人教版七年级上册数学4.2.2《比较线段的长短》同步练习
- 格式:doc
- 大小:262.00 KB
- 文档页数:4
4.2直线、射线、线段5 分钟训练 ( 预习类训练,可用于课前1. 以下图形能比较大小的是()A. 直线与线段B.直线与射线C.两条线段D.射线与线段)思路分析:直线、射线都能够无穷延长,没法比较大小,只有线段能够比较大小.答案:C2.射线、线段都是 ______的一部分,射线有 ______个端点,线段有 ______个端点 .答案:直线 1 23.如图 4-2-1 所示,线段 AB上有两点 C 和 D,则图中共有 ________条线段 .图 4-2-1思路分析:图中的线段有AC、 AD、 AB、 CD、 CB、 DB,共 6 条线段 .答案:64. 把一条线段分红_______的点,叫做这条线段的中点. 如图 4-2-2 ,若A D=7 cm,BD=4 cm,且 C 为 BD的中点,那么 AC=________cm.思路分析:要求 AC,重点是求出图 4-2-2CD,由中点定义可知CD=2 cm,因此AC=5 cm.答案 : 两条相等线段510 分钟训练 ( 稳固类训练,可用于课后)1. 图 4-2-3 中是四个图形,则下边对图形的表达正确的个数是( )①线段③直线AB与射线 a 与直线MN不订交 b 不订交图 4-2-3②点 M在线段 AB 上④延长线射线AB,则会经过点CA.0B.1C.2D.3思路分析:“射线 MN”不单告诉我们MN是一条射线,还表示点M是射线的端点 . 既然这样,图①中的射线MN就是向右无穷伸展的,确立与线段AB 不订交 . “点 M在线段 AB上”与“点M在线段 AB的上方”含义是不一样的,语句②不正确. 直线是向两个方向无穷伸展的,图中③的 a、 b 是订交的 . 射线 AB 是从点 A 出发且由 A 至 B 的方向无穷延长的图形,不存在延长的问题,因此语句④不对 .答案:B2. 图 4-2-4 中的直线表示方法中正确的个数是( )图 4-2-4A. 都正确B.都错误C.只有一个错误D.只有一个正确思路分析:直线的表示方法:①用这条直线上两个不一样的大写字母表示;②用一个小写字母表示 . 因此第三个图形表示直线的方法是正确的.答案:D3.如图 4-2-5 ,能用字母表示的直线有 _______条,它们是 ______;能用字母表示的线段有_____条,它们是 ______;在直线EF 上的射线有 _______ 条,它们是 ___________.图 4-2-5思路分析:此题中直线不难确立,再确立线段和射线时,要注意先确立端点,而确立端点时要注意次序,才不会遗漏 .答案 : 3 直线 AD、直线 AB、直线 BD 6 线段 AB、线段 AC、线段 AD、线段 BC、线段 CD、线段BD 6 射线 BE、射线 BF、射线 CE、射线 CF、射线 DE、射线 DF4.直线、射线、线段的差别与联系各是什么?思路分析:主要从端点和延长性去找寻 ..答案 : 直线、射线、线段的差别是:直线没有端点;射线只有一个端点;线段有两个端点直线、射线、线段的内在联系是:线段是直线上两点间的部分,射线是直线上一点向一侧无限延长的部分 . 它们都是直线的一部分. 若射线向反向延长,或线段向双方延长,都能够获得直线,若线段向一方延长可得射线,在直线上取两点能够获得一条线段,取一点能够获得两条射线 .直线的基天性质有两条:一是两点确立一条直线. 二是两条直线订交,只有一个交点. 线段的基天性质有一条:两点之间,线段最短.5.如图 4-2-6 , C 是 AB 的中点, D 是 BE的中点 .图 4-2-6(1) AB=4 cm, BE=3 cm,则 CD=_________cm;(2) AB=4 cm, DE=2 cm,则 AE=_________cm;(3) AB=4 cm, BE=2 cm,则 AD=__________cm.答案 : (1)3.5(2)8(3)5快乐光阴怎么总是你英语老师问一个学生:“‘How are you ?’是什么意思?”学生想 how 是怎么, you 是你,于是回答:“怎么是你?”老师生气了。
直线、射线、线段同步练习一、选择题1.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是A. 线段可以比较大小B. 线段有两个端点C. 两点之间线段最短D. 过两点有且只有一条直线【答案】C【解析】解:把一条弯曲的公路改成直道,可以缩短路程,其道理是两点之间线段最短,2.平面内四条直线最少有a个交点,最多有b个交点,则等于A. 6B. 4C. 2D. 0【答案】A【解答】解:交点个数最多时,,最少有0个.所以,,所以.故选A.3.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为A. 两点之间,线段最短B. 两点确定一条直线C. 过一点,有无数条直线D. 连接两点之间的线段叫做两点间的距离【答案】B【解析】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.4.线段,C为直线AB上的点,且,M、N分别是AC、BC的中点,则MN的长度是A. 6cmB. 5cm或7cmC. 5cmD. 5cm或6cm【答案】C【解析】解:是线段AC的中点,,是线段BC的中点,.以下分2种情况讨论,如图1,当C在线段AB上时,;;如图2,当C在线段AB的延长线上时,;;综上所述,MN的长为5cm.5.如图,从A到B有,,三条路线,最短的路线是,其理由是A. 因为它最直B. 两点确定一条直线C. 两点间的距离的概念D. 两点之间,线段最短【答案】D【解析】解:从A到B有,,三条路线,最短的路线是,其理由是:两点之间,线段最短,6.如图,已知线段,M是AB中点,点N在AB上,,那么线段MN的长为A. 5cmB. 4cmC. 3cmD. 2cm【答案】C【解析】解:因为,M是AB中点,所以,又因为,所以.7.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是A. 两点之间,线段最短B. 两点确定一条直线C. 两点之间,直线最短D. 两点确定一条线段【答案】A【解析】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.8.