仿真一、综述本课题国内外研究动态,说明选题的依据和意义1、本课题国内外研究动态船舶电力系统是一个独立的、小型的完整电力系统,主要由电源设备、配电系统和负载组成。
船舶电站是船上重要的辅助动力装置,供给辅助机械及全船所需电力。
它是船舶电力系统的重要组成部分,是产生连续供应全船电能的设备。
船舶电站是由原动机、发电机和附属设备(组合成发电机组)及配电板组成的。
最近几年,船舶电站采用电子技术、计算机控制技术,实现船舶电站自动化和船舶电站的全自动控制,实现无人值班机舱。
船舶自动化技术正朝着微机监控、全面电气、综合自动化方向发展。
船舶电站运行的可靠性、经济性及其自动化程度对保证船舶的安全运营具有极其重要的意义。
国外的某些造船业发达的国家在二十世纪中叶就着手船舶电力系统领域的探索,在船舶电力系统稳态、暂态过程等方面进行了细致的研究。
近些年来,挪威挪控公司困.R.co咖l)、英国船商公司(TRANSS)、德国西门子公司(SIEMENS)、-日本三菱公司(MITSUBISHD等大公司开始进行船舶电力系统的建模与分析方面的研究工作。
国内针对船舶电力系统的研究起步相对较晚,虽然取得了一定成果,但在理论先进性、系统完整性等方面还存在一定差距,这也在一定程度上导致了目前国产船电设备与世界主要造船国家船电设备存在一定差距、装船率偏低等一系列问题。
目前,国内外最常用的建模软件有四中:分别是:matlab、lingo、Mathematica和SAS。
MATLAB用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
Matlab开发效率高,自带很多数学计算函数,对矩阵支持好。
Lingo可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。
船舶操纵性能的仿真分析与设计优化随着船舶设计技术的飞速发展,对船舶操纵性能要求也越来越高。
特别是在现代化的航运市场中,船舶的操纵性能已经成为衡量其经济性、安全性和舒适性的重要指标之一。
当然,船舶的操纵性能不仅与船体本身的设计有关,而且也与船员的技能和驾驶操作方式密切相关。
因此,为了提高船舶的操纵性能,必须采用科学的手段对其进行仿真分析和优化设计。
一、船舶操纵性能的仿真分析在计算机技术和数值模拟技术的支持下,船舶操纵性能的仿真分析已经成为现代船舶设计的重要手段。
通过对船舶的运动特性、操控响应和航行状态等进行全面仿真分析,可以帮助设计师找到解决方案,提高船舶的操控性能和安全性。
同时,船舶操纵性能的仿真分析还可以评估不同类型船舶的性能差异,为船舶的建造和运营提供参考依据。
船舶操纵性能的仿真分析一般由以下几个方面组成:船舶运动学模型、船舶操纵性能模型、环境条件模型和船员行为模型。
其中,船舶运动学模型是仿真分析的基础,包括船舶的运动方程和运动状态的计算方法。
船舶操纵性能模型则是描述船舶操纵性能特点的数学模型,包括船舶的滚转、俯仰、偏航等方面的响应特性。
环境条件模型则是考虑该海区海况、流洋流、风浪等环境因素对船舶操纵性能的影响。
船员行为模型则是考虑到船员的反应和决策对船舶操纵的影响。
通过四个方面的综合分析,可以得到船舶操纵性能的整体权衡。
船舶操纵性能的仿真分析,使用的仿真软件也是非常关键的一个因素。
目前市面上较为常见的仿真软件有SHIPFLOW、MARC等等。
其中SHIPFLOW是用于船舶水动力学仿真分析的计算机软件,可以模拟船舶的水动力性能和操纵性能,预测ship motions、sea loads and ship responses 的全过程。
而MARC则是一种有限元分析软件,可以求解结构动力学问题,可以模拟船舶在不同环境条件下的晃动以及其他特殊条件下的疲劳寿命等等。
同时这两个软件还有其他优秀的特性,众多软件提供了示范数据、例程和测试案例,帮助设计师更好的运用仿真技术进行优化设计。
船舶拖航系统六自由度操纵运动仿真船舶拖航系统六自由度操纵运动仿真船舶拖航系统是一种重要的海上运输设备,在海上货物运输中起到了非常关键的作用,而如何提高船舶拖航系统的操控能力是当前研究的热点。
船舶拖航系统的操纵运动仿真是一种非常有效的工具,可以模拟出各种不同的船舶拖航运动,对于提高系统的操纵能力具有重要意义。
船舶拖航系统的六自由度操纵运动是指在三个轴向分别进行平移和旋转的运动。
这六个自由度是:横向平移、纵向平移、垂直平移、绕X轴旋转、绕Y轴旋转和绕Z轴旋转。
