实验 7 单区域OSPF路由协议配置
- 格式:docx
- 大小:125.06 KB
- 文档页数:4
H3CSE路由实验配置1.OSPF单区域配置:从模拟器当中打开RT2和RT3两台路由器,按照如图所示配置接口IP地址,配置单区域的OSPF。
首先在RT2上进行配置:[H3C]sysname RT2[RT2]interface Serial 0/2/2[RT2-Serial0/2/2]ip address 10.1.1.1 24[RT2-Serial0/2/2]quit[RT2]interface LoopBack 1[RT2-LoopBack1]ip address 2.2.2.2 32[RT2-LoopBack1]quit[RT2]ospf router-id 2.2.2.2[RT2-ospf-1-area-0.0.0.0]network 10.1.1.0 0.0.0.255[RT2-ospf-1-area-0.0.0.0]network 2.2.2.2 0.0.0.0[RT2-ospf-1-area-0.0.0.0]quit[RT2-ospf-1]quit[RT2]在RT3上的配置:[H3C]sysname RT3[RT3]interface LoopBack 1[RT3-LoopBack1]ip address 3.3.3.3 32[RT3-LoopBack1]quit[RT3]interface Serial 0/2/0[RT3-Serial0/2/0]ip address 10.1.1.2 24[RT3-Serial0/2/0]quit[RT3]ospf router-id 3.3.3.3[RT3-ospf-1]area 0[RT3-ospf-1-area-0.0.0.0]network 10.1.1.0 0.0.0.255[RT3-ospf-1-area-0.0.0.0]network 3.3.3.3 0.0.0.0[RT3-ospf-1-area-0.0.0.0]quit[RT3-ospf-1]quit[RT3]配置好之后在RT2上ping RT3发现可以ping通,那么实验配置就是正确的了。
OSPF概述及单区域OSPF原理摘要:OSPF(Open Shortest Path First,开放最短路径优先)协议是TCP/IP协议集中一个开放的、高性能的内部网关路由协议。
它是基于Dijkstra算法的链路状态型路由协议。
这种算法也称为最短路径优先(SPF)算法。
关键词:OSPF;网络;路由协议一、OSPF概述(一)OSPF特性OSPF协议是在大型、可扩展的网络上运行的路由协议,其特点如下:1.OSPF是自治系统内部使用的协议即内部网关协议,是基于链路状态算法的路由协议;2.使用VLSM可以有效地使用IP地址空间;3.OSPF使用组播地址发送链路状态更新;4.仅在路由发生变化时发送更新信息,而不是定期发送;5.路由收敛快——因为路由变化的信息被立即扩散而不是定期扩散,收到该信息的路由器同步地计算拓扑库;6.OSPF可以进行区域的划分,避免把链路状态更新信息向整个网络扩散,划分区域也有利于路由总结和过滤不必要的子网信息;7.OSPF支持明文及MD5两种认证方式;8.OSPF采用路径成本(Cost)值作为路径选择的依据。
(二)OSPF术语为了能够清楚地了解OSPF协议的运行过程,掌握OSPF协议的使用方法,先介绍有关OSPF协议的术语。
1.接口或链路:是指路由器与所接人的网络之间的一个连接。
可以是物理或逻辑接2.链路状态:用以描述路由器接口及其与邻居路由器的关系,这些描述包括诸如接口的P地址和掩码、接口连接的网络类型以及接口连接的网络上的其他路由器等。
所有链路状态信息构成链路状态数据库。
3.成本(Cost):也称为链路开销,用来描述从接口发送数据包所需要花费的代价,该值与接口的带宽成反比,带宽越大开销值越小。
4.邻居:在同一个网络上有接口的路由器。
5.Hello包:OSPF协议用来建立和维持邻居关系的数据包。
6.邻接:能够相互交换链路状态信息的路由器构成邻接关系。
7.邻接关系数据库:建立起双向通信的所有邻接的邻居的列表。