如图,有四个图形和每一个图形相应的一句描述,所有图形都画在同一个平面上.线段AB与射线MN不相交;点C在线段AB上;直线a和直线b不相交;延长射线AB,则会通过点C,其中正确的语句的个数有.A. 0个B. 1个C. 2个D. 3个【答案】B【解析】解:线段AB与射线MN不相交,根据图象可得出此选项正确;根据图象点C不在线段AB上,故此选项错误;根据图象可得出直线a和直线b会相交,故此选项错误;根据图象可得出应为延长线段AB,到点C,故此选项错误,故正确的语句的个数是1个.9.数轴上A,B,C三点所表示的数分别为a,b,c,且C在AB上.若,,则下列b,c的关系式,正确的是A. B. C. D.【答案】A解:如图:在AB上,,,又,,.故选A.10.已知线段,C为AB的中点,D是AB上一点,,则线段BD的长为A. 1cmB. 5cmC. 1cm或5cmD. 4cm 【答案】C详解解:线段,C为AB的中点,.当点D在C点左侧,如图1所示时,;当点D在C点右侧,如图2所示时,.线段BD的长为1cm或5cm.故选C.11.如图:长度为12cm的线段AB的中点为M,点C将线段MB分成了MC::2,则线段AC的长为A. 2cmB. 4cmC. 6cmD. 8cm 【答案】D【解析】解:线段AB的中点为M,设,则,,解得即..12.一辆客车往返于A,B两地之间,中途有三个停靠站,那么在A、B两地之间最多需要印制不同的车票有A. 10种B. 15种C. 18种D. 20种【答案】D解:根据线段的定义:可知图中共有线段有AC,AD,AE,AB,CD、CE、CB、DE、DB、EB共10条,因车票需要考虑方向性,如,“”与“”票价相同,但车票不同,故需要准备20种车票.故选D.13.已知线段AB,C是直线AB上的一点,,,点M是线段AC的中点,则线段AM的长为A. 2cmB. 4cmC. 2cm或6cmD. 4cm或6cm【答案】C【解答】解:如图,当点C在线段AB上时,由线段的和差,得,点M是AC的中点,;点C在线段BC的延长线上,由线段的和差,得,点M是AC的中点,;综上可得:AM长为2cm或6cm.故选C.14.如图,图中的线段共有条.A. 5B. 6C. 7D. 8【答案】B【解答】解:图中线段有AB、AD、AC、BD、DC、BC共6条线段.故选B.二、填空题(本大题共4小题,共12.0分)15.把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是______.【答案】两点之间线段最短【解析】解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,16.火车往返于AB两个城市,中途经过4各站点共6个站点,不同的车站来往需要不同的车票,共有不同的车票______种.【答案】30【解析】解:如图:,车票:AC、CD、DE、EF、FB、AD、AE、AF、AB、CE、CF、CB、DF、DB、EB,BE、BD、FD、BC、FC、EC、BA、FA、EA、DA、BF、FE、ED、DC、CA.火车往返于A、B两个城市,中途经过4个站点共6个站点,不同的车站来往需要不同的车票,共有30种不同的车票.17.已知点O在直线AB上,且线段OA的长度为4 cm,线段OB的长度为6 cm,E、F分别为线段OA、OB的中点,则线段EF的长度为____cm.【答案】1或5【解答】解:当A,B在点O两侧时,如图,;当A,B在点O同侧时,如图,.故答案为1或5.18.如图所示,图中共有_________条直线,_________条射线,_________条线段.【答案】2,13,6.【解答】解:根据直线的定义及图形可得:图中共有2条直线,射线有13条,有6条线段,故答案为2,13,6.三、解答题19.如图,C是线段AB上一点,M是AC的中点,N是BC的中点.若,,求MN的长度;若,求MN的长度.【答案】解:是BC的中点,M是AC的中点,,,;是AC的中点,N是BC的中点,,.20.如图,平面上有四个点A、B、C、D,根据下列语句画图:画直线AB;作射线BC;画线段CD连接AD,并将线段AD反向延长至E,使;找到一点F,使点F到A、B、C、D四点的距离之和最短.【答案】解:直线AB、射线BC、线段CD如图所示;点E如图所示;连接AC、BD交于点F,点F即为所求.21.如图,已知三点A、B、C,请用尺规作图完成保留作图痕迹画直线AB;画射线AC;连接BC并延长BC到E,使得.【答案】解:画直线AB如图:;画射线AC如图;如图:CE即为所求.。
第2课时线段的性质能力提升1.如图所示,要在直线PQ上找一点C,使PC=3CQ,则点C应在()A.P,Q之间B.点P的左边C.点Q的右边D.P,Q之间或在点Q的右边2.如果线段AB=5 cm,BC=3 cm,那么A,C两点间的距离是()A.8 cmB.2 cmC.4 cmD.不能确定3.C为线段AB的一个三等分点,D为线段AB的中点,若AB的长为6.6 cm,则CD的长为()A.0.8 cmB.1.1 cmC.3.3 cmD.4.4 cm4.如图所示,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC-BDB.CD=BCC.CD=AB-BDD.CD=AD-BC5.下面给出的4条线段中,最长的是()A.dB.cC.bD.a6.已知A,B是数轴上的两点,点A表示的数是-1,且线段AB的长度为6,则点B表示的数是.7.已知线段AB=7 cm,在线段AB所在的直线上画线段BC=1 cm,则线段AC=.8.如图所示,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.9.如图所示,点C是线段AB上一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=20 cm,AM=6 cm,求NC的长;(2)如果MN=6 cm,求AB的长.10.在桌面上放了一个正方体的盒子,如图所示,一只蚂蚁在顶点A处,它要爬到顶点B处找食物,你能帮助蚂蚁设计一条最短的爬行路线吗?要是食物在顶点C处呢?★11.已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM 的长.创新应用★12.在同一条公路旁,住着5人,他们在同一家公司上班,如图,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?