泛函分析第3章--连续线性算子与连续线性泛函
- 格式:doc
- 大小:5.40 MB
- 文档页数:51
泛函分析课件泛函分析是数学中的一门重要学科,它研究的是无限维空间中的函数和算子。
在实际应用中,泛函分析广泛应用于物理学、工程学、经济学等领域。
本文将介绍泛函分析的基本概念和主要内容,以及其在实际应用中的一些例子。
一、泛函分析的基本概念泛函分析的基本概念包括向量空间、线性映射、内积、范数等。
向量空间是泛函分析的基础,它是一组满足一定条件的向量的集合。
线性映射是指将一个向量空间映射到另一个向量空间的函数,它保持向量空间的加法和数乘运算。
内积是向量空间中的一种运算,它是一个函数,将两个向量映射到一个实数。
范数是向量空间中的一种度量,它衡量向量的大小。
二、泛函分析的主要内容泛函分析的主要内容包括线性算子、连续性、紧性、谱理论等。
线性算子是指将一个向量空间映射到另一个向量空间的线性映射,它在泛函分析中起到了重要的作用。
连续性是指在一个向量空间中,如果两个向量足够接近,它们的映射也应该足够接近。
紧性是指一个映射将有界集映射到有界集,且将紧集映射到紧集。
谱理论是研究线性算子谱性质的一门学科,它对于解析和估计线性算子的特征值和特征向量具有重要意义。
三、泛函分析在实际应用中的例子泛函分析在实际应用中有许多例子,下面将介绍其中的几个。
首先是量子力学中的波函数,它是一个复数函数,描述了量子系统的状态。
泛函分析提供了一种理论框架,可以对波函数进行分析和计算。
其次是信号处理中的傅里叶变换,它将一个信号分解成一系列正弦和余弦函数的叠加。
泛函分析提供了一种数学工具,可以对信号进行分析和处理。
再次是优化问题中的拉格朗日乘子法,它是一种求解约束优化问题的方法。
泛函分析提供了一种理论基础,可以对优化问题进行建模和求解。
最后是经济学中的效用函数,它描述了个体对不同商品或服务的偏好程度。
泛函分析提供了一种数学工具,可以对效用函数进行分析和计算。
综上所述,泛函分析是一门重要的数学学科,它研究的是无限维空间中的函数和算子。
泛函分析的基本概念包括向量空间、线性映射、内积、范数等。
泛函分析简介什么是泛函分析泛函分析是数学的一个分支,主要研究无限维空间的线性算子及其性质。
它源于传统的分析学,特别是微分方程、积分方程和最优化理论等领域的发展。
通过研究空间中的点和函数,以及这些点和函数之间的映射关系,泛函分析提供了一种强大的工具用于解决各种实际问题。
在物理学、工程学、经济学和其他科学领域中,泛函分析有着广泛的应用。
泛函分析的基本概念线性空间线性空间(或称向量空间)是泛函分析的基础。
它由一组元素组成,这些元素可以通过向量加法和标量乘法进行组合。
形式上,若 (V) 是一个集合,满足以下条件,则 (V) 是一个线性空间:对于任意 (u, v V),则 (u + v V)(封闭性)。
对于任意 (u V) 和标量 (c),则 (c u V)(封闭性)。
存在零向量 (0 V),使得对于任意 (u V),有 (u + 0 = u)。
对于每个向量 (u V),存在一个对应的负向量 (-u V),使得 (u + (-u) = 0)。
向量加法满足交换律和结合律。
标量乘法满足分配律以及结合律。
拓扑空间拓扑空间是讨论连续性和极限的重要工具。
在泛函分析中,通常会结合线性空间与拓扑结构。
例如,一个拓扑向量空间需要具备以下性质:每个点都有邻域;任意多个开集的并集仍为开集;有限多个开集的交集仍为开集。
此时,可以引入收敛、限制、开集、闭集等概念,从而更深入地研究函数的性质。
巴拿赫空间与希尔伯特空间巴拿赫空间(Banach Space)是一类重要的完备线性空间,其定义为一个带有范数的线性空间,使得它是完备的。
也就是说,在这个空间中,每个柯西序列都收敛于某个元素。
范数是一个度量,用来描述向量之间的“距离”。
希尔伯特空间(Hilbert Space)则是一个完备的内积空间,是巴拿赫空间的一种特殊情况。
内积允许我们定义角度、正交性等概念,对于研究四维空间中的物理现象尤为重要。
主要定理与结果超平面定理与 Hahn-Banach 定理超平面定理指出,在有限维欧几里德空间中,任何非空闭子集至少可以由一个超平面相切。
泛函分析,泛函分析简介泛函分析是20世纪30年代形成的数学分科,是从变分问题,积分方程和理论物理的研究中发展起来的。
它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。
它可以看作无限维向量空间的解析几何及数学分析。
泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。
1概述泛函分析(FunctionalAnalysis)是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。
泛函分析是由对函数的变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。
使用泛函作为表述源自变分法,代表作用于函数的函数。
巴拿赫(StefanBanach)是泛函分析理论的主要奠基人之一,而数学家兼物理学家维多·沃尔泰拉(VitoVolterra)对泛函分析的广泛应用有重要贡献。
2拓扑线性空间由于泛函分析源自研究各种函数空间,在函数空间里函数列的收敛有不同的类型(譬如逐点收敛,一致收敛,弱收敛等等),这说明函数空间里有不同的拓扑。
而函数空间一般是无穷维线性空间。
所以抽象的泛函分析研究的是一般的(无穷维的)带有一定拓扑的线性空间。
拓扑线性空间的定义就是一个带有拓扑结构的线性空间,使得线性空间的加法和数乘都是连续映射的空间。
巴拿赫空间这是最常见,应用最广的一类拓扑线性空间。
比如有限闭区间上的连续函数空间,有限闭区间上的k次可微函数空间。
或者对于每个实数p,如果p≥1,一个巴拿赫空间的例子是“所有绝对值的p次方的积分收敛的勒贝格可测函数”所构成的空间。
(参看Lp空间) 在巴拿赫空间中,相当部分的研究涉及到对偶空间的概念,即巴拿赫空间上所有连续线性泛函所构成的空间。
对偶空间的对偶空间可能与原空间并不同构,但总可以构造一个从巴拿赫空间到其对偶空间的对偶空间的一个单同态。
微分的概念可以在巴拿赫空间中得到推广,微分算子作用于其上的所有函数,一个函数在给定点的微分是一个连续线性映射。
第3章 有界线性算子音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可 改善物质生活,但数学能给予以上的一切.Klein F .(克萊恩) (1849-1925,德国数学家)Banach S .在1922年建立了完备赋范线性空间的公理,证明了一些基本定理后,就讨论了定义在一个完备赋范线性空间上而取值为另一个完备赋范线性空间的算子,在这类算子中最重要的是连续加法算子,所谓加法算子是指对所有x ,y ,都有Ty Tx y x T +=+)(.容易证明,T 是连续加法算子时,必有Tx x T αα=)(成立.Banach S .证明了若T 是连续的加法算子,则存在常数0>M ,使得||||||||x M Tx ≤.另外他还证明了若}{n T 是连续加法算子序列,T 也是加法算子,且对任意X x ∈,都有Tx x T n n =∞→lim ,则T 也是连续的.Hahn H .在1922年证明了,若X 是一个完备赋范空间,}{n f 为X 上的一列线性连续泛函,且对任意X x ∈,)}({x f n 都有上界,则||}{||n f 一定是有界的.Banach S .和Steinhaus H .在1927年证明了,若n T 为完备赋范空间X 到赋范空间Y的线性连续算子,且对任意X x ∈,||}{||x T n 都有界,则||}{||n T 一定有界,这就是Banach 空间理论中最重要的定理之一,即一致有界原理.Neumann Von J ..在1929年至1930年还引进并讨论了算子的几种收敛性.在1932年,Banach S .出版了线性算子理论(aires e lin rations e op des orie e Th ''')一书,书中包括了当时有关赋范线性空间的绝大部分结果,而非常著名闭图像定理就是该书中一个定理的推论.3.1 有界线性算子算子就是从一个空间到另一个空间映射,算子可分为线性算子与非线性算子.