基坑 研究综述
- 格式:doc
- 大小:54.50 KB
- 文档页数:6
深基坑工程的安全管理风险分析及对策研究1. 引言1.1 研究背景深基坑工程是指在城市建设领域中常见的一种工程形式,由于其工程规模大、施工环境复杂等特点,使得深基坑工程安全管理面临着种种挑战和风险。
在工程建设过程中,深基坑工程存在着各种安全隐患和风险,如土体失稳、结构坍塌、设备故障等问题,这些问题可能对工程造成严重影响,甚至危及人员的生命安全。
为了有效应对深基坑工程的安全管理风险,需要对其进行深入的研究和分析,找出存在的问题和潜在的风险点,制定科学合理的对策措施,从而保障工程的安全施工和顺利完成。
本文将对深基坑工程的安全管理风险进行详细分析,探讨存在的问题和挑战,提出相应的对策研究,旨在为深基坑工程的安全管理提供参考,提高工程的安全性和可靠性。
【研究背景】部分为深基坑工程安全管理风险分析和对策研究提供了必要的前提和基础,具有重要的理论和实践意义。
1.2 研究目的深基坑工程是目前城市建设中常见的一种施工方式,然而深基坑工程的施工过程涉及到复杂的安全管理问题。
本文旨在对深基坑工程的安全管理风险进行分析,并提出相应的对策,以提升工程施工过程中的安全性。
1. 分析深基坑工程施工中存在的安全管理风险,包括但不限于工地环境复杂、施工设备故障、施工人员操作不当等问题,为安全管理工作提供科学依据。
2. 探讨深基坑工程安全管理风险的影响因素,了解各种因素对安全管理的影响程度,为建立有效的安全管理机制提供参考。
3. 提出针对深基坑工程安全管理风险的具体对策,包括完善的安全管理制度、加强施工人员培训、定期检查设备等建议,以降低施工过程中发生事故的可能性。
1.3 意义和价值深基坑工程是现代城市建设中常见的一种工程形式,它在城市建设中起着至关重要的作用。
深基坑工程的安全管理风险分析及对策研究具有重要的意义和价值。
深基坑工程在建设过程中存在着诸多安全隐患,如土体失稳、地下水涌入、地面塌陷等问题,这些安全隐患如果得不到有效管理和控制,将给工程施工和周边环境带来严重的安全风险。
复杂条件下的深基坑设计与施工技术探讨1. 引言1.1 背景介绍背景介绍:深基坑是指在城市建设、地铁、地下商业等领域中需要挖掘深度较大的地下空间,因此需要经过精确设计和施工。
在我国城市建设快速发展的背景下,深基坑设计与施工技术成为了一个重要的研究领域。
由于城市环境复杂,地质条件多变,加之基坑周围常常伴随着高楼大厦、桥梁等工程,因此在复杂条件下的深基坑设计与施工显得尤为重要。
在传统的基坑设计中,往往只考虑了地面以上结构的承载能力和稳定性,而未能充分考虑基坑的深度、地质条件、周围环境等因素。
针对复杂条件下的深基坑设计与施工技术进行探讨,能够更好地保障基坑结构的安全性和稳定性,提高工程质量,同时也能够为城市建设提供更好的支撑和保障。
深基坑设计与施工技术涉及土力学、结构力学、施工工艺等多个领域,是一个复杂的系统工程,需要综合考虑各种因素,才能达到预期的效果。
1.2 问题提出在复杂条件下的深基坑设计与施工过程中,存在着诸多挑战和问题需要解决。
在复杂地质条件下,如地下水位较高、土壤稳定性差等情况下,基坑设计和施工的难度大大增加。
深基坑常常受到周围建筑物、地下管线等影响,需要考虑如何有效地保障周围建筑物的安全。
施工过程中的监测和风险控制也是一大挑战,需要采取有效的措施来保障基坑的安全施工。
如何在复杂条件下设计和施工深基坑,成为了工程领域亟待解决的问题。
通过深入分析影响因素、合理设计支护结构、探讨施工技术,可以有效地解决复杂条件下的深基坑设计与施工难题,保障工程的安全与稳定。
本文将探讨如何在复杂条件下设计深基坑,并提出相应的解决方案,为工程领域提供参考与借鉴。
1.3 研究意义在复杂条件下进行深基坑设计与施工是当前工程领域面临的重要问题之一。
随着城市化进程的加快和建筑结构的日益复杂化,对于深基坑的需求也在不断增加。
由于地质条件、环境因素、结构要求等多种复杂因素的影响,传统的基坑设计与施工技术已经无法满足当前需求。
对于复杂条件下的深基坑设计与施工技术的研究具有重要的意义。
企业纲领透彻体认企业人的使命,全心奉献,谋求公司发展和社会进步。
企业宗旨正德厚生,臻于至善经营理念正本清源,生生不息正本清源是指从根本上加以整顿清理。
生生不息是指旺盛的生命力。
将“正本清源、生生不息”作为正生的经营理念,旨在体现公司从事新兴行业一一生物产业,需要立足根本,不断创新,持续发展;正生人也要从根本上革故鼎新,以保持永久旺盛的生命活力。
“鹰是世界上寿命最长的鸟类,它一生的年龄可达70岁。
要活那么长的寿命,它在40岁时必须做出困难却重要的决定。
这时,它的喙变得又长又弯,几乎碰到胸脯;它的爪子开始老化,无法有效地捕捉猎物;它的羽毛长得又浓又厚,翅膀变得十分沉重,使得飞翔十分吃力。
此时的鹰只有两种选择:要么等死,要么经过一个十分痛苦的更新过程150天漫长的蜕变。