在实际操作中,船舶拖航系统的操纵运动非常复杂,需要通过软件仿真来模拟出各种不同情况下的运动模式。
实现船舶拖航系统六自由度操纵运动仿真需要使用专业的仿真软件,如MATLAB/Simulink、ADAMS等。
这些软件具有良好的仿真性能和精度,可以精确地模拟出船舶拖航系统的各个运动指标。
以MATLAB/Simulink为例,其基于多体动力学理论,可以对船舶拖航系统进行六自由度动力学仿真,包括运动方程、力学方程和动力学方程等。
在进行船舶拖航系统六自由度操纵运动仿真时,需要考虑各种常见因素,并对其进行参数设置。
通常需要设置船舶的结构参数、物理参数、环境参数和控制参数等,以便精确地进行仿真分析。
其中结构参数包括船舶的长、宽、高等尺寸信息;物理参数包括船舶的质量、重心、惯性矩等;环境参数包括海洋水流、波浪等外部环境影响;控制参数包括船舶的操纵系统和控制策略等。
在仿真系统中,可以使用多种不同的仿真模式,如驱动模式、跟踪模式和预演模式等。
驱动模式是指在实际操纵情况下,通过对船舶各项指令进行控制,模拟出其对应的运动模式。
跟踪模式是指模拟出船舶跟随目标物体进行拖航操作的情况。
预演模式是指在不同环境条件下,模拟出船舶在某些特殊情况下的运动模式,以便用于系统优化和改进等方面。
总之,船舶拖航系统六自由度操纵运动仿真是一种非常重要的技术手段,对于提高船舶拖航系统的操纵能力具有重要意义。
第6章 船舶运动控制系统建模应用6.1 引 言数学模型化(mathematical modelling)是用数学语言(微分方程式)描述实际过程动态特性的方法。
在船舶运动控制领域,建立船舶运动数学模型大体上有两个目的:一个目的是建立船舶操纵模拟器(ship manoeuvring simulator),为研究闭环系统性能提供一个基本的仿真平台;另一个目的是直接为设计船舶运动控制器服务。
船舶运动数学模型主要可分为非线性数学模型和线性数学模型,前者用于船舶操纵模拟器设计和神经网络控制器、模糊控制器等非线性控制器的训练和优化,后者则用于简化的闭环性能仿真研究和线性控制器(PID, LQ, LQG, H ∞鲁棒控制器)的设计。
船舶的实际运动异常复杂,在一般情况下具有6个自由度。
在附体坐标系内考察,这种运动包括跟随3个附体坐标轴的移动及围绕3个附体坐标轴的转动,前者以前进速度(surge velocity)u 、横漂速度(sway velocity)v 、起伏速度(heave velocity)w 表述,后者以艏摇角速度(yaw rate)r 、横摇角速度(rolling rate)p 及纵摇角速度(pitching rate)q 表述;在惯性坐标系内考察,船舶运动可以用它的3个空间位置000,,z y x (或3个空间运动速度000,,z y x &&&)和3个姿态角即方位角(heading angle)ψ、横倾角(rolling angle)ϕ、纵倾角(pitching angle)θ (或3个角速度θϕψ&&&,,)来描述,),,(θϕψ称为欧拉角[4](见图6.1.1)。
显然T ],,[w v u 和T 000],,[z y x &&&以及T],,[r q p 和T ],,[θϕψ&&&之间有确定关系[4]。
船舶水动力性能的模型试验与流场优化在船舶设计和建造过程中,水动力性能是一个关键的考量因素。
为了确保船舶在各种运行条件下都能够达到预期的性能要求,模型试验与流场优化成为了必不可少的方法之一。
本文将介绍船舶水动力性能的模型试验与流场优化的相关内容。
一、模型试验的意义模型试验是评估船舶设计的一种重要手段。
通过对船舶模型在水中的运行过程进行试验,可以获得船舶的水动力性能数据,进而进行性能评估和优化设计。
模型试验可以帮助船舶设计者了解船舶的阻力、推进力、操纵性以及安全性等关键性能指标,为船舶的安全航行和经济运营提供重要依据。
二、模型试验的基本流程1. 模型制作:根据船舶设计图纸和比例尺,制作符合实际情况的船舶模型。
模型的制作材料通常为木材或塑料,制作过程需要保证模型的准确性和可操作性。
2. 试验设备准备:准备试验水池、试验测量设备以及模型的操纵系统等试验设备,确保试验过程的稳定性和可控性。
3. 试验参数设定:根据试验的目的和要求,设定试验的参数,包括模型的航行速度、舵角、推进力等。
4. 数据采集与分析:通过试验测量设备采集模型在不同工况下的水动力性能数据,如阻力、推进力、操纵特性等。