定义3.1.1 设X 和Y 都是赋范空间,T 是从X 到Y 的算子,且满足(1) Ty Tx y x T +=+)(, X y x ∈,任意; (2) Tx x T αα=)(, K X x ∈∈α,任意.则称T 为X 到Y 的线性算子.明显地,若Y 是数域K ,则X 到K 的线性算子就是线性泛函.例 3.1.1 定义从∞l 到0c 算子)2()(i i i xx T =则对任意∈)(i x ∞l ,有0>M ,使得∞<≤M x i ||sup .故)0(02|2|→→≤i M x i i i .因此0)(c x T i ∈ ,即T 是∞l 到0c 的算子,并且Ty Tx y x y x y x T iii i iii βαβαβαβα+=+=+=+)2()2()2()( 所以T 是∞l 到0c 的线性算子.例 3.1.2 设T 是从0c 到nR 的算子,且对任意0)(c x x i ∈=,定义)(i y Tx =,这里n i ≤时,i i x y =, n i >时,0=i y ,则T 是从0c 到nR 的线性算子.类似于线性连续泛函,对于线性连续算子,容易看出下面定理成立.定理 3.1.1 设T 是赋范空间X 到Y 的线性算子,则T 在X 上连续当且仅当T 在某个X x ∈0处连续.线性算子的连续与有界性有着密切的联系.定义 3.1.2 设T 是赋范空间X 到Y 的线性算子,若存在数0>M ,使得||||||||x M Tx ≤,X x ∈对任意成立.则称T 是有界线性算子,否则称为无界的.类似于线性有界泛函,有下面的定理.定理3.1.2 设T 是赋范空间X 到Y 的线性算子,则T 是有界的当且仅当T 是连续的.由上面定理可知,当T 是X 到Y 的线性连续算子时,必有0>M ,使得||||||||x M Tx ≤由此对0≠x ,有+∞<≤M x Tx ||||||||. 定义3.1.3 若T 是X 到Y 的线性连续算子,则称||||||||sup||||0x Tx T x ≠= 为T 的范数.容易看出,||||sup ||||sup ||||sup ||||1||||1||||1||||Tx Tx Tx T x x x <≤====.例 3.1.3 设X 是赋范空间,I 是X 到X 的恒等算子,则I 是连续的,且1||||sup ||||sup ||||1||||1||||=====x Ix I x x .有限维赋范空间上的线性算子的连续性显得特别简单明了.定理 3.1.3 若X 是有限维赋范空间,Y 是任意赋范空间,则X 到Y 的任意线性算子T 都是连续的.证明 设X 是n 维赋范空间,},,{1n e e 是X 的Schauder 基,则对任意X x ∈,有∑==ni i i e x 1α.由于T 是线性的,故∑==ni i i Te Tx 1α).||||}(max{||||||||||||||||111∑∑∑===≤≤=ni ii i ni ini ii Te Te TeTx ααα对任意X x ∈,定义∑==ni ix 11||||||α,则1||||⋅是X 上的范数,因此1||||⋅与||||⋅等价,即存在0>C ,使得||||||||||11x C x ni i≤=∑=α令||}m ax {||i Te C M =,则||||||||x M Tx ≤所以,T 是X 到Y 的连续线性算子.若用),(Y X L 记所有从赋范空间X 到赋范空间Y 的线性连续算子,则),(Y X L 在线性运算x T x T x T T 2121)(βαβα+=+下是一个线性空间,在空间),(Y X L 中,由算子范数的定义有||||||||||||2121T T T T +≤+和||||||||||T T λλ=,以及0||||=T 时0=T 成立.因此),(Y X L 在算子范数||||⋅下是一个赋范空间,并且当Y 是Banach 空间时,),(Y X L 也是Banach 空间.定理 3.1.4 设X 是赋范空间,Y 是Banach 空间,则),(Y X L 是Banach 空间. 证明 设}{n T 为),(Y X L 的Cauchy 列,因此对任意0>ε,存在N ,使得N n m >,时ε<-||||n m T T对任意X x ∈,有||||||||||||||)(||||||x x T T x T T x T x T n m n m n m ε<⋅-≤-=-因此}{x T n 为Y 中的Cauchy 列,由Y 的完备性质可知,存在Y y ∈,使得y x T n n =∞→lim定义X 到Y 的算子, x T y Tx n n ∞→==lim ,易知T 是线性的.由于0||||||||||||||→-≤-n m n m T T T T ,因此||}{||n T 为R 中的Cauchy 列,从而存在0>M ,使得.,||||都成立对任意N n M T n ∈≤故||||||||lim ||||x M x T Tx n m ≤=∞→,从而T 是X 到Y的线性连续算子.由上面证明可知对任意0>ε,存在N ,使得N n m >,时,有都成立对任意X x x x T T x T x T n m n m ∈<⋅-≤-||,||||||||||||||ε.令∞→m ,则 因此ε<-=-∈≠||||||||||||,0x Tx x T SupT T n Xx x n对任意N n >成立,从而T T n →,所以,),(Y X L 是完备的. 由于数域K 完备,因此容易看到下面结论成立.推论3.1.1 对于任意赋范空间X ,),(K X L 一定完备.后面都将),(K X L 记为*X ,称之为X 的共轭空间,因此所有赋范空间X 的共轭空间*X 都是完备的.3.2 一致有界原理设X 和Y 是Banach 空间.}|{∧∈ααT 是),(Y X L 中的一族有界线性算子,一致有界原理指的是若对于任意}|||{||,∧∈∈ααx T X x 是有界集,则}|||{||∧∈ααT 一定是有界集,即+∞<∧∈||||sup ααT .其实,这一定理的一些特殊情形,许多数学家早就注意到了,如Hellinger Lebesgue ,和Toeplitz 等,Hahn H .在1922年总结了他们的结果,证明了对Banach 空间X 上的一列线性泛函}{n f ,若任意|})({|,x f X x n ∈有界,则||}{||n f 一定有界.独立地,Banach S .证明了比Hahn H .更一般的情形,即设}{n T 是Banach 空间X 到Banach 空间Y 的一列算子,若对任意||}{||,x T X x n ∈有界,则||}{||n T 一定有界,最后在1927年Banach S .与Steinhaus H .利用Baire 在1899年证明的一个引理,证明了一致有界原理.||||||||x x T x T n ε<-引理 3.2.1 (Baire 引理) 设}{n F 是Banach 空间X 中的一列闭集,若≠∞=01)( n n F φ,则存在某个N 使得≠0N F φ.下面举两个例子.例 3.2.1 在R 中,]12,11[n n F n -+=, 则)2,1(1=∞= n n F 有内点,故必有某个≠0N F φ.例 3.2.2 在R 中,},,2,1{n F n =,则对任意n ,=0N F φ,且,,2,1{1=∞=n nF},1, +n n , 所以=∞=01)( n n F φ.在1912年,Helly 建立了],[b a C 上的一致有界性原理,Banach 空间上的一致有界性原理是Banach [1922],Hahn [1922]和t Hildebrand 给出的,Steinhaus H .1927年以B a n a c h 和他两个人的名义在《数学基础》第9卷上发表了该定理.它断言,在Banach 空间X 上,如果有一列算子n T ,能对每个X x ∈,数列),2,1||}({|| =n x T n 都有上界x M ,那么必存在常数M ,使得||}{||n T 有界.这个由各点x 的局部有界性推广到在一个单位球上整体地一致有界性的深刻定理就叫Steinhaus Banach -定理.