它必须很努力地飞到山顶,在悬崖上筑巢,并停留在那里,不得飞翔。
鹰首先用它的喙击打岩石,直到其完全脱落,然后静静地等待新的喙长出来。
鹰会用新长出的喙把爪子上老化的趾甲一根一根拔掉,鲜血一滴滴洒落。
当新的趾甲长出来后,鹰便用新的趾甲把身上的羽毛一根一根拔掉。
这样它就可以再活30年”……——李东生《鹰之重生》近几年,公司没有坚决把核心价值观付诸行动,容忍一些和企业核心价值观不一致的言行存在。
没有坚决制止一些主管在一个小团体里面形成和推行与公司愿景、价值观不一致的行为,从而在企业形成诸侯文化长期不能克服,严重毒化了企业的组织氛围,使一些正直而有才能的员工失去在企业的生存环境。
对一些没有能力承担责任的管理企业精神诚实守信精神敬业报国精神艰苦创业精神奋发向上精神感恩图报精神做企业就是做人,企业人的精神就是企业的精神,企业的精神就是产品的精神,人只要有了一种精神,那么企业也就有了精神,企业有了精神,产品也就有了精神。
这种精神可以让每一个正生人更好的创造价值。
从而享受工作,享受生活。
凡事都需要一种精神。
精神的力量是无穷的。
正生人不但要向社会奉献一种生物高科技产品,还要奉献一种创造高科技产品的精神,奉献一种现代企业精神。
基坑支护施工技术的现状与发展基坑支护施工是指在土方工程中,为保证施工安全和地下工程的稳定,采取一定的技术手段对基坑进行支护的过程。
在建筑、地铁、水利等领域,基坑支护施工技术起到至关重要的作用。
本文将探讨基坑支护施工技术的现状与发展。
一、基坑支护施工技术的现状目前,基坑支护施工技术已经取得了显著的发展。
在技术手段方面,传统的基坑支护施工技术已逐渐被新型支护技术所取代。
比如,钢支撑、混凝土悬臂墙、桩-土互作用等技术不断出现和应用,使得支护施工更加灵活、高效和安全。
在材料方面,新型材料的应用也为基坑支护施工带来了许多新的可能性。
高强度钢材、玻璃钢、新型聚合物材料等的引入,大大提高了基坑支护结构的承载能力和耐候性,同时降低了施工成本。
在监测技术方面,随着计算机技术的快速发展,基坑支护施工的监测手段也得到了极大的改进。
现在,我们可以通过遥感技术、激光测量仪等设备对基坑的变形、沉降等情况进行实时监测,提前预警并采取相应的措施,保证施工的顺利进行。
二、基坑支护施工技术的发展趋势未来,基坑支护施工技术将朝着更加智能化和集成化的方向发展。
以下是几个可能的发展趋势:1. 智能化监测系统:随着物联网技术的快速发展,基坑支护施工将采用更加智能化的监测手段。
通过传感器、数据采集与处理系统等设备,可以实时监测施工现场的各项指标,并将数据传输至中心控制室,及时采取相应的措施。
2. 环保型材料的应用:未来基坑支护材料将更加注重环保性能。
研发出更加环保、可回收、可重复利用的材料,减少对环境的不良影响,提高施工的可持续性。
3. 三维建模技术的应用:利用三维建模技术,可以对基坑支护施工过程进行更加直观的展示和分析。
施工方可以在虚拟环境中模拟各种施工场景,优化施工方案,提前预测施工风险,提高施工效率。
4. 自动化施工设备的应用:随着机器人技术和自动化技术的不断进步,未来基坑支护施工将更加依赖自动化施工设备。
机器人挖掘机、自动钢筋绞盘等设备将大大提高施工效率和质量,并减少人工操作对施工人员的风险。
基坑工程的发展概况基坑工程问题是一个古老而又具有时代特点的岩土工程问题。
放坡开挖和简易木条支护可以追溯到远古木造时期,随着人类文明的进步,人们为频繁生存条件而改善从事的土木工程活动促进了基坑工程的发展。
特别是20世纪中叶以来,随着国内外大量高层建筑及地下工程的兴建,相应的基坑工程数量不断增多,与此同时,各类用途的地下空间和设施也得到了空前的发展,包括高层建筑地下室、地铁、隧道、地下商业街等各种形式。
建造这些地下街空间和设施,大规模必须需要进行大规模的深基坑开挖,这样对基坑工程的要求越来越高,出现的问题也越来越多,这为合理设计与施工基坑工程提出了许多紧迫而重要的研究课题。
基坑支护既是挂篮一个综合性的岩土工程问题,又是涉及土层与支护结构共同作用的复杂问题。
它具有地域性、综合性、实践性和风险性。
由于深基坑工程设计理论迟滞和施工中各种情况的不确定性,造成当前深基坑工程的支护设计与施工存在"半理论半经验"的状况。
据有关资料统计,深基坑工程事故的致死率一般约占基坑工程数量的20%左右,有一些城市甚至占到到30%。
其中有一部分的原因就是一大部分支护结构受到破坏,甚至支撑失效。
2021年,杭州地铁湘湖站深基坑工程发生大面积坍塌事故,人员伤亡和即使经济损失都很惨重,如图1-1所示。
这就要求我们必须对基坑支护结构的受力变形有很深的了解,才能避免类似的工程事故发生。
在以后的时间里,世界各国的许多学者都投入了研究。
并不断地在这—学门取得丰硕成果。
上才在假说分析方法上有早期的古典法、山肩邦美女精确解法,以及基于计算机技术发展出的有限单元法。
1971年Whittle等学者考虑了不同本构模型和边界条件对求解的,目前应用较多。