将采集到的数据进行分析和处理,得到相应的性能指标。
5. 结果评估与验证:根据试验数据和性能指标,对船舶的水动力性能进行评估,并与设计要求进行比较和验证。
如果性能指标不满足设计要求,需要进行优化设计。
三、流场优化的方法在模型试验基础上进行的流场优化是提高船舶水动力性能的重要手段之一。
通过对船舶外形的改变或流体力学特性的调整,优化船舶的流场分布,进而减少阻力、提高推进性能、改善操纵特性等。
1. 外形优化:通过改变船舶的几何形状,如船体线型、船型系数等,来减少阻力和波浪生成,提高船舶的速度性能和节能性能。
2. 舵型优化:通过改变舵叶的形状和结构,调整船舶的操纵性能,使船舶具有更好的转向性能和航向稳定性。
3. 推进器优化:通过改变推进器的叶片形状、布局等参数,减少振荡和噪声,提高推进效率和推力。
船舶设计中的仿真技术应用在现代船舶设计领域,仿真技术正发挥着日益重要的作用。
它如同一位神奇的“预言家”,能够在船舶真正建造之前,为设计师们提供宝贵的预测和分析,帮助他们优化设计、降低风险、提高性能。
船舶设计是一个极其复杂的过程,涉及到流体力学、结构力学、热力学等多个学科领域的知识。
传统的设计方法往往依赖于经验公式和简化模型,这在一定程度上限制了设计的精度和创新。
而仿真技术的出现,为船舶设计带来了全新的可能性。
在船舶的流体力学性能分析中,仿真技术大显身手。
通过计算流体动力学(CFD)软件,设计师可以模拟船舶在水中的流动情况,包括水流的速度、压力分布以及阻力特性。
这使得他们能够精确地评估船舶的航行性能,如速度、燃油消耗和操纵性。
比如,在设计船舶的外形时,通过不断调整船体的形状和尺寸,在仿真环境中观察水流的变化,从而找到阻力最小的优化方案。
这不仅有助于提高船舶的航行效率,还能降低运营成本。
结构力学方面,仿真技术同样不可或缺。
船舶在航行中会受到各种载荷的作用,如波浪冲击、货物重量等。
利用有限元分析(FEA)方法,设计师可以构建船舶结构的数字模型,并模拟这些载荷对船体结构的影响。
这有助于发现潜在的结构弱点,提前进行加固和改进,确保船舶的安全性和可靠性。
例如,在设计大型油轮的货舱结构时,通过仿真分析可以确定最佳的加强筋布置方案,以承受巨大的液体压力。
热管理也是船舶设计中的一个重要环节。
船舶上的各种设备和系统会产生大量的热量,如发动机、电子设备等。
仿真技术可以帮助设计师模拟热量的产生、传递和散发过程,优化冷却系统的设计,确保设备在适宜的温度范围内工作。
这对于提高设备的寿命和性能至关重要。
除了性能分析,仿真技术在船舶设计的可靠性和安全性评估中也发挥着关键作用。
例如,在预测船舶在恶劣海况下的响应时,可以模拟狂风巨浪对船体的冲击,评估船舶的稳定性和抗风浪能力。
通过这种方式,可以提前制定应对措施,提高船舶在极端条件下的生存能力。
基于CFD的潜艇操纵性数值仿真发展综述柏铁朝1,许 建1,陈炫树2,冯大奎2,王先洲2(1. 中国舰船研究设计中心,湖北 武汉 430064;2. 华中科技大学 船舶与海洋工程学院,湖北 武汉 430074)摘要: 潜艇操纵性是潜艇重要的综合航行性能之一,随着计算机能力的提升及计算流体力学理论的进步,基于CFD技术的潜艇操纵性预报已成为当前的研究热点。
本文在收集分析国内外潜艇操纵性预报相关文献资料的基础上,分别介绍基于CFD的潜艇操纵性间接预报方法和基于CFD的潜艇操纵性直接预报方法的特点,对近20年来基于CFD方法的潜艇操纵性预报研究的若干热点问题及进展情况进行总结及展望。
关键词:潜艇;操纵预报;数值仿真;计算流体力学中图分类号:U661.33 文献标识码:A文章编号: 1672 – 7649(2020)05 – 0001 – 07 doi:10.3404/j.issn.1672 – 7649.2020.05.001Review of development in numerical simulation of submarine maneuverability based on CFD BAI Tie-chao1, XU Jian1, CHEN Xuan-shu2, FENG Da-kui2, WANG Xian-zhou2(1. China Ship Development and Design Center, Wuhan 430064, China; 2. School of Naval Architecture and Ocean