定理 3.2.1 (一致有界原理) 设X 是Banach 空间,Y 是赋范线性空间,}|{∧∈ααT 是),(Y X L 中的一族有界线性算子,若对任意X x ∈,有+∞<||}sup{||x T α则+∞<||}sup{||αT证明 对任意n ,令 ∧∈≤∈=αα}|||||{n x T X x F n ,则n F 是X 闭集,且X F n n =∞= 1,由于≠=∞=001)(X F n n φ,因此由Baire 引理可知存在某个N ,使得≠0N F φ,故存在n F x ∈0及0>r ,使得N F r x U ⊂),(0,因为N F 是闭集,所以N F r x B r x U ⊂=),(),(00因此对于任意X x ∈, 1||||=x ,有N F r x B rx x ⊂∈+),(00故对任意α,有N rx x T ≤+||)(||0α又由于||)(||||||||||00rx x T x T x rT +≤-ααα, 故+∞<+≤+≤∧∈||)||sup (1||)||(1||||00x T N r x T N r x T αααα令||)||sup (10x T N r M αα∧∈+=,则M 与x 无关,且+∞<M .所以+∞<≤==M x T T x ||||sup ||||1||||αα问题 3.2.1 在一致有界原理中,X 的完备性能否去掉? 例 3.2.3 设X 为全体实系数多项式,对任意X x ∈||max ||||,)(111i ni i ni i x tt x x αα≤<-====∑ ,则||)||,(⋅X 是赋范空间,但不完备,在X 上一致有界原理不成立.事实上,对任意X x ∈,x 可以写成11)(-=∑=i ni i tt x α,这里存在某个x N ,使得xN i >时,0=i α,在X 上定义一列泛函n f :∑==ni in x f 1)(α, 这里11)(-=∑==i ni i tt x x α由|||||||)(|1x n x f ni in ≤=∑=α可知),(R X L f n ∈,且对于任意X x ∈,有∑∑∞=--===1111i i i i mi i ttx αα故∑∑==≤=ni ini i n x f 11|||||)(|αα(对于固定的n x ,是固定的),因此+∞<≤∞<≤|||||)(|sup 1x m x f n n . 但对于任意N k ∈,取kt t t x +++= 1)(0,有1}1,,1,1,1m ax {||||0=⋅⋅⋅=x ,且.)(|})(sup{|||}sup{||00k x f x f f k n n =≥≥由k 的任意性可知}||sup{||+∞=n f ,因此,}{n f 不是一致有界的.推论3.2.1 设X 是赋范空间,X x ⊂∧∈}|{αα,若对任意*∈X f ,有+∞<∧∈|)(|sup ααx f ,则+∞<∧∈||||sup ααx .证明 定义R X T →*:α为)()(ααx f f T =则αT 是线性算子,且对固定的α,有|||||||||)(||)(|αααx f x f f T ⋅≤=故αT 是线性有界算子.由于+∞<=∧∈∧∈|)(|sup |)(|sup ααααx f f T ,对任意固定的*∈X f 都成立,并且*X 是完备的,所以由一致有界原理可知+∞<∧∈||||sup ααT但|||||)(|sup |)(|sup ||||1||||1||||ααααx x f f T T f f =====,所以+∞<∧∈||||sup ααx .Neumann Von J ..在赋范空间),(Y X L 中引进几种不同的收敛性.定义3.2.1 设X ,Y 是赋范空间,),(Y X L T n ∈, ),(Y X L T ∈,则(1) 若0||||→-T T n ,称n T 一致算子收敛于T ,记为T T n −→−⋅||||; (2) 若对任意 0||||,→-∈Tx x T X x n ,称n T 强算子收敛于T ,记为T T sn −→−; (3)若对任意X x ∈, *∈Y f ,有0|)()(|→-Tx f x T f n ,称n T 弱算子收敛于T ,记为T wT n −→−.由上面的定义容易看出,算子的收敛性有如下关系:定理 3.2.2 (1) 若T T n −→−⋅||||,则T T sn −→−;(2) 若T T s n −→−,则T T wn −→−.值得注意的是上定理中反方向的推导一般不成立.例3.2.4 在1l 中,定义11:l l T n →为),,,0,,0(21 ++=n n n x x x T则),(11l l L T n ∈,且对任意 1l x ∈,有∑∞+=++→==-1210||||),,,0,,0(||||||n i in n n xx x x x T θ因此θ−→−sn T ,但 1||),0,1,0,,0(||||||||sup ||||11||||==≥=-+= n n n x n e T x T T θ所以,n T 不一致收敛于零算子θ.定理 3.2.3 设X 是Banach 空间,X 是赋范空间),(Y X L T n ∈,若对任意}{,x T X x n ∈收敛,则一定存在),(Y X L T ∈,使得n T 强算子收敛于T .证明 由于}{x T n 的收敛对任意x 都成立,故可定义x T Tx n n ∞→=lim ,由n T 的线性可知T 是线性的.由于对任意}{,x T X x n ∈收敛,因此||}{||x T n 也是收敛的,从而+∞<||}sup{||x T n ,根据一致有界原理,有+∞<≤M T n }||sup{||,因而||||||||||||sup ||||lim ||||x M x T x T Tx n n n ≤≤=∞→.即),(Y X L T ∈,显然T T sn −→−.定理 3.2.4 设X , Y 是Banach 空间,),(Y X L T n ∈, 则}{n T 强算子收敛的充要条件为(1)存在0>C ,使得+∞<≤C T n ||}sup{||;(2)存在 X M ⊂,使得X M =且对于任意 }{,x T M x n ∈收敛.证明 若T T sn −→−,则(2)明显成立. 若对于任意 X x ∈,有Tx x T n n =∞→lim . 故+∞<||}sup{||x T n ,由一致有界原理可知||}{||n T |是有界的.反之,若(1),(2)成立, 对任意X x ∈及任意0>ε,由X M =知一定存在M y ∈,使得Cy x 3||||ε<-因为对任意M y ∈,}{y T n 收敛,所以存在N ,使得N n m >,时,有3||||ε<-y T y T n m故CCCCy x T y x T x T y T y T y T y T x T x T x T n m n n n m m m n m 333||||||||3||||||||||||||||||||||||εεεε++≤-++-≤-+-+-≤-.由于Y 是完备的,因而}{x T n 是收敛的,定义x T Tx n n ∞→=lim ,则),(Y X L T ∈,所以 T T sn −→−. 推论3.2.2 设X 是Banach 空间,Y 是赋范空间,),(Y X L T n ∈,若T T sn −→−,则 ||||lim ||||n n T T ∞→≤证明 由T T sn −→−可知,对任意X x ∈,有 x T Tx n n ∞→=lim由于是Banach 空间,并对任意X x ∈,有∞<||}sup{||x T n ,因此∞<||}s up {||n T,从而,||||||||lim ||||lim ||||lim ||||x T x T x T Tx n n n n n n ⋅≤==∞→∞→∞→,所以||||lim ||||n n T T ∞→≤.例题3.2.1设X 是有限维范空间,Y 是赋范空间,∧∈∈αα),,(Y X L T . 若对任意X x ∈,有+∞<∧∈||||sup x T αα,试不用一致有界原理证明+∞<∧∈||||sup ααT .证明 在X 上定义||}||sup ||,max{||||||1x T x x αα∧∈=. 由于(1)对任意X x ∈, +∞<≤1||||0x ;(2)当0||||1=x 时,0||||=x 从而0=x .