基坑工程在我国的广泛始于研究是起源于20世纪80年代初,当时随着改革开放的步伐,基本建设红红火火、高层建筑不断涌现,下述的基础埋深不断增加,开挖深度也就不断发展。
特别是到了20世纪90年代,大多数城市都进入了大规模的旧城改造阶段,在繁华的市区内进行深基坑开挖给这一古老课题增加了新的内容,那就是如何控制深基坑开挖的环境效应问题,从而进一步促进了深基坑开挖技术的研究和发展,触发了许多先进的优良设计计算方法,而众多取得成效新的施工工艺也不断付诸实施,出现了许多技术先进的成功工程实例。
深基坑自动化监测技术研究摘要:在城市建筑工程与市政工程建设中,深基坑的施工会对周边环境产生较大的影响,引起基坑周边环境的位移,因此在基坑工程施工的过程中,通过自动化监测技术可以实时掌握基坑周边土体和支护结构内力的变化情况,了解基坑的变形情况,维护支护系统和周围环境的安全。
关键词:深基坑;自动化;监测技术;周边环境一、基坑监测技术应用现状传统的基坑监测主要采用人工测量的方法,存在许多的弊端:(1)人工监测占用大量的人力物力采集变形数据,数据采集频繁,工作量大,特殊情况下无法监测;监测人员频繁在边坡上作业,存在较大的安全风险;(2)人工监测无法做到对监测数据的实时分析计算,前后数据连续性及可比性差,数据繁琐,变化曲线等图表制作困难。
二、基坑自动化监测技术概述基坑自动化监测以物联网为基础,结构安全监测为依托,利用云计算技术创立基坑健康状态的理念,将基坑监测与物联网结构体系、云计算、互联网等技术结合,建立一套智能基坑在线监测系统。
基坑自动化监测技术的优点:(1)可以克服外界环境和天气的影响,实现全天候自动监测;(2)自动化采集,减少人员投入,随时在线采集监测数据,高效便捷;(3)无需人员到边坡上作业,特殊情况下依旧能够持续监测;(4)实时监测,数据反馈及时,前后数据连续,数据相关性、可靠性较高;(5)图表分析自动生成。
三、基坑自动化监测系统的构成基坑自动化监测通过现场安设的测量机器人、各类监测传感器获取监测物理量,采用机器人一体化测控终端和物联网数据采集存储传输一体化模块,实时采集和传输监测数据,并通过自动化监测系统实现对采集的数据进行分析处理,展示,预警等功能。
图1 基坑自动化监测系统的构成四、基坑自动化监测的方法4.1 基坑水平位移自动化监测基坑水平位移监测可使用徕卡TM50全站仪进行自动化观测。
全站仪固定在观测墩上,观测墩的位置尽量避开线缆和遮挡物,使通视效果达到最佳,能长期保存,结构稳定。
监测点棱镜安装在被监测基坑边坡或者围护桩的顶部,并与固定在观测墩上的全站仪通视。
基坑不同支护结构的冗余度研究及分析基坑工程是建筑施工中一个非常重要的环节,它直接关系到建筑物的稳定和安全。
基坑支护结构作为基坑工程中的重要组成部分,其设计和施工质量直接关系到整个基坑工程的安全和稳定性。
在基坑支护结构设计中,冗余度是一个重要的参数,它直接关系到基坑支护结构的安全性和可靠性。
本文将针对基坑不同支护结构的冗余度进行研究和分析,希望可以为基坑工程的设计和施工提供一定的参考。
一、基坑支护结构的冗余度概念冗余度是一个工程结构的一个重要设计参数,它反映了结构在受到外部作用时的余力或余量。
在基坑支护结构中,冗余度可以理解为支护结构在遭受外部荷载作用时所能够承受的余量,它直接关系到支护结构的安全性和稳定性。
通常情况下,冗余度的数值越大,表明结构的安全性和稳定性越好;反之,冗余度越小,结构的安全性和稳定性就越差。
合理地确定基坑支护结构的冗余度是基坑工程设计中非常重要的一项工作。
目前,基坑支护结构的常见形式主要包括岩土钉墙、钢支撑和深基坑墙等几种形式。
这些支护结构在使用过程中,其冗余度是不同的。
下面将分别对这几种支护结构的冗余度进行详细地研究和分析。
1. 岩土钉墙岩土钉墙是一种利用土钉和喷锚技术对土体进行加固的支护结构,它具有施工方便、成本较低、对周围环境的影响小等优点,因此在基坑工程中得到了广泛的应用。
岩土钉墙在受到外部荷载作用时,其冗余度通常较大,这主要得益于土钉和喷锚技术的特性。
土钉可以在土体中起到加固和锚固的作用,而喷锚技术可以有效地提高土钉与土体之间的粘结力,从而提高了支护结构的抗震和抗滑稳定性。
岩土钉墙的冗余度通常较大,其受力性能较好,能够满足基坑工程的安全要求。
2. 钢支撑钢支撑是一种应力构件,其结构性能主要依赖于钢材的力学性能。
在基坑工程中,钢支撑通常用于对基坑侧壁和周围土体进行支护和加固。
钢支撑在受到外部荷载作用时,其冗余度通常较小,这主要是由于钢材的塑性变形能力较差的原因。
一旦钢支撑受到外部荷载作用,就容易发生局部的塑性屈曲和破坏,从而导致整个支护结构的失效。
基坑监测总结报告基坑监测总结报告一、总体概述基坑监测是针对基坑开挖过程中可能出现的地质灾害风险进行的实时监测工作。
本次基坑监测工作从开始开挖到基坑完工共计持续了三个月,主要监测目标为基坑周边建筑物的变形情况和基坑水位变化情况。