Engineering,Huazhong University of Science and Technology, Wuhan 430074, China)Abstract: The maneuverability of submarine is one of the important comprehensive navigation performance of submar-ine. With the improvement of computer ability and the progress of CFD (Computational Fluid Dynamics), the prediction of maneuverability of submarine based on CFD technology has become the current research hotspot. Based on the collection and analysis of the literature about the prediction of submarine maneuverability at home and abroad, the characteristics of in-direct prediction method and direct prediction method for submarine maneuverability based on CFD are discussed respect-ively in this paper. Some hot issues and progress of the research on the prediction of submarine maneuverability based on CFD in the past 20 years are summarized and prospected.Key words: submarine;maneuverability prediction;numerical simulation;CFD0 引 言潜艇操纵性是潜艇重要的综合航行性能之一,对于潜艇迅速占据有利阵地发动攻击,以及攻击后能快速机动撤离战场具有重要的意义,直接体现了潜艇的机动能力和作战能力。
Dynamical Systems and Control 动力系统与控制, 2017, 6(3), 91-97 Published Online July 2017 in Hans. http://www.hanspub.org/journal/dsc https://doi.org/10.12677/dsc.2017.63012
文章引用: 杨叔华, 梁前超, 焦宇飞. 船舶动力系统仿真模型综述[J]. 动力系统与控制, 2017, 6(3): 91-97. https://doi.org/10.12677/dsc.2017.63012
A Summary of Simulation Model in Ship’s Power System
Shuhua Yang1,2, Qianchao Liang1, Yufei Jiao2 1Naval University of Engineering, Wuhan Hubei
2The Equipment Department of Naval, Ningbo Zhejiang
Received: Apr. 2nd, 2017; accepted: May 15th, 2017; published: May 18th, 2017
Abstract In this paper, the simulation model of ship’s power system is studied. And the complexity of simu-lation design in ship’s power system is discussed. A simulation model of the ship’s power system include the model of a turbocharged diesel engine, gas turbine, combined power system and the application in ship’s equipment.