且0=x 时,显然有0||||1=x ;(3)11||||||||||x x αα=;(4)||})(||sup ||,max{||||||1y x T y x y x ++=+α||}||sup ||,max{||||}||sup ||,max{||||}||sup ||||sup ||,max{||y T y x T x y T x T y x αααα+≤++≤11||||||||y x +=因此,1||||⋅是X 上的一个范数.由于X 是有限维范空间,因此范数||||⋅和1||||⋅是等价的,故存在0>C ,使得||||||||1x C x ≤,对所有的X x ∈都成立,因而||||||||sup x C x T <∧∈αα,所以+∞<∧∈||||sup ααT .3.3 开映射定理与逆算子定理定义 3.3.1 设X 和Y 是赋范空间,Y X T →:, 若T 把X 中的开集映成Y 中的开集,则称T 为开映射.例 3.3.1 设X 是实赋范空间,则X 上的任意非零线性泛函f f ,一定是X 到R 的开映射.问题 3.3.1 设X ,Y 是Banach 空间,),(Y X L T ∈, 问T 何时一定是开映射?定理 3.3.1 (开映射定理)设X 和Y 是Banach 空间,),(Y X L T ∈,若T 是满射,即Y TX =,则T 是开映射.开映射定理的证明要用到下面的引理, 它是Schauder 在1930年得到的.引理 3.3.1 设X ,Y 是Banach 空间,),(Y X L T ∈,若Y TX =,则存在0>ε,使得)1,0(),0(TU U ⊂ε.引理的几何意义是如果)1,0(U 是X 中的开球,则)1,0(TU 为Y 中的点集,且Y 中的0点一定是)1,0(TU 的内点.开映射定理的证明设U 是X 中的任意开集,则对任意TU y ∈0,存在U x ∈0,使得00Tx y =,下面只须证明0Tx 为)(U T 的内点.由于U 是开集,因此存在0>r ,使得U r x U ⊂),(0,故),0(),0()},0(|{)},0(|{),(00000r TU y r TU Tx r U x Tx Tx r U x x x T r x TU TU +=+=∈+=∈+=⊃.由上面引理可知,存在0>ε,使得)1,0(),0(TU U ⊂ε,因此),0(),0(r TU r U ⊂ε, 所以),(),0(),0(000εεr y U r U y r TU y TU =+⊃+⊃,即0y 为TU 的内点, 因而 TU 为 Y 的开集.推论3.3.2 若X 是Banach 空间,则对所有f f X f ,0,≠∈*一定是开映射.证明 不失一般性,不妨设R K =,则由于0≠f ,因此存在X x ∈0,使得1)(0=x f ,故对任意R ∈α,有X x y ∈=0α,使得αα==)()(0x f y f ,因而f 是X 到R 的满射.所以,由开映射定理可知f 为开映射.思考题3.3.1 若f 是开映射,则1-f存在时是否1-f 一定连续?定义 3.3.2 若X ,Y 为赋范空间,),(Y X L T ∈,若对任意y x X y x ≠∈,,时,必有Ty Tx ≠,则算子X TX T →-:1, 称为T 的逆算子.明显地,若),(Y X L T ∈,1-T 存在,则1-T 也是线性的.例题 3.3.1 设X ,Y 是赋范空间,),(Y X L T ∈,则),(1X Y L T ∈-,当且仅当存在),(X Y L S ∈,使得Y X I S T I T S =⋅=⋅,且此时一定有S T=-1. 证明 若),(1X Y L T ∈-,令1-=T S ,明显地,有Y X I T T S T I T T T S =⋅=⋅=⋅=⋅--11,反之,如果存在),(X Y L S ∈,使得Y X I S T I T S =⋅=⋅,则对任意y x ≠,有Ty S y x Tx S ⋅=≠=⋅,因此Ty Tx ≠,故T 是单射,从而1-T 存在.对任意Y y ∈,有X Sy ∈故y y I Sy T Y ==)()(,令Sy x =,则y Tx =,因而T 是满射,明显地,1-T 是线性的,因此1-T 为Y 到X 的线性算子,又因为S S T T S T T I T Y =⋅⋅=⋅=---)()(111,所以 S T =-1),(X Y L ∈.逆算子定理是Banach S .在1929年给出的,利用开映射定理,容易证明逆算子定理成立.定理3.3.5. (Banach 逆算子定理)设X ,Y 是Banach 空间,),(Y X L T ∈,若T 是双射,则1-T 存在,且),(1X Y L T ∈-.证明 由于T 是一一对应,且满的,因此1-T 存在且是线性的.由于X ,Y 是Banach 空间,且Y TX =,因而由开映射定理可知T 开映射,从而对任意开集X U ⊂,有TU U T =--11)(也是开集,所以1-T 连续,即),(1X Y L T ∈-.在逆算子定理中,完备性的条件必不可少.例 3.3.2 设},0,,|)0,,0,,,{(1=≥∈=i i n x n i n R x x x X 时对某个 ||sup ||||i x x =,则||)||,(⋅X 是赋范空间.定义X X T →:为),31,21,(321 x x x Tx =则),(X X L T ∈,且1-T 存在,但1-T 是无界的,这是因为对X x n ∈=),0,1,,0( , 有n x T n x T n n ==--||||),,0,,,0(11 ,因此n T ≥-||||1对任意n 成立,所以1-T 不是连续线性算子.推论 3.3.3 设||||⋅和1||||⋅是线性空间上的两个范数,且||)||,(⋅X 和)||||,(1⋅X 都是Banach空间,若存在0>β, 使得||||||||1x x β≤,则||||⋅与1||||⋅等价. 证明 定义恒等算子→⋅||)||,(:X I )||||,(1⋅X 为x Ix =,则由||||||||||||11x x Ix β≤=可知I 是连续的.显然I 是双射,因而由逆算子定理可知,1-I存在且有界. 令||||11-=I α,则 111||||||||||||||||x I x x I --≤= 所以11||||||||||||1x x I ≤-, 即||||||||||||1x x x βα≤≤.问题 3.3.1 设X 为[0,1]上的全体实系数多项式,对任意X x ∈,,)(11-=∑==i n i it t x x α定义∑=≤≤==n i i t x t x x 12101|||||||,)(|sup ||||α ,则21||||||||⋅⋅和都是X 的范数,并且21||||||||x x ≤对所有的X x ∈成立,但11||||||||⋅⋅和不是等价的范数,为什么?实际上,对于,)1()(1211-=+∑-==i n i i t t x x 则1|)(|sup ||||101==≤≤t x x t , n x ni i 2||||||12==∑=α,因此不存在常数0>β,使得12||||||||x x β≤对所有的X x ∈成立,所以21||||||||⋅⋅和不是等价的范数.3.4 闭线性算子与闭图像定理在量子力学和其他一些实际应用中,有一些重要的线性算子并不是有界的,例如有一类在理论和应用中都很重要的无界性算子--闭线性算子,在什么条件下闭线性算子是连续呢?这一问题的研究,Hellinger E .和Toeplitz O .1910年在关于Hilbert 空间对称算子的工作中就开始了,然后是Hilbert 空间中共轭算子连续性的研究,1932年才发展成闭线性算子在赋范空间上的结果,这就是非常著名闭图像定理.若||)||,(⋅X 和||)||,(⋅Y 是赋范线性空间,则在乘积Y X ⨯空间中可以定义范数,使之成为赋范空间,对),(11y x 和K Y X y x ∈⨯∈λ,),(22,线性空间Y X ⨯的两种代数运算是),(),(),(21212211y y x x y x y x ++=+),(),(y x y x λλλ=并且范数定义为||||||||||),(||y x y x +=例3.4.1 乘积空间},|),{(2R y x y x R R R ∈=⨯=,且||||||||||),(||y x y x +=.明显地,有如下的结论.