通过多种监测手段和方法,监测数据显示整个开挖过程中没有出现严重的地质灾害和安全事故发生。
二、监测方法和设备本次基坑监测工作采用了多种监测方法和设备,包括自动测绘仪、全站仪、GPS定位仪等,确保了监测数据的准确性和真实性。
同时,建立了一套完善的监测体系,包括监测网、监测点、传感器等。
监测数据通过无线传输技术实现实时采集和监控。
三、监测结果分析1. 基坑周边建筑物变形情况:通过对基坑周边建筑物进行实时监测,发现变形情况较为平稳,基本未发生明显的倾斜、下沉等变形现象。
监测数据显示变形量均在安全范围内,没有出现超过预警值的情况。
2. 基坑水位变化情况:基坑开挖过程中,对地下水位变化进行了连续监测。
监测数据显示,随着基坑的逐渐加深,地下水位有所上升,但未超过安全标准范围。
在施工过程中,采取了相应的降水措施,有效控制了地下水位的变化,保证了施工安全。
四、监测数据评估针对获取的监测数据,进行了综合评估。
通过对数据的对比和分析,得出以下结论:1. 基坑周边建筑物的变形情况较为稳定,未发生超出安全范围的情况,施工对建筑物的影响较小。
2. 基坑水位变化在允许范围内,并通过降水措施得到了有效控制,保证了施工的顺利进行。
3. 基坑监测设备和技术的应用,能够对基坑施工过程中的地质灾害风险进行及时监测和预警,大大提高了施工的安全性和可靠性。
五、存在问题和建议1. 目前监测设备和技术的应用还有一定的局限性,监测范围有限。
在下一次基坑监测工作中,应考虑对监测范围进行扩大,并加强对监测数据的分析和处理。
2. 基坑施工过程中的变形情况和地下水位变化是相互影响的,今后的监测工作中,应加强两者之间的关联性研究,以更好地预测和控制地质灾害风险。
基坑开挖对邻近既有建筑物的影响研究引言:在城市建设和开发的过程中,基坑开挖是常见的工程活动之一、然而,基坑开挖不仅仅对待建筑物的施工而言是必需的,也对周围的既有建筑物造成了潜在的影响。
为了确保既有建筑物的安全和稳定,在进行基坑开挖前应该进行充分的调查和研究,以确定对邻近建筑物的影响,并采取相应的防护措施。
1.基坑开挖对邻近建筑物的影响基坑开挖可能对邻近建筑物造成以下几方面的影响:1.1地基沉降基坑开挖在地下部分会暴露出土壤的一部分,导致土壤的变形和沉降。
这可能会对周围的建筑物的地基稳定性造成影响,特别是对于老旧建筑物而言。
沉降可能引起建筑物的不均匀沉降,导致墙体开裂、地基沉降等问题。
1.2地下水位变化基坑开挖会打断土壤的连续性,可能导致地下水位的变化。
这种变化可能会引发周围建筑物地下水渗透和涌水问题。
如果建筑物的地下室或地下层不具备防水功能,地下水可能会对建筑结构和内部设施造成损坏。
1.3土壤侧推力基坑开挖时,土壤侧推力会增加,对邻近建筑物的地下结构施加较大的水平力。
这可能导致邻近建筑物的地震稳定性问题,尤其是在软土地区。
1.4建筑物振动基坑开挖时,工程机械的震动和振动会传导至邻近建筑物。
这可能导致建筑物的结构松动,甚至引起墙体开裂等问题。
特别是对于老旧建筑物而言,振动可能会诱发潜在的结构故障。
2.防护措施为了减少基坑开挖对周围建筑物的影响,应采取以下防护措施:2.1基坑支护结构在进行基坑开挖前,应设计和施工合适的基坑支护结构。
这些结构的目的是确保土壤的稳定性,并减少对周围建筑物地基的不良影响。
常见的基坑支护结构包括钢板桩、混凝土墙等。
2.2监测在进行基坑开挖时,应设置实时监测系统,对邻近建筑物的振动、沉降、地下水位等进行监测。
这可以及时发现和评估潜在的问题,并采取必要的补救措施。
2.3水封为了防止地下水位变化对建筑物造成损害,应对周围建筑物的地下室和地下层进行水封处理。
这可以防止地下水的渗透和涌水。
第1篇摘要:随着城市化进程的加快,高层建筑和地下空间开发日益增多,基坑工程作为基础工程的重要组成部分,其施工质量直接影响到建筑物的稳定性和使用安全。
本文从基坑工程的特点出发,对施工技术进行了详细探讨,旨在提高基坑工程施工质量和施工效率。
一、引言基坑工程是指在地表以下开挖一定深度,形成具有一定尺寸和形状的空间结构,以满足建筑物基础、地下空间等需求。
由于基坑工程涉及面广、施工环境复杂,因此施工技术要求较高。
本文从以下几个方面对基坑工程施工技术进行探讨。
二、基坑工程特点1. 施工环境复杂:基坑工程往往位于城市繁华地段,周边环境复杂,涉及地下管线、地下构筑物等多种因素。
2. 施工周期长:基坑工程涉及多个工序,施工周期较长,对施工组织和管理提出较高要求。
3. 施工风险大:基坑工程涉及土方开挖、支护、降水等多个环节,施工过程中存在坍塌、渗漏、倾斜等风险。
三、基坑工程施工技术探讨1. 土方开挖技术(1)合理选择开挖方法:根据地质条件和施工环境,选择合适的开挖方法,如明挖法、暗挖法等。
(2)加强边坡支护:采用锚杆、喷射混凝土、钢支撑等支护措施,确保边坡稳定。
2. 支护技术(1)桩基础支护:根据地质条件和荷载要求,合理选择桩基础类型,如钻孔桩、预制桩等。