参考答案能力提升1.D注意本题中的条件是在直线PQ上找一点C,所以C可以在P,Q之间,也可以在点Q的右侧.2.D A,B,C三点位置不确定,可能共线,也可能不共线.3.B如图,AD=AB=3.3cm,AC=AB=2.2cm,所以CD=AD-AC=3.3-2.2=1.1(cm).4.B5.A6.-7或5点B可能在点A的左侧,也有可能在点A的右侧.若点B在点A的左侧,则点B表示的数比点A表示的数小6,此时点B表示的数为-7;若点B在点A的右侧,则点B表示的数比点A表示的数大6,此时点B表示的数为5.7.8 cm或6 cm分两种情况:①点C在线段AB内,②点C在线段AB的延长线上.8.解:连接AC,BD,交点P即为购物中心的位置.理由:根据公理“两点之间,线段最短”,要使购物中心到A,B,C,D的距离和最小,购物中心既要在AC上,又要在BD上.9.解:(1)因为M为AC的中点,所以MC=AM.又因为AM=6cm,所以AC=2×6=12(cm).因为AB=20cm,所以BC=AB-AC=20-12=8(cm).又因为N为BC的中点,所以NC=BC=4(cm).(2)因为M为AC的中点,所以MC=AM.因为N为BC的中点,所以CN=BN.所以AB=AC+BC=2(MC+CN)=2MN=2×6=12(cm).10.解:如图所示,是该正方体的侧面展开图.食物在B处时的最短路线为线段AB,食物在C处时的最短路线为线段AC.11.解:(1)当点C在线段AB上时,如图①,图①因为M是AC的中点,所以AM=AC.又因为AC=AB-BC,AB=12cm,BC=6cm,所以AM=(AB-BC)=×(12-6)=3(cm).(2)当点C在线段AB的延长线上时,如图②,图②因为M是AC的中点,所以AM=AC.又因为AC=AB+BC,AB=12cm,BC=6cm,所以AM=AC=(AB+BC)=×(12+6)=9(cm).故AM的长度为3cm或9cm.创新应用12.解:(1)在A处乘车的车费为6+(4+2-3)×1.5=10.5(元);在B处乘车的车费为6元;在D处乘车的车费为6元;在E处乘车的车费为6+(3+3-3)×1.5=10.5(元);在F处乘车的车费为6+(1+3+3-3)×1.5=12(元),合计45元.(2)A,B同乘一辆车,从A开出,D,E,F同乘一辆车,从F开出,合计22.5元.。
第2课时线段的性质能力提升1.如图所示,要在直线PQ上找一点C,使PC=3CQ,则点C应在()A.P,Q之间B.点P的左边C.点Q的右边D.P,Q之间或在点Q的右边2.如果线段AB=5 cm,BC=3 cm,那么A,C两点间的距离是()A.8 cmB.2 cmC.4 cmD.不能确定3.C为线段AB的一个三等分点,D为线段AB的中点,若AB的长为6.6 cm,则CD的长为()A.0.8 cmB.1.1 cmC.3.3 cmD.4.4 cm4.如图所示,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC-BDB.CD=BCC.CD=AB-BDD.CD=AD-BC5.下面给出的4条线段中,最长的是()A.dB.cC.bD.a6.已知A,B是数轴上的两点,点A表示的数是-1,且线段AB的长度为6,则点B表示的数是.7.已知线段AB=7 cm,在线段AB所在的直线上画线段BC=1 cm,则线段AC=. 8.如图所示,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.9.如图所示,点C是线段AB上一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=20 cm,AM=6 cm,求NC的长;(2)如果MN=6 cm,求AB的长.10.在桌面上放了一个正方体的盒子,如图所示,一只蚂蚁在顶点A处,它要爬到顶点B处找食物,你能帮助蚂蚁设计一条最短的爬行路线吗?要是食物在顶点C处呢?★11.已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM 的长.创新应用★12.在同一条公路旁,住着5人,他们在同一家公司上班,如图,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?参考答案能力提升1.D注意本题中的条件是在直线PQ上找一点C,所以C可以在P,Q之间,也可以在点Q的右侧.2.D A,B,C三点位置不确定,可能共线,也可能不共线.3.B如图,AD=AB=3.3cm,AC=AB=2.2cm,所以CD=AD-AC=3.3-2.2=1.1(cm).4.B5.A6.-7或5点B可能在点A的左侧,也有可能在点A的右侧.若点B在点A的左侧,则点B表示的数比点A表示的数小6,此时点B表示的数为-7;若点B在点A的右侧,则点B表示的数比点A表示的数大6,此时点B表示的数为5.7.8 cm或6 cm分两种情况:①点C在线段AB内,②点C在线段AB的延长线上.8.解:连接AC,BD,交点P即为购物中心的位置.理由:根据公理“两点之间,线段最短”,要使购物中心到A,B,C,D的距离和最小,购物中心既要在AC上,又要在BD上.9.解:(1)因为M为AC的中点,所以MC=AM.又因为AM=6cm,所以AC=2×6=12(cm).因为AB=20cm,所以BC=AB-AC=20-12=8(cm).又因为N为BC的中点,所以NC=BC=4(cm).(2)因为M为AC的中点,所以MC=AM.因为N为BC的中点,所以CN=BN.所以AB=AC+BC=2(MC+CN)=2MN=2×6=12(cm).10.解:如图所示,是该正方体的侧面展开图.食物在B处时的最短路线为线段AB,食物在C处时的最短路线为线段AC.11.解:(1)当点C在线段AB上时,如图①,图①因为M是AC的中点,所以AM=AC.又因为AC=AB-BC,AB=12cm,BC=6cm,所以AM=(AB-BC)=×(12-6)=3(cm).(2)当点C在线段AB的延长线上时,如图②,图②因为M是AC的中点,所以AM=AC.又因为AC=AB+BC,AB=12cm,BC=6cm,所以AM=AC=(AB+BC)=×(12+6)=9(cm).故AM的长度为3cm或9cm.创新应用12.解:(1)在A处乘车的车费为6+(4+2-3)×1.5=10.5(元);在B处乘车的车费为6元;在D处乘车的车费为6元;在E处乘车的车费为6+(3+3-3)×1.5=10.5(元);在F处乘车的车费为6+(1+3+3-3)×1.5=12(元),合计45元.(2)A,B同乘一辆车,从A开出,D,E,F同乘一辆车,从F开出,合计22.5元.。