定理 3.4.1 设X 和Y 都是赋范空间Y X y x z n n n ⨯∈=),(,则),(y x z z n =→Y X ⨯∈当且仅当Y y X x n n ∈∈,且y y x x n n →→,.定理3.4.2 若X 和Y 都是Banach 空间,则Y X ⨯也是Banach 空间.在下面,考虑从定义域X T D ⊂)(到Y 的线性算子,)(T D 为X 的子空间.定义3.4.1 设X ,Y 是赋范空间,Y T D T →)(:是定义域X T D ⊂)(上的线性算子,若T 的图像}),(|),{()(Tx y T D x y x T G =∈=在赋范空间Y X ⨯中是闭的,则称T 为闭线性算子.定理3.4.3 设X ,Y 是赋范空间,Y T D T →)(:是线性算子,则T 是闭线性算子当且仅当对任意)(}{T D x n ⊂,满足y Tx x x n n →→,时,必有)(T D x ∈且y Tx =.证明 若T 是闭线性算子,则是)(T G 闭集,则对于任意)(T D x n ∈,当y Tx x x n n →→,时, 有),(),(y x Tx x n n →,因此)(),(T G y x ∈,由)(T G 的定义,有)(T D x ∈,y Tx =.反之,若)(),(T G Tx x n n ∈,且),(),(y x Tx x n n →时一定有)(T D x ∈,y Tx =, 从而)(),(),(T G Tx x y x ∈=.所以,)(T G 是闭集,即T 是闭线性算子.定理3.4.4 设X ,Y 是赋范空间,Y T D T →)(:是线性连续算子,若)(T D 是闭集,则T 一定是闭线性算子.证明 设)(T D x n ∈,y Tx x x n n →→,,则由T 是连续的知Tx Tx n →,故Tx y =. 由于)(T D 是闭集,因此)(T D x ∈,所以T 是闭线性算子.推论3.4.1 若Y X T →:是线性连续算子,则T 一定是闭线性算子.这是因为这时X T D =)(是闭集,反过来,一般来说,闭线性算子不一定连续.例3.4.2 设)(|)({]1,0[1t x t x C =为]1,0[上具有连续导数的},|)(|sup ||||10t x x t ≤≤=,则 ||)||],1,0[(1⋅C 是一个赋范空间,在]1,0[1C 上定义线性算子T 如下:]1,0[]1,0[:1C C T →]1,0[)(],1,0[),()(1C t x x t t x dt d t Tx ∈=∈=任意任意 则T 是]1,0[1C 到]1,0[C 的闭线性算子,但T 不是线性连续的.事实上,若]1,0[1C x n ∈ , y Tx x x n n →→,,则)(t x n 在]1,0[上“一致收敛”于)(t x ,并且n x '在]1,0[上也“一致收敛”于)(t y ,因而)(t x 具有连续的导函数)('t x ,且)()('t y t x =,所以]1,0[1C x ∈,且y Tx =,即T 是闭线性算子.令n n n t t x x ==)(,则]1,0[1C x n ∈且1||sup ||||10==≤≤n t n t x ,但n nt Tx n t n ==-≤≤||sup ||||110,因此T 不是线性连续算子.问题3.4.1 若T 是X T D ⊂)(到Y 的闭线性算子,则T 是否把闭集映为闭集呢? 例3.4.3 对任意0)(c x x i ∈=,定义线性算子00:c c T →为)2(i ix Tx = 则T 是0c 到0c 的线性连续算子,且0)(c T D =,因此T 是闭线性算子.对于闭集0c ,0Tc 不是0c 的闭子集.事实上,对于)0,,0,21,,21,21(2 n n y =, 0c y n ∈,且有)0,,0,1,,1,1( =n x ,0c x n ∈,使得n n y Tx =,故0Tc y n ∈,但因为n y 趋于),21,21,,21,21(12 +=n n y ,故不存在0c x ∈,使得y Tx =,所以0Tc y ∉,即0Tc 不是0c 的闭子集.在什么条件下闭线性算子一定是连续呢?这就是闭图像定理所研究的问题.定理3.4.5(闭图像定理)设X 与Y 是Banach 空间,Y T D T →)(:是闭线性算子,(这里X T D ⊂)(),若)(T D 在X 中是闭集,则T 一定是)(T D 到Y 的线性连续算子.证明 由于X 和Y 是Banach 空间,因此Y X ⨯也是Banach 空间,又由于X 是Banach 空间,且)(T D 是X 的闭子集,因此)(T D 作为X 子空间是完备的.由T 是闭线性算子可知)(T G 是Y X ⨯的闭子集,由于T 是线性的,因而)(T G 是Y X ⨯的子空间,从而)(T G 是Y X ⨯的完备子空间.定义从Banach 空间)(T G 到Banach 空间)(T D 的线性算子P :)()(:T D T G P →).(),(,),(T G Tx x x Tx x P ∈=任意则P 是线性算子,且||),(||||||||||||||||),(||Tx x Tx x x Tx x P =+≤=.故1||||≤P ,从而))(),((T D T G L P ∈.由P 的定义可知P 是双射,因而由逆算子定理可知1-P 存在,且))(),((1T D T G L P∈-,故对任意)(T D x ∈,有 ||||||||||||||),(||||||||||||||11x P x P Tx x Tx x Tx ⋅≤==+≤--所以,T 是)(T D 到Y 的线性连续算子.若T 的定义域X T D =)(,即T 是X 到Y 的线性算子,则闭图像定理有下面简明形式. 推论 3.4.2 设X ,Y 是Banach 空间,且T 是X 到Y 的线性算子,则),(Y X L T ∈当且仅当T 是闭线性算子.例题 3.4.1 设X ,Y ,Z 是Banach 空间,若),(Z X L A ∈,),(Z Y L B ∈,并对任意的 X x ∈,方程By Ax =都有唯一解y ,试证明由此定义的算子y Tx Y X T =→,:,有),(Y X L T ∈.证明 容易验证T 是线性算子,要证明T 是线性连续算子,只需证明T 是闭算子.对于X x n ∈, Y y Tx x x n n ∈→→,,有n n BTx Ax =.由于B A ,都是连续的,因此By BTx Ax Ax n n n n ===∞→∞→lim lim从而y Tx =所以,T 是闭算子,由闭图像定理可知,),(Y X L T ∈.习题三3.1 设算子0:c l T →∞,∞∈==l x x x Tx i i i)(),2(任意,试证明T 是线性有界算子,并求||||T . 3.2 设1)(l x i ∈,算子11:l l T →, 1)(),3(l x x x Tx i ii ∈==任意,试证明T 是线性有界算子,并求||||T . 3.3 对任意0c x ∈,定义∑∞==1!)(i i i x x f ,试证明*∈0c f ,并求||||f . 3.4 设),(Y X L T ∈,试证明||||sup ||||1||||Tx T x <=.3.5 设X 和Y 是实赋范空间,T 为X 到Y 的连续可加算子,试证明),(Y X L T ∈.3.6 设c 是所有收敛实数列全体,范数||sup ||||i x x =,}{i α为实数列,若对任意c x ∈,都有∞<=∑∞=|||)(|1i i i x x f α,试证明i i i x x f ∑∞==1)(α为c 上的线性连续泛函,并且∞<=∑∞=||||||1i i f α.3.7 设X ,Y 是赋范空间,}0{≠X , 试证明Y 是Banach 空间当且仅当),(Y X L 是Banach 空间.3.8 设X 是Banach 空间,*X f n ∈且对任意)()(lim ,x f x f X x n n =∈∞→,试证明*∈X f . 3.9设X 是实赋范空间,X x n ⊂}{, 试证明对所有的*∈X f ,都有∞<∑∞=|)(|1i i x f 当且仅当存在0>M ,使得对任意的正整数n 和1±=i δ,都有M x in i i <∑=||||1δ. 3.10 设X ,Y 是赋范空间,Y X T →:是线性算子,且T 是满射,若存在0>M ,使得||||||||x M Tx ≥对任意X x ∈成立,试证明1-T 是线性连续算子,且MT 1||||1≤-. 