(2)地下连续墙支护:地下连续墙具有刚度大、抗渗性好等特点,适用于深基坑支护。
3. 降水技术(1)合理选择降水方法:根据地下水位、地质条件和施工要求,选择合适的降水方法,如井点降水、轻型井点降水等。
(2)加强降水监测:对降水效果进行实时监测,确保降水效果达到预期目标。
4. 施工监测技术(1)采用先进的监测设备:如全站仪、水准仪、测斜仪等,对基坑变形、沉降、倾斜等进行实时监测。
(2)建立监测预警系统:对监测数据进行实时分析,及时发现异常情况,并采取相应措施。
四、结论基坑工程施工技术复杂,涉及多个环节。
在实际施工过程中,应根据工程特点、地质条件和施工环境,合理选择施工技术,确保施工质量和安全。
施工技术课题研究论文(五篇)内容提要:1、建筑工程基坑开挖及边坡支护施工技术研究2、绿色建筑施工技术的要点分析3、公路桥梁施工技术浅探(7篇)4、公路路基路面施工技术分析(10篇)5、公路工程施工技术浅谈(10篇)全文总字数:17962 字篇一:建筑工程基坑开挖及边坡支护施工技术研究建筑工程基坑开挖及边坡支护施工技术研究摘要:建筑工程基坑开挖和边坡支护施工中,根据现场基本情况,制定有效的施工方案,落实各项施工技术要点是必要的。
本文结合富兴广场工程实例,就建筑工程基坑开挖及边坡支护施工技术进行探讨分析,并提出具体的基坑开挖及边坡支护技术措施。
实际应用表明,遵循上述施工技术措施,不仅能顺利完成施工任务,还能保证工程质量,也为后续工程施工创造条件。
关键词:基坑开挖;边坡支护;施工技术当前,随着高层建筑在城市建设中所占据的份额越来越重,其基坑开挖及边坡防护工作也越来越受到业主、施工和监理等单位的重视。
特别是在一些城市中心、人流密集的工地现场实施的基坑开挖工程更是应得到足够的重视。
本文结合笔者施工工程实例,就基坑开挖及边坡支护施工技术进行探讨分析,希望能为类似工程施工提供启示。
1工程概述(1)开挖深度。
富兴广场位于龙岩市龙岩大道东侧,北侧为新州城,南侧为登高西路。
该项目总建筑面积80219m2,基础形式为地基处理后采用片筏基础。
基坑长约163.0m,宽约68.0m,基坑开挖深度8.50-11.0m,土方全部外运,施工工期短,场地范围小,施工组织难度较大。
(2)地质特点。
根据勘察报告,基坑开挖范围内地层分布(自上而下)为:①素填土;②细砂;②1砾砂;③卵石。
(3)地下水概况。
场地地下水主要是赋存于②卵石层中的孔隙潜水和⑥中风化灰岩及⑥1破碎灰岩中的岩溶承压水。
根据详勘报告,岩溶承压水对基坑开挖无影响,场地的第四系稳定水位埋深在2.65-6.70m,标高介于319.43-321.31m,在基底附近。
2富兴广场基坑开挖工程施工技术(1)基坑开挖工艺流程。
基础工程技术发展综述摘要:近年来,基础工程技术发展问题得到了业内的广泛关注,研究其相关课题有着重要意义。
本文首先对相关内容做了概述,详细分析了基础工程的主要技术,并结合相关实践经验,分别从多个角度与方面就基础处理工程技术问题的解决措施展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。
关键词:建筑;基础工程;技术;发展1前言作为一项实际要求较高的实践性工作,基础工程技术的应用有着其自身的特殊性。
该项课题的研究,将会更好地提升对基础工程技术的分析与掌控力度,从而通过合理化的措施与途径,进一步优化建筑工程建设的最终整体效果。
2基础处理工程技术的问题2.1施工准备问题施工准备直接影响着建筑基础工程的施工进度和施工质量。
但是,在工业与民用建筑施工过程中,部分施工单位缺乏对施工准备工作的重视,没有在施工之前做好施工准备工作。
例如,施工人员配置不合理、施工材料堆放不合理、施工设备不完善等问题都会浪费大量的时间,影响施工进度,导致工业与民用基础工程不能够按时完成。
2.2施工材料质量低下施工材料作为建筑工程施工过程中必不可少的组成部分,其对施工质量具有非常重要的影响。
近年来,因为建筑市场竞争剧烈,这就导致一些缺少工作本质和社会责任感的施工部队在详细施工过程中往往采用以充次好的建筑材料。
材料不只抗压才能较差,并且达不到施工质量的规范要求,然后对全体工程质量带来较大的影响。
同时在施工过程中,因为规划人员没有正确对施工材料进行标注,然后导致施工过程中存在材料运用的问题。
2.3施工工人的整体素质不高,监管力度不够建筑基础工程的施工离不开人力的参加,工人的施工技能是否工业与民用契合施工标准,专业本质的高低从根本上决定着基础工程的施工质工业与民用量。
施工工人作为建筑基础工程的施工主体,施工技能的差异与工业与民用挥程度都会对施工质量的好坏发生很大的影响。
现在,工业与民用我国大多数建筑企业中的施工工人都没有收到专业的施工训练,对工业与民用施工进程中的施工工艺没有充分的了解,不能确保施工进程的标准工业与民用性,容易忽视施工中应该留意的细节,从而对施工质量发生不利的工业与民用影响。