4.2 比较线段的长短一.选择题1.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子可以把木条钉在墙上B.植树时,只要定出两棵树的位置,就能使同一行树坑在一条直线上C.打靶的时候,眼睛要与枪上的准星、靶心在同一直线上D.为了缩短航程把弯曲的河道改直2.现实生活中,总有人乱穿马路(如图中AD).却不愿从天桥(如图中AB﹣BC﹣CD)通过.请用数学知识解释这一现象.其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间.线段最短3.如图,A,B两地间修建曲路与修建直路相比,虽然有利于游人更好地观赏风光,但增加了路程的长度.其中蕴含的数学道理是()A.经过一点可以作无数条直线B.经过两点有且只有一条直线C.两点之间,有若干种连接方式D.两点之间,线段最短4.下列说法正确的是()A.射线P A和射线AP是同一条射线B.两点之间,直线最短C.延长射线APD.过两点有且只有一条直线5.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm或8cm D.2cm或4cm 6.下列说法:(1)绝对值越小的数离原点越近;(2)多项式2x2﹣3x+5是二次三项式;(3)连接两点之间的线段是两点之间的距离;(4)三条直线两两相交有3个交点.其中正确的个数是()A.1B.2C.3D.47.下列说法不正确的是()A.因为M是线段AB的中点,所以AM=MB=ABB.在线段AM延长线上取一点B,如果AB=2AM,那么点M是线段AB的中点C.因为A,M,B在同一直线上,且AM=MB,所以M是线段AB的中点D.因为AM=MB,所以点M是AB的中点8.下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段AB外D.若A,B,C,三点不在一直线上,则AB<AC+BC9.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交10.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具11.下列语句()正确.A.射线比直线短一半B.延长AB到CC.两点间的线叫做线段D.经过三点A,B,C不一定能画出直线来12.如图所示,某公司员工住在A,B,C三个住宅区,已知A区有2人,B区有7人,C 区有12人,三个住宅区在同一条直线上,且AB=150m,BC=300m,D是AC的中点.为方便员工,公司计划开设通勤车免费接送员工上下班,但因为停车位紧张,在A,B,C,D四处只能设一个通勤车停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠站应设在()A.A处B.B处C.C处D.D处13.下列叙述:①最小的正整数是0;②单项式3x3y的次数是3;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C是线段AB的中点;⑤若x表示有理数,且|x|=x,则x>0.其中正确的个数有()A.0个B.1个C.2个D.3个二.填空题14.如图,线段AB被点C,D分成2:4:7三部分,M,N分别是AC,DB的中点,若MN=17cm,则BD=cm.15.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C,区有10人,三个区在一直线上,位置如图所示,公司的接送车打算在此间只设一个停靠点,为要使所有员工步行到停靠点的路程总和最少,那么停靠点的位置应在区.三.解答题16.如图,AB=97,AD=40,点E在线段DB上,DC:CE=1:2,CE:EB=3:5,求AC 的长度.17.如图,P是线段AB上任一点,AB=12cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.(1)若AP=8cm,①运动1s后,求CD的长;②当D在线段PB上运动时,试说明AC=2CD;(2)如果t=2s时,CD=1cm,试探索AP的值.18.已知AB=10,点C在射线AB上,且BC=AB,D为AC的中点.(1)依题意,画出图形;(2)直接写出线段BD的长.19.如图,已知点C为线段AB的中点,点D为线段BC的中点,AB=10cm,求AD的长度.20.如图,已知线段AB的长为a,延长线段AB至点C,使BC=AB.(1)求线段AC的长(用含a的代数式表示);(2)取线段AC的中点D,若DB=2,求a的值.参考答案一.选择题1.D.2.D.3.D.4.D.5.C.6.B.7.D.8.A.9.D.10.C.11.D.12.C.13.A.二.填空题(共2小题)14.14.15.A.三.解答题(共5小题)16.解:因为AB=97,AD=40,所以BD=AB﹣AD=57因为DC:CE=1:2,CE:EB=3:5,所以设DC=x,则CE=2x,EB=,因为BD=DC+CE+EB所以x+2x+=57解得x=9所以AC=AD+DC=40+9=49.答:AC的长度为49.17.解:(1)①由题意可知:CP=2×1=2cm,DB=3×1=3cm ∵AP=8cm,AB=12cm∴PB=AB﹣AP=4cm∴CD=CP+PB﹣DB=2+4﹣3=3cm②∵AP=8,AB=12,∴BP=4,AC=8﹣2t,∴DP=4﹣3t,∴CD=DP+CP=2t+4﹣3t=4﹣t,∴AC=2CD;(2)当t=2时,CP=2×2=4cm,DB=3×2=6cm,当点D在C的右边时,如图所示:由于CD=1cm,∴CB=CD+DB=7cm,∴AC=AB﹣CB=5cm,∴AP=AC+CP=9cm,当点D在C的左边时,如图所示:∴AD=AB﹣DB=6cm,∴AP=AD+CD+CP=11cm综上所述,AP=9或1118.解:(1)有两种情况:如图:,;(2)①如图1所示,∵AB=10,BC=AB=5,∴AC=AB﹣BC=10﹣5=5,∵D是线段AC的中点,∴AD=AC=×5=2.5,∴BD=AB﹣AD=10﹣2.5=7.5;②如图2所示,∵AB=10,BC=5,∴AC=AB+BC=10+5=15,∵D是线段AC的中点,∴AD=AC=×15=7.5,∴BD=AB﹣AD=10﹣7.5=2.5.19.解:∵AB=10cm,C是AB中点,∴AC=BC=AB=5cm,∵D是BC中点,∴CD=BC=2.5cm∴AD=AC+CD=7.5cm.20.解:(1)∵AB=a,BC=AB,∴BC=a,∵AC=AB+BC,∴AC=a+a=a;(2)∵AD=DC=AC,AC=a,∴DC=a,∵DB=2,BC=a,∵DB=DC﹣BC,∴2=a﹣a,∴a=8.。