Keywords Diesel Engine, Gas Turbine, Simulation Model
船舶动力系统仿真模型综述 杨叔华1,2,梁前超1,焦宇飞2 1海军工程大学,湖北 武汉
2浙江宁波某装备部,浙江 宁波
收稿日期:2017年4月2日;录用日期:2017年5月15日;发布日期:2017年5月18日
摘 要 本文研究了各种船舶动力系统仿真模型问题,讨论了船舶动力装置系统仿真设计的复杂性。船舶动力系统仿真模型包括涡轮增压柴油机仿真系统模型、燃气轮机仿真系统模型、联合动力系统模型及它们在船舶动力装置中的应用。 杨叔华 等 92 关键词 柴油机,燃气轮机,仿真模型
Copyright © 2017 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/
1. 引言 船舶动力装置系统设计的复杂性和难度很大,船舶动力系统仿真模型包括涡轮增压柴油机仿真系统模型、燃气轮机仿真系统模型、联合动力系统模型[1]。涡轮增压柴油机的系统模型从功能区分来看不仅包括气体流动和燃烧模型,还包含有喷雾、燃烧、排放等其他模型,从建模空间分可以分为一维模型和三维模型等等。需要注意的是,建模方法的选择与模型的应用场合有密切的关系。一般来说,在模型的复杂程度和精度间需要进行权衡,而且模型的精度也取决于能够获得的数据以及进行模型构建的条件。举例来讲,对于涡轮增压柴油机建模来说,用于发动机设计和性能预测的模型与用于发动机动态过程控制的模型之间存在一定的差别,后者通常是前者在不同程序上的简化。
2. 涡轮增压柴油机系统模型 船舶动力系统仿真中建模是工作的重要一环。一般来讲建模方法分为准稳态法、容积法和压力波动作用法,而应用计算机建模或模拟计算已有近三十年多年,额定工况下涡轮增压柴油机的稳态性计算、变工况稳态性能、动态性能计算等。研究表明计算机模拟不仅仅能够预测柴油机的性能、节省大量人力物力和财力、缩短计算仿真周期,还可以相对于实际的动力试验得到更多的信息。 (1) 简单可靠的方法之一是准稳态方法 准稳态法不涉及动力机械内部构件的详细过程,部件工作特征由输入和输出量表达,可以由根据实验获得或经验公式计算得来。一般部件在发动机中处于非稳态下时很难得到精确理论计算模型,但可以有多个稳态过程组成,所以部件模型往往由它们的稳态实验数据来表示。因此,实验通常在稳态工况下进行,各个部件模型由相同的质量流率和压力连接起来,由此来构成系统的模型,部件间不允许产生质量聚集即管道容积可以忽略。在瞬态性能模型中,转速变化由一阶常微分程表示,其它方程都是代数方程,所以称为准稳态模型。例如MTU16V396型涡轮增压柴油机准稳态模型由它的稳态实验数据表示、采用8缸共用一根排气管的脉冲增压系统建起换气模型和废气倒灌模型,柴油机准稳态模型的仿真模型库见图1所示。 国内外用于涡轮增压柴油机仿真的通用软件很多。例如:MATLAB、CFD等等[1] [2],专用仿真软件国内外报道也非常多[3] [4]。例如,文献4作者给出了公司MTU16V396型涡轮增压柴油机的专用仿真软件MTU2000,可以比较准确地模拟了MTU16V396 型柴油机的性能在特殊工况下的变化规律,模拟精度在5%以内(见文献4仿真精度误差表格),满足了工程上对模拟计算精度的要求。该专用仿真软件还适用于MTU16V396型柴油机在特殊工况下的性能预测[4]。 (2) 方法之二是容积法 容积法是用有限容积来表示柴油机本体和增压器之间的管道以及气缸容积。又称为充排方法。因为在管道中可以聚集质量,部件之间不再由相等的质量流率连接。系统的模型使用一组一阶微分方程组来 杨叔华 等 93 Figure 1. The simulation models of diesel engine 图1. 柴油机性能仿真模型库