1.OSPF协议简介OSPF(Open Shortest Path First)协议是一种内部网关协议(IGP),用于在大型企业网络或互联网中实现路由选择。
它是一个开放的、链路状态路由协议,旨在优化路由器之间的通信,并根据网络拓扑信息计算最短路径。
OSPF协议具有以下特点:•开放性:OSPF协议是公开的,它的工作原理和规范可以被广泛理解和应用。
这使得不同厂商的路由器可以相互通信和交换路由信息,促进了网络设备的互操作性。
•链路状态路由:OSPF协议通过在网络中广播链路状态更新来确定网络拓扑信息。
每个路由器都维护一个链路状态数据库(LSDB),其中包含有关网络中所有路由器和链路的状态信息。
基于这些信息,OSPF使用Dijkstra 算法计算最短路径,并构建路由表。
•分层和区域化:OSPF协议将网络划分为不同的区域(Area),每个区域内部的路由器使用区域内链路状态数据库进行路由计算,而不需要了解整个网络的拓扑。
这种分层和区域化的设计减少了路由器之间的通信量,提高了网络的可扩展性。
•动态适应性:OSPF协议能够根据网络的变化自动调整路由,以适应链路的故障、拓扑的变化或带宽的变化。
当网络发生改变时,路由器会通过链路状态更新通知其他路由器,并更新各自的链路状态数据库,从而重新计算最短路径。
OSPF协议在大型企业网络和互联网中被广泛应用,特别适用于要求快速收敛、具备高可靠性和可扩展性的网络环境。
它提供了灵活的路由控制和路由优先级设置,使网络管理员能够根据具体需求进行网络设计和优化。
2.OSPF协议的工作原理OSPF(Open Shortest Path First)协议是一种基于链路状态的路由协议,它通过交换链路状态信息来计算最短路径并构建路由表。
以下是OSPF协议的工作原理的概要:1.邻居发现:OSPF协议运行在每个支持OSPF的路由器上。
当路由器启动时,它会发送Hello报文来发现和识别相邻的OSPF路由器。
Juniper路由器配置OSPF本文介绍了在Juniper路由器里配置OSPF动态路由协议的方法,包括:配置单区域OSPF、配置多区域OSPF、配置Stub Area、配置OSPF Virtual Link、配置OSPF Router Interfaces、配置OSPF验证等,详细的操作步骤请查看以下内容。
1、配置单区域OSPF[edit]user@host# set protocols ospf area 0 interface ge-0/0/0INIT2wayExstartExchangeFULL[edit]user@host# show protocols ospfospf {are.0 {interface ge-0/0/0.0;}}2、配置多区域OSPF[edit]user@host# show protocols ospfospf {are.0 {interface ge-0/0/0.0;}}[edit]user@host# set protocols ospf area 1 interface at-0/1/1.100 [edit]user@host# show protocols ospfospf {are.0 {interface ge-0/0/0.0;}are.1 {interface at-0/1/1.100;}3、配置Stub Area[edit protocols ospf area area-id ]stub <default-metric metric> <(no-summaries | summaries)>; 配置a Not-So-Stubby Area[edit protocols ospf area area-id ]nssa {area-range network/mask-length <restrict>;default-lsa {default-metric metric;metric-type type;type-7;}(no-summaries | summaries);}4、配置OSPF Virtual Link使用virtual Link 连接防止环路。
OSPF协议详细介绍-⾮常好1.掌握OSPF的⼯作原理2.掌握OSPF的基本配置开放式最短路径优先(OSPF)OSPF是⼀种基于链路状态的路由协议,它从设计上就保证了⽆路由环路。