4.2 直线、射线、线段一.选择题1.如图,从C地到B地有①②③条路线可以走,下列判断正确的是()A.路线①最短B.路线②最短C.路线③最短D.①②③长度都一样2.平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条3.已知线段AB=9,点C是AB的中点,点D是AB的三等分点,则C,D两点间距离为()A.3B.1.5C.1.2D.14.平面上有三点A、B、C,如果AB=10,AC=7,BC=3,那么()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外5.如图,从A到B有①,②,③三条路线,最短的路线是①,其理由是()A.因为它最直B.两点确定一条直线C.两点间的距离的概念D.两点之间,线段最短6.如图,小林利用圆规在线段CE上截取线段CD,使CD=AB.若点D恰好为CE的中点,则下列结论中错误的是()A.CD=DE B.AB=DE C.CE=CD D.CE=2AB7.如图,点C,D在线段AB上.则下列表述或结论错误的是()A.若AC=BD,则AD=BC B.AC=AD+DB﹣BCC.AD=AB+CD﹣BC D.图中共有线段12条8.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=10,CD =4,则EF的长为()A.6B.7C.5D.89.已知线段AB=4cm,延长线段AB到C使BC=AB,延长线段BA到D使AD=AC,则线段CD的长为()A.12cm B.10cm C.8cm D.6cm10.图中下列从A到B的各条路线中最短的路线是()A.A→C→G→E→B B.A→C→E→B C.A→D→G→E→B D.A→F→E→B 11.已知点A,B,C在同一直线上,若AB=20cm,AC=30cm,点M、N分别是线段AB、AC中点,求线段MN的长是()A.5cm B.5cm或15cm C.25cm D.5cm或25cm 12.如图,点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是()A.两点之间,线段最短B.两点确定一条直线C.两点之间,直线最短D.直线比线段长13.如图,把三角形剪去一个角,所得四边形的周长比原三角形的周长小,能正确解释这一现象的数学知识是()A.四边形周长小于三角形周长B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线二.填空题14.已知如图,C是线段AB上的一点,N是线段BC的中点,若AB=10,AC=6,则AN =.15.如图,已知线段AB=8cm,AD=1.5cm,D为线段AC的中点,则线段CB=cm.16.已知线段AB,延长AB至点C,使BC=AB.若点D为线段AC的中点,点E为线段AB的中点,且DE=1cm,则线段AB=cm.17.如图,线段AB=4cm,延长线段AB到C,使BC=1cm,再反向延长AB到D,使AD =3cm,E是AD中点,F是CD的中点.则EF的长度为cm.三.解答题(共3小题)18.如图,点C在线段AB上,AB=9,AC=2CB,D是AC的中点,求AD长.19.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.20.已知:如图,在直线l上顺次有A、B、C三点,AB=4cm,AB>BC,点O是线段AC 的中点,且OB=cm,求:B、C两点之间的距离.参考答案一.选择题1.解:利用线段的性质可得路线②最短,故选:B.2.解:如图,经过其中任意两点画直线可以画3条直线或1条直线,故选:D.3.解:∵点C是AB的中点,AB=9,∴AC=CB=AB=4.5,当点D是AB的三等分点,点D在线段BC上时,BD=AB=3,∴CD=4.5﹣3=1.5,当点D是AB的三等分点,点D′在线段AC上时,AD′=AB=3,∴CD′=4.5﹣3=1.5,故选:B.4.解:如图,在平面内,AB=10,∵AC=7,BC=3,∴点C为以A为圆心,7为半径,与以B为圆心,3为半径的两个圆的交点,由于AB=10=7+3=AC+BC,所以,点C在线段AB上,故选:A.5.解:从A到B有①,②,③三条路线,最短的路线是①,其理由是:两点之间,故选:D.6.解:∵点D恰好为CE的中点,∴CD=DE,∵CD=AB,∴AB=DE=CE,即CE=2AB=2CD,故A,B,D选项正确,C选项错误,故选:C.7.解:A、若AC=BD,则AD=BC,正确,不符合题意;B、AC=AD+DB﹣BC,正确,不符合题意;C、AD=AB+CD﹣BC,正确,不符合题意;D、图中共有线段6条,符合题意,故选:D.8.解:由线段的和差,得AC+DB=AB﹣CD=10﹣4=6.∵点E是AC的中点,∴AE=AC,∵点F是BD的中点,∴BF=BD,∴AE+BF=(AC+DB)=3.由线段的和差,得EF=AB﹣(AE+BF)=10﹣3=7.故选:B.9.解:由线段的和差,得AC=AB+BC=4+4=6(cm),由线段中点的性质,得CD=AD+AC=2AC=2×6=12(cm),故选:A.10.解:最短的路线是A→F→E→B.11.解:(1)当点C位于点B的右边时,MN=(AC﹣AB)=5cm,(2)当点C位于点A的左边时,MN=(AC+AB)=25cm故线段MN的长为5cm或25cm.故选:D.12.解:点A、B在直线l上,点C是直线l外一点,可知CA+CB>AB,其依据是:两点之间,线段最短,故选:A.13.解:如图,把三角形剪去一个角,所得四边形的周长比原三角形的周长小,能正确解释这一现象的数学知识是:两点之间,线段最短.故选:C.二.填空题14.