描述管道、气缸的状态以及在瞬态工况下发动机和增压器的转速。容积法模型比准稳态模型更真实、经验资料也需要得少;但求解计算的时间往往会比准稳态方法大一个数量等级。 (3) 方法之三是特征线法 特征线法是用可压缩气体流动方程来表示在进排气管中存在的压力波动作用。装置的特征线法由于需要求解描述扰动穿过可压缩介质的非线性双曲线偏微分方程,以计算出管道系统中的压力谐波,计算工作量相当大。这些方程通常限于一维流动,还不能真正描述接头和扩压器中的流动分离等两维或三维效果。求解偏微分通常采用的特征线方法,所以对于特定的发动机具有重要意义,例如两冲程小汽油机,长管道的多缸发动机,气缸间互相影响的多缸发动机等等。 从建模对样本数据要求来看,涡轮增压柴油机仿真建模的方法又可以分为黑箱法和神经网络法。增压柴油机使用“黑箱”法进行建模获得黑箱模型,可以先确定模型结构然后通过系统辩识方法获得模型参数。黑箱模型也可以完全不考虑系统结构,直接根据输入输出数据建立模型。Rachid等人结合使用NARMAX模型和GMDII方法对涡轮增压柴油机进行非线性系统辨识,得到了简化模型。近年来兴起的神经网络,也应用到柴油机建模中,一个主要的应用方向是发动机的故障诊断和排放控制。 杨叔华 等 94 近几年来各种建模方法层出不穷。再比如键合图建模技术,它是一种用于表示存在着各种能量形式的子系统之间相互关系的统一标准图形符号,最初出现在60年代;人工神经网络仿真技术,它是一个由神经单元构成并采用神经网络技术的并行分布式信息处理结构,其研究也是始于60年代;模块化建模技术,1977年M. H. Ghaemi给出了舰船推进装置主要部分的模型,包括发动机、螺旋桨、传动轴、调速器、减速齿轮箱和螺距控制器(在调距桨情况下),用户可以根据需要任意组合;面向对象仿真建模,NASA研究中心自1991年起在NPSS(Numerical Propulsion System Simulator)及其各子计划中系统地进行了面向对象方法的研究和实践,如今面向对象建模方法的研究极为活跃,这是一个有战略意义的发展方向。
3. 燃气轮机系统模型 燃气轮机的物理模型有很多型式,当前在船舶上应用得最多的是单转子分轴式(构成燃气发生器的是一根轴,带动螺旋桨的是与燃气发生器分开的另一根轴)和双转子分轴式(构成燃气发生器的有两根轴:低压轴和高压轴,带动螺旋桨的是与燃气发生器分开的另一根轴即动力涡轮轴)。但是无论是何种型式,均是由压气机、燃烧室、涡轮和轴等基本模块所组成,因此只要将这些基本部件模块化以后就可以组合成想要的任何型式的燃机[2]。 国内外燃气轮机的数学模型近些年发展非常迅速,根据研究对象中存在的物理现象,建立数学模型,并转换为计算机可以理解的形式,采用面向对象的模块化建模方法,建立通用的燃气轮机仿真模型,将燃气轮机整体划分为压气机、燃烧室、涡轮、转子和容积环节等模块。燃气轮机数学模型一般来讲它是一个多输入多输出、非线性、连续、复杂的系统。国外早在20世纪70年代早期,美国海军就启动了燃气轮机舰船推进控制系统研究和开发计划,并选择PD公司来承担计划的实施,美国GE公司针对舰艇燃气轮机的多输入多输出、非线性、连续、复杂的系统,提出LM2500燃气轮机的数学模型采用片断线性化的方法。具体方法是根据该发动机的精细模型,将表达动态特性的函数按线数据展开后,忽略高阶偏导数,保留稳态特性和一阶偏导数。在提供的模型中,压气机的出口压力、燃气发生器涡轮出口压力、动力涡轮输出扭矩、燃气发生器的不平衡扭矩的稳态特性和偏导数都表示为燃油流量、燃气发生器转速、动力涡轮转速的表格函数。由于忽略了高阶偏导数,模型对于发动机变量在小范围内偏离特性是有效的,一般称为小偏差方法。 国内针对燃气轮机舰船推进及控制系统研究有清华大学、上海交通大学、哈尔滨工程大学、海军工程大学等单位。例如燃气轮机GT25000为双转子分轴式燃气轮机,即三轴燃气轮机,它的工作特点和燃气轮机的数学模型也非常复杂。三轴燃气轮机动力装置由高压、低压两个转子构成的双转子燃气发生器、动力涡轮及轴系等组成,GT25000燃气轮机通常是由高压涡轮带动高压压气机,低压涡轮带动低压压气机,而动力涡轮则带动发电机或其它负荷。对于该系统仿真而言,它也是一个多输入多输出的复杂非线性连续系统[5]。燃气轮机压气机的出口压力、燃气发生器涡轮出口压力、动力涡轮输出扭矩、燃气发生器的不平衡扭矩的稳态特性和偏导数都表示为燃油流量、燃气发生器转速、动力涡轮转速的表格函数建模,然后进行数学仿真。 燃气轮机的控制模型一般是根据系统的控制特性和控制要求进行建模和仿真。燃气轮机的控制能够根据单一手柄的指令信号运行,在稳态和各种机动过程的不同阶段自动选用最合适的控制策略以实现良好的稳、动态匹配。舰船燃气轮机采用了比较复杂的控制策略,包括对轴转速的闭环控制和对螺距的闭环控制甚至对扭矩进行闭环控制,典型燃气轮机控制系统单一手柄仿真模型库见图2所示。 在对燃气轮机的混合实时仿真中,可将燃气轮机动态系统分解为与时间相关和无关的两个系统,对时间无关子系统进行离线预处理,使在线运算量大大降低,达到实时仿真要求。对于较复杂的三轴燃气