OSPF⽀持区域的划分,区域内部的路由器使⽤SPF最短路径算法保证了区域内部的⽆环路。
OSPF还利⽤区域间的连接规则保证了区域之间⽆路由环路。
OSPF⽀持触发更新,能够快速检测并通告⾃治系统内的拓扑变化。
OSPF可以解决⽹络扩容带来的问题。
当⽹络上路由器越来越多,路由信息流量急剧增长的时候,OSPF可以将每个⾃治系统划分为多个区域, 并限制每个区域的范围。
OSPF这种分区域的特点,使得OSPF特别适⽤于⼤中型⽹络。
OSPF还可以同其他协议(⽐如多协议标记切换协议MPLS)同时运⾏来⽀持地理覆盖很⼴的⽹络。
OSPF可以提供认证功能。
OSPF路由器之间的报⽂可以配置成必须经过认证才能进⾏交换。
与RIP协议的⽐较OSPF原理介绍OSPF要求每台运⾏OSPF的路由器都了解整个⽹络的链路状态信息, 这样才能计算出到达⽬的地的最优路径。
OSPF的收敛过程由链路状态公告LSA(Link State Advertisement)泛洪开始,LSA中包含了路由器已知的接⼝IP地址、掩码、开销和⽹络类型等信息。
收到LSA的路由器都可以根据LSA提供的信息建⽴⾃⼰的链路状态数据库LSDB(Link State Database),并在LSDB的基础上使⽤SPF算法进⾏运算,建⽴起到达每个⽹络的最短路径树。
最后,通过最短路径树得出到达⽬的⽹络的最优路由,并将其加⼊到IP路由表中。
OSPF报⽂OSPF直接运⾏在IP协议之上,使⽤IP协议号89。
OSPF有五种报⽂类型,每种报⽂都使⽤相同的OSPF报⽂头。
1. Hello报⽂:最常⽤的⼀种报⽂,⽤于发现、维护邻居关系。
并在⼴播和NBMA(None-Broadcast Multi-Access)类型的⽹络中选举指定路由器DR(Designated Router)和备份指定路由器BDR( Backup Designated Router)。
OSPF NSSA区域原理及基本配置一、原理概述OSPF协议定义了Stub区域和Totally Stub区域这两种特殊的非骨干区域,为了市精简LSDB 中的LSA数量,同时也精简路由表中路由条目数量,实现优化设备和网络性能的目的。
根据定义,Stub区域或Totally Stub区域中不允许存在ADBR路由器。
然而在实际环境中,由于某种需求,有可能希望在Stub区域或Totally Stub区域中引入外部路由。
为此,OSPF又定义了NSSA区域和Totally NSSA区域,以此来增强OSPF协议的适应和扩展性。
NSSA区域或Totally NSSA区域可以将外部路由以Type-7 LSA(NSSA LSA)的方式引进本区域,这些Type-7 LSA将在本区域的ABR路由器上被转换成Type-5 LSA(AS External LSA)并泛洪到其他OSPF区域。
Type-7 LSA只会出现在NSSA区域或Totally NSSA区域中。
在其他方面,NSSA区域和Totally NSSA区域与Stub区域和Totally Stub区域完全一样。
NSSA区域不允许Type-4和Type-5LSA进入,该区域会通过Type-3LSA所表示的缺省路由访问AS外部目的地。
Totally NSSA区域不仅不允许Type-4和Type-5LSA进入,同时也不允许Type-3LSA进入,只允许缺省的Type-3LSA进入,并根据缺省路由来访问该区域以外的任何目的地。
二、根据原理设计实验实验拓扑图1所示,以及实验编址如表1所示。
本实验模拟了一个企业网络场景,路由器R4、R2、R3为企业总部路由器,R4是企业的分支机构的路由器。
R4与R2、R4与R3之间的链路位于区域0,R4与R2、R4与R3之间的链路位于区域1。
R4的所有Loopback接口用来模拟企业总部的非OSPF网络,R4的所有Loop back接口用来模拟企业分支结构非OSPF 网络。
实验五路由协议配置(二)1MSR系列路由器OSPF路由协议的配置1.1组网需求:PC1和PC2通过Router A和Router B通过OSPF路由协议实现互连互通。