深基坑项目可行性研究报告一、项目背景随着城市化进程的加快和人口的增加,城市建设中越来越多地需要兴建大型建筑和地下设施。
而深基坑作为城市建设的重要组成部分,被广泛应用于高层建筑、地下车库、地铁站等工程中。
然而,深基坑的建设不仅技术复杂,而且造价高昂,风险巨大。
因此,在启动深基坑项目之前,进行一项全面的可行性研究尤为重要。
二、项目概况本项目为一处深度达到50米的深基坑工程,位于城市中心区域,周边为密集的建筑群和交通枢纽。
深基坑建设将为周边区域提供更多的地下空间利用,同时也将带动周边地区的经济发展。
三、项目可行性分析1. 技术可行性深基坑建设需要充分考虑周边环境的影响,包括建筑物、交通、地下管线等。
同时,需要对土质条件、水文地质情况进行详细的勘察和分析,以保证施工的安全可靠。
在技术方面,需要选择合适的施工工艺和材料,同时合理设置支撑结构和排水系统,确保深基坑施工的顺利进行。
2. 经济可行性深基坑建设所需的投资巨大,包括土方开挖、支护结构、排水系统等多个方面,其中支护结构的设计和施工费用占据了较大的比重。
因此,在项目的初期需要制定详细的预算方案,对每一项费用进行细致分析和核算,确保资金的充足和合理使用。
3. 社会可行性深基坑建设项目通常涉及到大量的土地征用和城市交通改造,可能给周边居民和商户带来一定的不便。
因此,在项目前期需要充分沟通和协调相关部门和利益相关者,制定合理的沟通方案和解决方案,最大程度地减少对周边环境的影响。
4. 环境可行性深基坑建设会对周边环境造成一定的影响,包括噪音、粉尘、振动等。
因此,在项目施工过程中需要制定有效的环境保护方案和监测措施,确保施工过程的环境友好性。
四、项目风险评估1. 技术风险深基坑建设的技术要求较高,一旦发生支护结构失稳、土体塌方等问题,将会造成重大的安全事故。
因此,在项目的施工前需要充分考虑可能出现的问题,并制定相应的预案和处理措施。
2. 经济风险深基坑建设的投资巨大,一旦出现资金短缺或者预算超支等问题,将会给项目带来严重的经济压力。
第1篇摘要:随着城市化进程的加快,深基坑工程在高层建筑、地铁、地下空间开发等领域得到了广泛应用。
然而,深基坑工程具有施工难度大、风险系数高、安全要求严格等特点。
本文针对深基坑工程施工技术及安全管理进行探讨,分析深基坑工程的特点,阐述施工过程中的关键技术要点,并提出相应的安全管理措施,以期为我国深基坑工程施工提供参考。
一、引言深基坑工程是指开挖深度大于或等于5m的基坑工程。
由于深基坑工程具有施工难度大、风险系数高、安全要求严格等特点,因此,在施工过程中,必须掌握相应的施工技术和安全管理措施,以确保工程顺利进行。
二、深基坑工程的特点1. 施工难度大:深基坑工程涉及地质勘察、支护结构设计、土方开挖、降水排水等多个环节,施工难度较大。
2. 风险系数高:深基坑工程存在边坡失稳、涌水涌砂、坍塌等风险,一旦发生事故,后果严重。
3. 安全要求严格:深基坑工程对施工质量、施工安全、环境保护等方面要求较高。
三、深基坑工程施工关键技术要点1. 地质勘察:准确掌握地质条件,为深基坑工程的设计和施工提供依据。
2. 支护结构设计:根据地质条件、基坑深度、周边环境等因素,合理选择支护结构形式,确保支护结构的稳定性和安全性。
3. 土方开挖:采用分层开挖、分台阶开挖等方法,降低边坡失稳风险。
4. 降水排水:根据水文地质条件,选择合适的降水排水方案,确保基坑干燥。
5. 施工监测:对深基坑工程的变形、应力、水位等进行实时监测,及时发现并处理异常情况。
四、深基坑工程施工安全管理措施1. 施工人员安全培训:加强对施工人员的安全教育和培训,提高安全意识。
2. 施工现场安全管理:建立健全施工现场安全管理制度,确保施工现场安全有序。
3. 施工设备安全管理:对施工设备进行定期检查、维护,确保设备安全可靠。
4. 应急预案:制定深基坑工程事故应急预案,提高应对突发事件的能力。
5. 环境保护:在施工过程中,注重环境保护,减少对周边环境的影响。
五、结论深基坑工程施工是一项复杂的系统工程,涉及多个环节。
关于软土地基深基础工程施工中的问题综述摘要:由于各地的地质条件和施工环境不同,深基坑施工技术水平和规范因地制宜,但在管理上仍存在问题,这需要工程技术人员积极研究深基坑开挖、结构和支护理论和技术,不断提高工程质量,本文主要详细的论述了软土地基深基础工程施工技术,在软土地基中进行基础或地下工程施工是一个传统的施工问题,也是综合性很强的施工难题,本文在此提出了自己的一些个人观点。
关键词:软土地基;深基础工程;施工技术中图分类号:tu74 文献标识码:a 文章编号:前言由于现代化建筑物的规模和使用上的要求,使得深基础施工技术要求越来越高,在建筑施工领域里,深基础施工结构的研究还有许多需要我们解决的问题,相信在施工结构设计领域,随着大量的工程实践和总结,一定会形成更完善系统的设计方法,应用于祖国伟大的建筑事业。