解:∵AB=10,AC=6,∴CB=10﹣6=4,∵N是线段BC的中点,∴CN=2,∴AN=AC+CN=6+2=8.15.解:∵D为线段AC的中点,∴AC=2AD=2×1.5cm=3(cm),∵AB=8cm,∴CB=AB﹣AC=8﹣3=5(cm).故答案为:5.16.解:设BC=x,则AB=3x,∴AC=4x,∵点D为线段AC的中点,点E为线段AB的中点,∴AD=AC=2x,AE=AB=x,∴DE=AD﹣AE=2x﹣x=x=1,∴x=2,故答案为:6.17.解:CD=AD+AB+BC=3+4+1=8cm;∵E是AD中点,F是CD的中点,∴DF=CD=×8=4cm,DE=AD=×3=1.5cm.∴EF=DF﹣DE=4﹣1.5=2.5cm,故答案为:2.5.三.解答题(共3小题)18.解:∵点C在线段AB上,AC=2CB,AB=9,∴AC=6,∵D是AC的中点,∴AD=AC,∴AD=3.19.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.20.解:∵AB=4cm,OB=cm∴OA=AB﹣OB=3.5而O是线段AC的中点,∴BC=AC﹣AB=7﹣4=3故B、C两点之间的距离为3cm.。
北师大版七年级上册:4.2《比较线段的长短》同步练习卷一.选择题1.如图,从A到B有三条路径,最短的路径是③,理由是()A.两点确定一条直线B.两点之间,线段最短C.过一点有无数条直线D.因为直线比曲线和折线短2.有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上.②从A地到B地架设电线,总是尽可能沿着线段AB架设.③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④3.在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这样做的依据是()A.两点之间线段最短B.两点确定一条直线C.三点确定一条直线D.四点确定一条直线4.下列说法中正确的有()①射线比直线小一半;②连接两点的线段叫两点间的距离;③过两点有且只有一条直线;④两点之间所有连线中,线段最短A.1个B.2个C.3个D.4个5.如图,线段AB=DE,点C为线段AE的中点,下列式子不正确的是()A.BC=CD B.CD=AE﹣AB C.CD=AD﹣CE D.CD=DE6.如图,一根长为10厘米的木棒,棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有()A.7个B.6个C.5个D.4个7.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个8.如果A、B、C三点在同一直线上,且线段AB=8cm,BC=6cm,若M、N分别为AB、BC的中点,那么M、N两点之间的距离为()A.7cm B.1cm C.7cm或1cm D.无法确定9.如图,已知点C在线段AB上,线段AC=4,线段BC的长是线段AC长的两倍,点D 是线段AB的中点,则线段CD的长是()A.1B.2C.3D.410.两根木条,一根长20cm,另一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cm B.4cm C.2cm或22cm D.4cm或44cm 二.填空题11.如图是校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是.12.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=cm.13.如图,已知AB=8cm,BD=3cm,C为AB的中点,则线段CD的长为cm.14.如图,BC=AB,AC=AD,若BC=1cm,则CD的长为.15.如图,点C、D、E是线段AB上的三个点,下面关于线段CE的表示,其中正确的有.①CE=CD+DE;②CE=CB﹣EB;③CE=CB﹣DB;④CE=AD+DE﹣AC三.解答题16.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.17.如图,已知B是线段AC的中点,D是线段CE的中点,若AB=4,CE=AC,求线段BD的长.18.如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=1cm,(1)求AC的长;(2)若点E在直线AD上,且EA=2cm,求BE的长.19.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.参考答案一.选择题1.解:如图,最短路径是③的理由是两点之间线段最短,故B正确,故选:B.2.解:根据两点之间,线段最短,得到的是:②④;①③的依据是两点确定一条直线.故选:C.3.解:在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了两点确定一条直线的道理.故选:B.4.解:①射线比直线小一半,根据射线与直线都无限长,故这个说法错误;②连接两点的线段的长度叫两点间的距离,此这个说法错误;③过两点有且只有一条直线,此这个说法正确;④两点之间所有连线中,线段最短,此这个说法正确;故正确的有2个.故选:B.5.解:因为点C为线段AE的中点,且线段AB=DE,则BC=CD,故本选项正确;B中CD=AC﹣AB=BC=CD,故本选项正确;C中CD=AD﹣BC﹣AB=CD,故本选项正确;D中CD≠DE则在已知里所没有的,故本选项错误;故选:D.6.解:∵图中共有3+2+1=6条线段,∴能量出6个长度,分别是:2厘米、3厘米、5厘米、7厘米、8厘米、10厘米.故选:B.7.解:如图所示:①∵AP=BP,∴点P是线段AB的中点,故本小题正确;②点P可能在AB的延长线上时不成立,故本小题错误;③P可能在BA的延长线上时不成立,故本小题错误;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点,故本小题错误.故选:A.8.解:如图1,当点B在线段AC上时,∵AB=8cm,BC=6cm,M,N分别为AB,BC的中点,∴MB=AB=4,BN=BC=3,∴MN=MB+NB=7cm,如图2,当点C在线段AB上时,∵AB=8cm,BC=6cm,M,N分别为AB,BC的中点,∴MB=AB=4,BN=BC=3,∴MN=MB﹣NB=1cm,故选:C.9.