设备清单:PC两台、MSR系列路由器2台1.2组网图:Router A 配置//进入S0/0、E0/0接口视图,配置IP地址及掩码#interface Serial0/0ip address 1.1.1.1 255.255.255.0#interface Ethernet0/0ip address 2.2.2.1 255.255.255.0#//启动ospf协议,并设置路由器的router idospf 1 router-id 1.1.1.1// 创建区域0,在接口S0/0、E0/0使能OSPFarea 0.0.0.0network 1.1.1.0 0.0.0.255network 2.2.2.0 0.0.0.255#RouterB配置#//配置接口的IP地址及掩码interface Serial0/0ip address 1.1.1.2 255.255.255.0#interface Ethernet0/0ip address 3.3.3.1 255.255.255.0#//启动ospf协议,并设置路由器的router idospf 1 router-id 2.2.2.2// 创建区域0,在接口S0/0、E0/0使能OSPFarea 0.0.0.0network 3.3.3.0 0.0.0.255network 1.1.1.0 0.0.0.255#1.4配置关键点:1)首先保证路由器A可以ping通路由器B,只要互连接口处于同一网段即可。
2)在系统视图下启动OSPF协议,使用命令ospf 1 ,其中数字“1”表示ospf的进程号,可以在同一设备上启动多个ospf进程,每个进程维护独立的路由表。
3)OSPF协议在接口上生效,如果在路由上启动了ospf协议,但没有在接口使能,则不会生成RIP的路由信息。
实验 7 单区域OSPF路由协议配置
一、实验目的
掌握 OSPF 动态路由协议的配置、诊断方法。
二、实验任务
1、配置 OSPF 动态路由协议,使得 3 台 Cisco 路由器模拟远程网络互联。
2、对运行中的 OSPF 动态路由协议进行诊断。
三、实验设备
Cisco 路由器 3 台,带有网卡的工作站 PC 两台,交叉双绞线若干。
四、实验环境
实验环境如图所示。
五、实验步骤
1、运行 Cisco Packet Tracer 软件,在逻辑工作区放入 3 台路由器、两台工作站 PC,分
别点击各路由器,打开其配置窗口,关闭电源,分别加入一个 2 口同异步串口网络模块
(WIC-2T) ,重新打开电源。然后,用交叉线(Copper Cross-Over)按图(其中静态路由区
域)所示分别连接路由器和各工作站 PC,用 DTE 或 DCE 串口线缆连接各路由器(router0
router1) ,注意按图中所示接口连接(S0/0 为 DCE,S0/1 为 DTE) 。
2、分别点击工作站 PC1、PC3,进入其配置窗口,选择桌面(Desktop)项,选择运行 IP
设置(IP Configuration),设置 IP 地址、子网掩码和网关分别为:
PC1:192.168.1.100/24 gw: 192.168.1.1,
PC3:192.168.3.100/24 gw: 192.168.3.3
3、点击路由器 R1,进入其配置窗口,点击命令行窗口(CLI)项,输入命令对路由器配
置如下:
点击路由器 R2,进入其配置窗口,点击命令行窗口(CLI)项,输入命令对路由器配置如
下:
同理对 R3 进行相应的配置:
4、测试工作站 PC 间的连通性。
从 PC1 到 PC3:PC>ping 192.168.3.100 (不通),如图所示。
不通的原因是 PC1 和 PC3 间无路由可达,下面需要在各路由器上设置 OSPF 动态路由,
使网络上各网段间能相互通信。
5、设置 OSPF 动态路由
接前述实验,继续对路由器 Router0 配置如下:
在 R2、R3 上类似配置:
6、 在路由器 Router0 上输入 show ip route 命令观察路由信息,可以看到增加的 RIP 路
由信息。如图所示。
同理,在路由器 R2、R3 上输入 show ip route 命令观察路由信息。
7、测试工作站 PC 间的连通性。
从 PC0 到 PC1:PC>ping 2.1.1.1 (通),如图所示