一、软土地基深基础施工结构的设计必须做到深基础构筑的施工空间要求、作业条件要求与环境保护要求的有机统一在设计过程中,深基础结构的几何尺寸是确定的,因此,施工空间的大小也就确定了。
但是在具体的形成过程中,是一边形成空间,一边构筑结构(逆作法),还是全部形成空间,然后再做结构 ( 顺作法 ),是可以选择的。
不同的选择会带来不同的作业条件,也会产生不同的环境保护效果,所以,深基础施工结构设计工作一开始,就需要在施工技术方案的指导下,选择形成施工空间的最有利方法。
然后,在施工空间的形成方法确定之后,如何来保证施工结构的刚度,从而达到保护环境的目的呢 ? 当然我们不能简单地增加结构,增大杆件截面,使结构刚度增大变形减小,因为单纯的增加杆件会使现场空间的作业条件变坏,对挖土运输、施工作业和材料运输就位都会带来很多困难,同时,单纯地增加杆件、增大断面也会使费用增加,技术经济指标升高。
所以,应该在保证施工结构的刚度问题上从优化结构布置、选择杆件形式着手,以最合理经济的结构选型 ( 充分考虑深基础结构施工的作业条件并留有宽敞的施工空间 ) 来达到结构的最优刚度,以满足控制变形、保护环境的要求。
长江I级阶地滨江段深大基坑施工技术研究
摘 要:根据武汉长江I级阶地的工程地质及水文地质特征,结合武汉复星外滩中心项目C3A3地块深大基坑工程实例,总结了在武汉长江I级滨江段深大基坑施工技术。通过对围护结构、桩基工程、土方开挖、基坑监测等关键点进行策划,合理优化基坑设计,加强质量控制,保证基坑施工安全的同时,减少施工成本,缩短工期。实施效果证明,本项目采取的多方面深大基坑控制手段及优化措施,效果显著,可为相关工程提供参考。
关键词:长江I级阶地;滨江段深大基坑;基坑深化设计;信息化施工
0 引 言 随着武汉被列入国家中心城市,大体量复杂工程的数量越来越多,基坑也朝着“深、大”方向发展。而武汉城市建设区域主要为沿着长江及汉江两岸的I级阶地,其滨江段深大基坑因本身涉及复杂的地质与水文条件、基础类型、基坑开挖深度、降排水条件、周边环境、施工季节、支护结构形式等因素,一直以来都是深基坑施工的重难点。该区段与汉江、长江水力联系密切且互为补给,设计上的疏忽以及不合理的施工组织,容易导致基坑出现流砂、管涌现象,致使围护失效、周边建筑和地面倾斜、开裂。
图1 武汉地区地质剖面示意图 本文以长江I级阶地滨江段群坑环境下某深大基坑项目实例,总结临江复杂超深基坑(群)施工建造关键技术及应对措施,为长江I级阶地上的深大基坑施工技术的提高及施工质量控制提供有效参考。
1 项目概况 1.1基坑工程概况 武汉复星外滩中心项目C3A3地块位于武汉市硚口区沿河大道与友谊南路交汇处,为长江I级阶地滨江段深大基坑。基坑总面积约为25230㎡,周长约为706m,基坑普遍开挖深度约为18.8~23.0m,最大挖深约为25.4m。
基坑东、南、北三面采用落底式地下连续墙、坑内外设置三轴搅拌桩止水帷幕兼地连墙护壁;西侧利用原C2地块支护桩作双排桩支护,并利用C2地块落底帷幕止水。基坑共设三道混凝土内支撑,塔楼坑中坑设置一道钢支撑。坑内采取深井降水疏干,并在坑外布设观测井,坑外观测井兼做备用井。
岩土工程勘察与基坑施工设计研究论文岩土工程勘察与基坑施工设计研究论文摘要:当前我国工程建设规模的扩大及发展水平的提升,对性能可靠的基坑依赖程度逐渐加深。
在此背景下,为给基坑施工作业顺利开展打下坚实基础,则需要注重与之相关的岩土工程勘察,并通过对基坑施工设计的充分考虑,满足工程建设的多样化需求。
基于此,文章将对岩土工程勘察与基坑施工设计进行讨论,以便为实践中的工程建设提供保障,并为相应研究工作的开展提供参考信息。
关键词:岩土工程;勘察;基坑;施工设计;参考信息重视岩土工程勘察与基坑施工设计讨论,有利于保持基坑良好的施工状况,并丰富作业计划实施前的勘察工作内容,最大限度地满足现代工程建设要求。
因此,需要给予岩土工程勘察与基坑施工设计必要的关注,积极开展相应研究工作,使工程实践中的勘察工作水平及基坑施工质量不断提升。
在此基础上,有利于提高基坑施工质量,并为相应施工作业的开展提供科学指导,保持新形势下良好的工程建设状况。
1岩土工程勘察讨论1.1岩土工程勘察概述作为岩土工程实践中的重要内容,勘察工作落实是否有效,体现了工程技术水平。
因此,需要了解岩土工程勘察的相关内容。
内容包括:(1)在岩土工程勘察作用下,能够实现对工程地质条件的科学分析,查明地质情况,并得到相应勘察报告,从而为基坑施工设计提供所需的参考信息,确保支护设计的合理科学性;(2)基于岩土工程开展勘察作业,有利于实现对岩土体特性、分布状况等方面的有效分析,从而为基坑施工作业开展创造有利条件,并保持施工设计工作良好的落实效果;(3)实践中进行岩土工程勘察分析时,需要勘察人员能够在了解勘察区域实际情况的基础上,通过对地质学、岩体学等不同理论知识及丰富实践经验的配合使用,针对性的开展岩土工程勘察工作,从而得到理想的勘察成果。