解:∵AC=4,线段BC的长是线段AC长的两倍,∴BC=8,∴AB=AC+BC=12,∵点D是线段AB的中点,∴AD=AB=6,∴CD=AD﹣AC=2.故选:B.10.解:如图,设较长的木条为AB=24cm,较短的木条为BC=20cm,∵M、N分别为AB、BC的中点,∴BM=12cm,BN=10cm,∴①如图1,BC不在AB上时,MN=BM+BN=12+10=22cm,②如图2,BC在AB上时,MN=BM﹣BN=12﹣10=2cm,综上所述,两根木条的中点间的距离是2cm或22cm;故选:C.二.填空题11.解:校园花圃一角,有的同学为了省时间图方便,在花圃中踩出了一条小道,这些同学这样做的数学道理是两点之间线段最短,故答案为:两点之间线段最短.12.解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为:6.13.解:∵C为AB的中点,AB=8cm,∴BC=AB=×8=4(cm),∵BD=3cm,∴CD=BC﹣BD=4﹣3=1(cm),则CD的长为1cm;故答案为:1.14.解:∵BC=AB,AC=AD,∴AB=4BC,AC=AB,AD=4AC,∵BC=1cm,∴AB=4BC=4cm,∴AC=3cm,∴AD=12cm,∴CD=AD﹣AC=12﹣3=9(cm).故答案为:9.15.解:观察图形可知:CE=CD+DE;CE=BC﹣EB.故①②正确.BC=CD+BD,CE=BC﹣EB,CE=CD+BD﹣EB.故③错误AE=AD+DE,AE=AC+CE,CE=AD+DE﹣AC故④正确.故选①②④.三.解答题16.解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.17.解:∵点B、D分别是AC、CE的中点,∴BC=AB=AC,CD=DE=CE,∴BD=BC+CD=(AC+CE),∵AB=4,∴AC=8,∵CE=AC,∴CE=6,∴BD=BC+CD=(AC+CE)=(8+6)=7.18.解:(1)∵点B为CD的中点,BD=1cm,∴CD=2BD=2cm,∵AD=8cm,∴AC=AD﹣CD=8﹣2=6cm(2)若E在线段DA的延长线,如图1∵EA=2cm,AD=8cm∴ED=EA+AD=2+8=10cm,∵BD=1cm,∴BE=ED﹣BD=10﹣1=9cm,若E线段AD上,如图2EA=2cm,AD=8cm∴ED=AD﹣EA=8﹣2=6cm,∵BD=1cm,∴BE=ED﹣BD=6﹣1=5cm,综上所述,BE的长为5cm或9cm.19.解:(1)若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4;(2)若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣88.。
4.2比较线段的长短一、基础训练1. 三条直线两两相交,则交点有_______________个.2.图3中共有________条线段.3.已知线段AB 及一点P ,若AP+PB>AB,则点P 在 .4.已知线段AB=10,直线AB 上有一点C,且BC=4,M 是线段AC 的中点,则AM 的长为 .二、拓展训练5.如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是( ).A .M 点在线段AB 上B .M 点在直线AB 上C .M 点在直线AB 外D .M 点可能在直线AB 上,也可能在直线AB 外6.下列图形中,能够相交的是( ).7.如图5,小华的家在A 处,书店在B 处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线( ).A .A →C →D →B B .A →C →F →BC .A →C →E →F →BD .A →C →M →B 8.已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是( ).A .8cmB .2cmC .8cm 或2cmD .4cm三.用心想一想图5 图39.在同一条公路旁,住着五个人,他们在同一家公司上班,如图9,不妨设这五个人的家分别住在点ABDEF 位置,公司在C 点,若AB=4km ,BC=2km ,CD=3km ,DE=3km ,EF=1km ,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价3元(3km 以内,包括3km ),以后每千米1.5元(不足1km ,以1km 计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司在支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?图910.图10为中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走,例如:图中“马”所在的位置可以直接走到点A .B 等处.若“马”的位置在C 处,为了到达D 点,请按“马”走的规则,在图10的棋盘上用虚线画出一种你认为合理的行走路线.11.已知线段10AB cm ,试探讨下列问题.⑴是否存在一点C ,使它到A ,B 两点的距离之和等于8cm ?并试述理由.⑵是否存在一点C ,使它到A ,B 两点的距离之和等于10cm ?若存在,它的位置惟一吗? ⑶当点C 到A ,B 两点的距离之和等于20cm 时,点C 一定在直线AB 外吗?举例说明.图10参考答案1.1或32.10 3.直线经过这一点,直线不经过这一点 4.7或35. D 6.D 7.B 8.C9.(1)A :7.5,B :3,D :3,E :7.5,F :9,合计30元;(2)AB 同乘一辆车,从A 开出,DEF 同乘一辆车,从F 开出,合计16.5元10.11.答案:⑴不存在.因为两点之间,线段最短.因此,10AC BC ≥cm . ⑵存在.线段AB 上任意一点(A ,B 除外)都是.⑶不一定.如图:C AB 5㎝10㎝。
第四章 几何图形 4.2 直线、射线、线段
4.2.2 比较线段的长短
【知识点1】 画一条线段等于已知线段及线段的和、差
用尺规作图是指用无刻度的尺子和圆规作图.