3.11 设T 为赋范空间X 到赋范空间Y 的闭线性算子,且1-T 存在,试证明1-T 是闭线性算子.3.12 设X 是Banach 空间,f 是X 上的非零线性泛函,试证明f 一定是开映射.3.13 设X 是赋范空间,T 是从X 到X 的线性算子,X T D =)(,S 是从*X 到*X 的线性算子,*=X S D )(若对任意*∈∈X f X x ,,有)())((Tx f x Sf =,试证明T 和S 都是线性连续算子.3.14 设X ,Y 是赋范空间,T 为X 到Y 的闭线性算子,F 为X 的紧集,试证明)(F T 为Y 的闭集.3.15 设X 为Banach 空间,T 为X 到X 的线性算子,若T T =2,且)(T N 和)(T R 都是闭的,试证明),(X X L T ∈.3.16 设X ,Y 赋范空间,),(,Y X L T T n ∈,若n T 强收敛于T ,试证明n T 弱收敛于T .3.17 设22:l l P n →,)0,,0,,,,(),,,,,(21121 n n n n x x x x x x x P =+,试证明n P 强收敛于I ,但n P 不一致收敛于I .哈恩Hans Hahn 于1879年9月27日出生于奥地利的维也纳,他在维也纳大学跟Gustav Ritter von Escherich攻读博士学位, 1902获得博士学位,博士论文题目为Zur Theorie der zweiten Variationeinfacher Integrale.他是切尔诺夫策(Chernivtsi)大学(1909–1916),波恩大学(1916–1921)和维也纳大学(1921–1934)的教授.Hahn的最早的结果对古典的变分法做出贡献,他还发表了关于非阿基米德系统的重要论文, Hahn是集合论和泛函分析的创始人之一,泛函分析的重要定理之一, Hahn-Banach定理就是Hans Hahn(1879-1934) 以他的名字命名的.他在1903 到1913间对变分法做出了重要的贡献.在1923他引进了Hahn 序列空间.他还写了关于实函数的两本书Theorie der reellen Funktionen (1921)和Reelle Funktionen (1932).Hahn获得过很多荣誉,包括1921年的Lieban奖,他是奥地利科学院院士,他还是Calcutta 数学学会名誉会员.Hahn对数学的成就主要包括著名的Hahn-Banach定理, 其实很少人知道,实际上Hahn 独立地证明了(Banach和斯坦豪斯得出的)一致有界原理. 其他定理还有Hahn分离定理、维他利-哈恩-萨克斯定理(Vitali-Hahn-Saks theorem)、哈恩-马祖凯维奇定理(Hahn-Mazurkiewicz theorem)和哈恩嵌入定理(Hahn embedding theorem)等. Hahn的数学贡献不限于泛函分析,他对拓扑学、集合论、变分法、实分析等都有很好的贡献.同时,他也活跃于哲学界,是维也纳学派的一员.。
泛函分析论文(数学与计算机科学学院数11 赵洁 1060211014036)摘要:本文简单介绍泛函分析方法的基本理论,以及其在力学和工程的若干应用,包括泛函观点下的结构数学理论、直交投影法等。
关键字:泛函分析1.引言泛函分析是研究拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。
它是20世纪30年代形成的。
从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法分析学的课题,可看作无限维的分析学。
2.泛函分析概述2.1泛函分析的产生十九世纪以来,数学的发展进入了一个新的阶段。
这就是由于欧几里得第五公社的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。
这些新的理论都为用同一观点把古典分析的基本概念和方法一般化准备了条件。
本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽。
随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。
到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。
由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。
这种相似在积分方程论中表现的更突出了。
泛函分析的产生正是和这种情况有关,都存在着类似的地方。
非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响。
这样,就显示出了分析和几何之间相似的地方,同时存在着把分析几何化的一种可能性。
这种可能性要求把几何概念进一步推广,以至最后把欧式空间扩充成无穷维数的空间。
这时候,函数概念被赋予了更为一般的意义,古典分析中的概念是指两个数集之间所建立的某种对应关系。
在数学上,把无限维空间到无限维空间的变换叫做算子。
研究无限维线性空间上的泛函数和算子理论,就生了一门新的分析数学,叫做泛函分析。
第二章 线性算子与线性泛函第一节 有界线性算子一、线性算子本段中只需假设,,X Y Z 等是K 上的向量空间。
定义: 假设一个映射:T X Y →满足()(,,,)T x y Tx Tyx y X αβαβαβ+=+∈∈K ,则称T 为从X 到Y 的线性算子。
容易看出,上述等式可推广到更一般的情形:()i iiiiiT x Tx αα=∑∑。
命题2 设:T X Y →是一线性算子,则以下结论成立:〔1〕任给子空间A X ⊂与子空间B Y ⊂,TA 与1T B -分别为Y 与X 的子空间。
特别,(0)0T =与()R T TX =〔值域〕是Y 的子空间;1()(0)N T T -是X 的子空间〔称为T 的核或零空间〕。
〔2〕假设向量组{}i x X ⊂线性相关,则{}i Tx 亦线性相关;假设A 是X 的子空间且dim A <∞,则dim dim TA A <。
〔3〕T 是单射(){0}N T ⇔=。
说明:假设0()Tx Y x X ≡∈∈,则称T 为零算子,就记为0;假设(),Tx x x X αα≡∈∈K 为常数,则称T 为纯量算子〔或相似变换,假设0α≠〕,记作I α,当0α=与1时,I α分别是零算子和单位算子。
对线性算子可定义两种自然的运算:线性运算与乘法。
假设,:T S X Y →是线性算子,,αβ∈K ,则:T S X Y αβ+→是一个线性算子,它定义为()().(2.1.2)T S x Tx Sx x X αβαβ+=+∈假设:R Y Z →是另一个算子,则由()()().(2.1.3)RT x R Tx x X =∈定义出一个线性算子:RT X Z →,称它为R 与T 的乘积。
实际上,线性算子的乘积就是它们的复合。
容易原子能正验证,如上定义的运算有以下性质:11(),()();R T S RT RS R R T RT RT +=+⎧⎨+=+⎩分配律()();()Q RT QR T =结合律()()(),()RT R T R T αααα==∈K只要以上等式的一端有意义。
1线性算子、非线性算子的连续性和有界性(p.86+p.250)#82赋范线性空间和Banach 空间的定义,并证空间的完备性(p.71+p.58)#3,2完备的赋范线性空间称为Banach 空间。
3紧算子(p139)#4注:恒等算子不是紧算子。
如其把无穷维的单位球映到它本身,单位球是有界的(球面是界),但不是紧的(球面不属于单位球,不是闭集)。