(1)画一条线段等于已知线段:如图,用圆规在射线AC 上截取AB =a ,也可用测量长度的方法,再画一条等于这个长度的线段.
(2)线段的和差的画法:
如图,已知线段a 、b(设a>b).
①线段a 、b 的和的画法:在直线l 上顺次画线段AB =a ,BC =b ,则线段AC 就是线段AB 和BC 的和,记作AC =a +b ;
②线段a 、b 的差的画法:在直线l 上画线段AB =a ,在线段AB 上画线段BD =b ,则线段AD 就是线段AB 和BD 的差,记作:AD =a -b.
【知识点2】 线段的中点
如图,点B 把线段AC 分成相等的两条线段AB 和BC ,点B 叫做线段AC 的中点.
【典例1】如图,已知点C 为AB 上一点,AC =12 cm ,CB =2
3
AC ,D 、E 分别为AC 、AB 的中点,
求DE 的长.
分析:求DE 的长度,即求AE 和AD 之差.因为D 、E 分别为AC 、AB 的中点,故DE =1
2
(AB
-AC).又AC =12 cm ,CB =2
3
AC ,可求出CB ,即可求出CB ,代入上述代数式,即可求出DE 的
长度.
解答:根据题意,AC =12 cm ,CB =2
3
AC ,所以CB =8 cm ,所以AB =AC +CB =20 cm.又因
为D 、E 分别为AC 、AB 的中点,所以DE =AE -AD =1
2
(AB -AC)=4 cm.即DE =4 cm.
【知识点3】线段的基本性质及两点间的距离
(1)线段的基本性质:两点的所有连线中,线段最短.这是线段的基本性质,简单说成“两点之间,线段最短”.
(2)两点间的距离:连结两点之间线段的长度叫做这两点的距离.
知识点4 线段长短的比较
(1)度量法:先分别测量出每条线段的长度,再根据度量的结果进行比较来确定两条线段的长短,运用的工具是刻度尺.
(2)叠合法:先把两条线段一个端点重合,另一端点在同侧的同条直线上,直观地确定出两条线段的长短,运用的工具为圆规.
【典例2】如图所示,比较这两组线段的长短.
(1) (2)
分析:利用叠合法比较.
解答:(1)把图中的线段AB、线段CD放在一条直线上,使A、C重合,使点D与点B在A 的同侧,点D在线段AB外,所以AB<CD.
(2)把图中的线段AB、线段CD放在一条直线上,使A、C重合,使点D与点B在A的同侧,点B和点D重合,所以AB=CD.
1.点A与点B之间的距离是( )
A.直线AB的长度 B.过A、B两点的直线
C.线段AB的长度 D.连结A、B两点的线段
2.【2017·湖北随州中考】某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是 ( )
A.两点之间线段最短
B.两点确定一条直线
C.垂线段最短
D.经过直线外一点,有且只有一条直线与这条直线平行
3.如图,小华的家在A处,书店在B处,星期日小华到书店去买书,他想尽快地赶到书店,请你帮助他选择一条最近的路线 ( )
A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B
4.下列四个语句中正确的是 ( )
A.如果AP=BP,那么点P是AB的中点 B.两点间的距离就是两点间的线段
C.两点之间,线段最短 D.比较线段的长短只能用度量法
5.如图所示,长度为12 cm的线段AB的中点为M,点C在线段BM上,且MC∶CB=1∶2,则线段AC的长度为( )
A.2 cm B.4 cm C.6 cm D.8 cm
6.如图所示,已知AB=CD,则AC与BD的大小关系是()
A.AC>BD B.AC<BD C.AC=BD D.无法确定7.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是 ()
A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=1
2 AB
8.如图,C、B是线段AD上的两点,若AB=CD,BC=2AC,那么AC与CD的关系是为( )
A.CD=2AC B.CD=3AC C.CD=4BD D.不能确定9.已知数轴上的三点A、B、C所对应的数a、b、c满足a<b<c、abc<0和a+b+c=0.那么线段AB与BC的大小关系是( )
A.AB>BC B.AB=BC C.AB<BC D.不能确定10.如图,在直线上依次取A、B、C、D四点,则AC=________+BC=AD-________;AC+BD -BC=________.
11.如图所示,已知点C分线段AB为5∶3,点D分线段AB为3∶5,已知CD=10 cm,则线段AB的长为______________.
12.已知A、B、C三点在同一条直线上,M、N分别为线段AB、BC的中点,且AB=60,BC=40,则MN的长度为______________.
13.平原上有A、B、C、D四个村庄,为解决当地
缺水问题,政府准备投资修建一个蓄水池,不考虑
其他因素,请你画图确定蓄水池H的位置,使它与
四个村庄的距离之和最小(A、B、C、D四个村庄的
地理位置如图所示).
14.如图所示,已知点C在线段AB上,线段AC=10,BC=6,E、F分别是AC、BC的中点,求线段EF的长度.
15.将线段AB延长到点C,使BC=2AB,AB的中点为D,E、F是BC上的点,且BE∶EF∶FC=1∶2∶5,AC=60 cm,求DE、DF的长.
16.如图,M、N两点把线段AB分成2∶3∶4三部分,点C是线段AB的中点,NB=4 cm.
(1)求CN的长; (2)求AM∶MC.。