定理(p65)#25赋范线性空间的Hahn-Banach 定理(p109)#46 Banach压缩映像原理及证明(p157)#57线性泛函的计算(p88)#3 8 Heine定理及证明(p55)#29全变差的概念及应用(p112)#410判断是否为内积空间(p189)#611内积和相应的范数不等式证明(p187)#6 12算子全连续性(紧性)的证明(p141)#4全连续算子用有限维连续有界算子一致逼近13变分引理及证明(p190)#614 Frechet-Riesz泛函表示定理(p204)#6度量空间(p45)#216闭集与序列收敛之间的关系(p54)#217Hausdorff定理(p63)#218赋范线性空间的一个重要引理(p76)#319弱收敛(p131)#420直和(p192)#621紧性(p62)#2补:①若M是度量空间X的一个子集,M的闭包M是X中的一个紧集,则M称为X的相对紧集。
即:紧集一定是闭集,一定是相对紧集;相对紧集不是闭集时,不是紧集。
②定理:n为欧几里德空间n R中的有界集必是相对紧的。
③定理:设X是度量空间,若在X中的每个完全有界集都是相对紧的,则X是完备的。
④度量空间中的相对紧集且是闭集,称为紧集。
⑤定理:有限维赋范线性空间中任何有界集是相对紧的。
⑥定理:有限维赋范线性空间X中,任意一个子集M是紧的 M是有界闭的。
⑦定理:若赋范线性空间X是无限维的,则X必有不相对紧的有界集。
⑧定理:赋范线性空间是有限维的它的任一有界闭子集都是紧集。
泛函分析知识点知识体系概述(一)、度量空间和赋线性空间 第一节 度量空间的进一步例子1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得∀x,y,z ∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ) 2.几类空间例1 离散的度量空间 例2 序列空间S例3 有界函数空间B(A) 例4 可测函数空M(X)例5 C[a,b]空间 即连续函数空间 例6 l 2第二节 度量空间中的极限,稠密集,可分空间 1. 开球定义 设(X,d )为度量空间,d 是距离,定义U(x 0, ε)={x ∈X | d(x, x 0) <ε}为x 0的以ε为半径的开球,亦称为x 0的ε一领域. 2. 极限定义 若{x n }⊂X, ∃x ∈X, s.t. ()lim ,0n n d x x →∞= 则称x 是点列{x n }的极限.3. 有界集定义 若()(),sup ,x y Ad A d x y ∀∈=<∞,则称A 有界4. 稠密集定义 设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ⊂,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。
5. 可分空间定义 如果X 有一个可数的稠密子集,则称X 是可分空间。
第三节 连续映射1.定义 设X=(X,d),Y=(Y, ~d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ<的x ,有()~0,d Tx Tx ε<,则称T 在x 连续.2.定理1 设T 是度量空间(X,d )到度量空间~Y,d ⎛⎫ ⎪⎝⎭中的映射,那么T 在0x X∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3.定理2 度量空间X 到Y 中的映射T 是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -是X 中的开集.第四节 柯西(cauchy )点列和完备度量空间1.定义 设X=(X,d)是度量空间,{}n x 是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 是X 中的柯西点列或基本点列。
们同意前人的提法,认为线性泛函与无穷维空间上引进坐标的思想有关,而对偶理论则有如无穷维线性空间上的解析几何学。
Chp.1距离线性空间SS1.选择公理,良序定理,佐恩引理有序集的定义:(1)若a在b之先,则b便不在a之先。
(2)若a在b之先,b在c之先,则a在c之先。
这种先后关系记作■-良序集:A的任何非空子集C都必有一个属于C的最先元素。
良序集的超限归纳法:(1)!… 为真,这里「是A中最先的元素。
2)厂'’对一切- ,-',为真,则1;卜;:L亦真那么「对一切a E 4皆真。
选择公理设N={N}是一个非空集合构成的族,则必存在定义在N上的函数f,使得对一切:L N都有「\部分有序称元素族X是部分有序的,如果在其中某些元素对(a,b)上有二元关系& - ,它据有性质:。
Y 心;If a and BY% then a = &; 7/ a band b Y® then呛Y 起例如X中包换关系在部分有序集下,有上界、极大元和完全有序其中完全有序的C:门;.兀心化心強工冷总好宀百例如在复数域中,按大小关系定义两个复数的关系,则复平面是部分有序的,实轴、虚轴是完全有序的。
佐恩引理设X非空的部分有序集,如果X的任何完全有序子集都有一个上界在X中,则X必含有极大元。
从现代观点来看,泛函分析研究的主要是研究实数域或者复数域上的完备赋范线性空间SS2.线性空间,哈迈尔(Hamel )基线性空间的定义:加法交换、加法结合、有零元,有负元、有单位元等。
线性流形:线性空间中的非空子集,如果它加法封闭、数乘封闭。
线性流形的和M+N :所有形如m+n的元素的集合,其中m € M, n € N 线性流形的直和:如果M AN={ 0}则以代替M+N如果.- ?.-■:■■ ■;;.;,则称M与N是代数互补的线性流形。
于是有下述定理:定理2.1设M,N是线性空间X的线性流形,则.< —⑴当且仅当对每个x€ X都有唯一的表达式x=m+n, m € M,n € N.定理 2.2 若上一.:::=:卜,贝Ll dimX=dimM+dimNHamel基的定义:设X是具有非零元的线性空间,X的子集H称为X的Hamel基,如果(1)H是线性无关的。
泛函分析第3章--连续线性算子与连续线性泛函第3章 连续线性算子与连续线性泛函本章将介绍赋范线性空间上,特别是Banach 空间上的有界线性算子与有界线性泛函的基本理论,涉及到泛函分析的三大基本定理,即共鸣定理,逆算子定理及Hahn-Banach 定理。
他们是泛函分析早期最光辉的成果,有广泛的实际背景,尤其在各种物理系统研究中应用十分广泛。
3.1 连续线性算子与有界线性算子在线性代数中,我们曾遇到过把一个n 维向量空间n E 映射到另一个m 维向量空间m E 的运算,就是借助于m 行n 列的矩阵111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪=⎪⎪⎝⎭L L M M M L 对n E 中的向量起作用来达到的。
同样,在数学分析中,我们也遇到过一个函数变成另一个函数或者一个数的运算,即微分和积分的运算等。
把上述的所有运算抽象化后,我们就得到一般赋范线性空间中的算子概念。
撇开各类算子的具体属性,我们可以将它们分成两类:一类是线性算子;一类是非线性算子。
本章介绍有界线性算子的基本知识,非线性算子的有关知识留在第5章介绍。
[定义3.1] 由赋范线性空间X 中的某子集D 到赋范线性空间Y 中的映射T 称为算子,D 称为算子T 的定义域,记为()D T ,为称像集(){},y y Tx x D T =∈为算子的值域,记作()T D 或TD 。
若算子T 满足: (1)()()(),T x y Tx Ty x y D T +=+∀∈ (2)()()(),T x TxF x D T ααα=∀∈∈称T 为线性算子。
对线性算子,我们自然要求()T D 是X 的子空间。
特别地,如果T 是由X 到实数(复数)域F 的映射时,那么称算子T 为泛函。
例 3.1 设X 是赋范线性空间,α是一给定的数,映射:T x x α→是X 上的线性算子,称为相似算子;当1α=时,称T 为单位算子或者恒等算子,记作I 。
例3.2 [],x C a b ∀∈,定义()()ta Tx t x d ττ=⎰由积分的线性知,T 是[],C a b 到[],C a b 空间中的线性算子。
若令()()[](),ba f x x d x C ab ττ=∀∈⎰则f 是[],C a b 上的线性泛函。
[定义3.2] 设,X Y 是两个赋范线性空间,:T X X →是线性算子,称T 在x 点连续的,是指若{},n n x X x x ∈→,则()n Tx Tx n →→∞;若T 在X 上每一点都连续,则称T 在X 上连续;称T 是有界的,是指T 将X 中的有界集映成Y 中有界集。
[定理3.1] 设,X Y 是赋范线性空间,T 是X 的子空间D 到Y 中的线性算子,若T 在某一点()0x D T ∈ 连续,则T 在()D T 上连续。
证明:对()x D T ∀∈,设{}()n x D T ⊂,且()n x x n →→∞,于是()00n x x x x n -+→→∞,由假设T 在0x 点连续,所以当n →∞时,有()000n n T x x x Tx Tx Tx Tx -+=-+→因此,n Tx Tx →,即T 在x 点连续。
由x 的任意性可知,T 在()D T 上连续。
定理3.1说明线性算子若在一点连续,可推出其在定义的空间上连续。
特别地,线性算子的连续性可由零元的连续性来刻画,即线性算子T 连续等价于若n x θ→(X 中零元),则n Tx θ→(Y 中零元)。
例3.3 若T 是n 维赋范线性空间X 到赋范线性空间Y 中的线性算子,则T 在X 上连续。
证明:在X 中取一组基{}12,,,n e e e L ,设()()11,2,3,nm m j j j x x e Xm ==∈=∑L且()m x m θ→→∞,即()0m x m →→∞,则()()()12210nm j j x m =⎡⎤→→∞⎢⎥⎣⎦∑从而()()()01,2,3,m j x j n m →=→∞L 。
于是()()()111max 0nnm m m jj jjj nj j Tx xTe x Tem ≤≤===≤→→∞∑∑因此,()m Tx m θ→→∞,即T 在x θ=处连续,进而T 在X 上每点连续。
[定理3.2] 设,X Y 是赋范线性空间,T 是X 的子空间D 到Y 中的线性映射,则T 有界的充分必要条件是:存在常数0M >,使不等式成立,即()()Tx M xx D T ≤∈证明:必要性。
因T 有界,所以T 将D 中的闭单位球(){}11B x x θ=≤映成Y 中的有界集,即像集()1TB θ是Y 中的有界集。
记(){}1sup :M Tx x B θ=∈,此时,对每个()()1,,xx D T x B xθθ∈≠∈,由M 的定义有x T M x ⎛⎫≤ ⎪ ⎪⎝⎭……………………(3.1) 即Tx M x ≤,而当x θ=时,不等式(3.1)变成等式。
故()x D T ∀∈有Tx M x ≤充分性。
设A 是()D T 的任一有界集,则存在常数1M 使()1x M x A ≤∀∈。
由()()Tx M x x D T ≤∈知()1Ty M y MM y A ≤≤∈ 故TA 有界。
证毕。
[定理3.3] 设,X Y 是两个赋范线性空间,T 是从X 的子空间D 到Y 中的线性映射,则T 是连续的充要条件是T 是有界的。
证明:充分性。
设T 有界,则存在常数0M >,使对一切(),x D T Tx M x ∈≤,从而对(){}(),n n x x n x D T ∂→→∞⊂有()()0n n n Tx Tx T x x M x x n -=-≤-→→∞即()n Tx Tx n →→∞。
所以,T 是连续的。
必要性。
若T 连续但T 是无界的,那么对每个n N ∈,必存在()n x D T ∈,使n n Tx n x >,令n n n x y n x =,那么()10n y n n=→→∞,即n y θ→,由T 的连续性,()n Ty n θ→→∞,但是另一方面,1n nn nnn x Tx Ty n x n x =>=,引出矛盾,故T 有界。
定理3.3说明,对于线性算子,连续性与有界性是两个等价概念,今后用(),L X Y 表示X 到Y 的有界线性算子组成的集合。
例3.1 ,例3.2的线性算子均易证明是有界线性算子,但无界线性算子是存在的。
例3.4 考察定义在区间[]0,1上的连续可微函数全体,记作[]10,1C ,其中范数定义为()01max t x x t ≤≤=,不难证明,微分算子ddt是把[]10,1C 映入[]0,1C 中的线性算子。
取函数列{}sin n t π,显然,sin 1n t π=,但()sin cos dn t n n t n n dtππππ==→∞→∞ 因此,微分算子是无界的。
[定义3.3] 设,X Y 是赋范线性空间,T 是从X 到Y 的有界线性算子,对一切x X ∈,满足Tx M x ≤的正数M 的下确界,称为算子T 的范数,记作T 。
由定义可知,对一切x X ∈,都有Tx T x ≤。
[定理3.4] 设,X Y 是赋范线性空间,T 是从X 到Y 的有界线性算子,则有11sup sup supx Xx Xx Xx x x Tx T Tx Tx xθ∈∈∈=≤≠===证明:由Tx T x ≤,易得1sup x Xx T Tx ∈==……………………………………(3.2)根据T 的定义,对于任给的0ε>,存在非零0x X ∈,使()00Tx T x ε≥-令0x x x '=,则有()0Tx T ε'≥-,因此 ()11sup sup x Xx Xx x T Tx Tx ε∈∈=≤-≤≤令0ε→得 11sup sup x Xx Xx x T Tx Tx ∈∈=≤≤≤……………………(3.3)由式(3.2)和式(3.3),便得11sup sup x Xx Xx x T Tx Tx ∈∈=≤==而supx Xx Tx T xθ∈≠=,由定义易知。
例3.5 在[]1,L a b 上定义算子T 如下()()()[]()1,,xaTf x f t dt f L a b =∀∈⎰(1)把T 视为[]1,L a b 到[],C a b 的算子,求T ; (2)把T 视为[]1,L a b 到[]1,L a b 的算子,求T 。
解:算子T 的线性是显然的,下面分别求T 。
(1)设T :[][]1,,L a b C a b →,任取[]1,f L a b ∈,由于[],Tf C a b ∈,从而()()()max maxxaa x ba xb Tf Tf x f t dt ≤≤≤≤==⎰()()max x baaa x bf t dt f t dt f ≤≤≤≤=⎰⎰故T 是有界的,并且1T ≤。
另一方面,取()[]01,,f t t a b b a=∈-,并且 ()0011b baaf f t dt dt b a===-⎰⎰于是0111sup max 1x b aa a x bf T Tf Tf dt dt b ab a ≤≤==≥===--⎰⎰故1T =。
(2)设T :[][]11,,L a b L a b →,任取[]1,f L a b ∈,由于[]1,Tf L a b ∈,从而()()()bxbxaaaaTf f t dt dx f t dt dx =≤⎰⎰⎰⎰()()()b baaf t dt dx b a f ≤=-⎰⎰因此,T 是有界的,并且T b a ≤-;另一方面,对任何使得1a b n+<的自然数n ,作函数()1,,10,,n n x a a n f x x a b n ⎧⎡⎤∈+⎪⎢⎥⎪⎣⎦=⎨⎛⎤⎪∈+ ⎥⎪⎝⎦⎩ 显然[],n f L a b ∈,且()1b n n af f t dt ==⎰,而()bxn n aaTf f t dt dx =⎰⎰()11110a b a x nnaa aa nnn x a dx ndt dt dx++++=-++⎰⎰⎰⎰11122b a b a n n n=+--=--所以,又有sup n T Tf b a ≥=-因此,T b a =-。
此例告诉我们,虽然形式上是一样的算子,但由于视作不同空间的映射,他们的算子范数未必相同。
一般说来,求一个具体算子的范数并不容易,因此,在很多场合,只能对算子的范数作出估计。
例3.6 设(),K s t 在[][],,a b a b ⨯上连续,定义算子T :[][],,C a b C a b →为()()(),ba Tx s K s t x t dt =⎰则[][](),,,T L C a b C a b ∈,且(){}max,:baT K s t dt a s b ≤≤≤⎰证明:由于()()()max,baa sb Tx s K s t x t dt ≤≤=⎰()()max ,max baa s ba s bK s t dt x t ≤≤≤≤≤⎰g(){}max,:baK s t dt a s b x =≤≤⎰g故结论成立。