1.2岩土工程勘察方面的存在问题分析(1)勘察过程中的资料收集不充分。
在岩土工程勘察过程中,收集丰富的勘察资料,影响工程后续施工作业的落实效果。
**大学 研 究 生 考 试 试 卷
考试科目: 基坑与边坡工程 学 号: 姓 名: 评卷老师: 成 绩: 地铁深基坑工程研究以及围护结构形式综述 **** 摘要:随着人口的增长,大城市交通拥挤问题愈发严重,地下空间的开发与利用显得尤为重要。伴随基坑工程的持续发展,对基坑的开挖,支护结构的设计、计算提出了更严格的要求。本文对地铁以及基坑的发展现状以及深基坑的研究方法和常见的围护结构形式做了简单的概述。 关键词:地铁;地下空间;深基坑;支护方式;施工工艺 Abstract:As the booming of the population,the traffic fairs becomes more worsen,particularly in metropolitan areas.The exploitation and utilization of underground space seems especially significant. With the sustainable development of foundation pit engineering,which brings more strict request for the excavation of foundation trench and the design of supporting structure. This paper simply sketch out the development status of metro and foundation ditch and research method of deep foundation pit and the common exterior protected construction. Keywords: metro;underground space;deep foundation pit ; support pattern ;construction technology .
1 引言 近年来,我国的经济得到大力的发展,社会明显进步,人民的生活水平不断地提升,随着越来越多的人涌入城市,诸如北京、上海等大城市的建设规模也逐渐加大。为了缓解伴随经济和人口的快速增长的生活需求、交通拥挤、环境污染等日益严重的问题,超高层建筑、地下建筑、长深隧道、地铁与轻轨、地下商城等大规模工程不断得到开发与利用,特别是地下空间发展城市轨道交通,极大地缓解了城市的交通拥挤问题。由于建筑结构的复杂性以及地下环境的多元变化性,传统的浅基坑开挖以及支护手段已经无法满足目前地下空间施工、结构安全性、经济性等各项相求。基坑工程规模的不断扩展,深度的不断扩大,特别是位于地表周边建筑物比较密集、地下管线纵横交错、环境保护要求很高的城市中心地带,确保施工过程中的安全性,减少事故发生的可能性显得尤为重要。 城市深基坑工程是地下工程与基础工程中一个复杂多变的综合性岩土工程难题,包含土力学中的强度与稳定性问题,又涉及变形问题。地质勘查报告的详尽性、地下水降水方案的合理性、设计过程中考虑各种影响因素的综合性、基坑与围岩支护结构设计的优化性以及计算的准确性、变形监测的及时有效性、施工组织过程中的科学完备性等都将对整个工程的作业期间的工作人员和周围道路与建筑物的安全、施工的质量、开挖过程中的围岩稳定以及变形的大小、基坑的稳定性、施工工期的长短等起着决定性的作用。 2 地铁及基坑工程的发展概况 19世纪60年代,世界上第一条地下铁道在英国伦敦的Bishops与Padington之间用明挖法施工并建成通车,路线长约6.4km,标志新的交通方式的诞生。随后又有纽约(1867年)、芝加哥(1892年)、布达佩斯(1896年)、格拉斯哥(1897年)、巴黎(1900年)等城市修建了地铁。鉴于地铁具有安全、快捷、方便、准时的特点,有利于改造地面环境, 减少噪音和减少废气污染,同时可节约地面空间,保护城市中心区域有限的地面资源,完善城市的交通服务功能以及防御战争和抵抗地震破坏等优点,世界各国开始大力发展地铁建设。到20世纪上半叶,有柏林、纽约、东京、莫斯科等12座城市修建地铁。很多世界性的大城市都已经形成了四通八达的地铁交通系统。 我国于1965年7月1日在北京开始修建第一条地铁,并于1969年10月1日投入运营,到2015年,北京地铁线路总长度将超过570km。目前,我国已有重庆、成都、哈尔滨、武汉、沈阳、西安、杭州和宁波等20多个城市正在修建或计划修建地铁。到2015年我国的城市轨道交通投入运营里程可达到1700km,投资超过1万亿元。随着国民经济的飞速发展,作为城市基础建设的一个重要方面,我国的地下铁道交通必须而且也必然会获得巨大的发展机会,开发和利用地下空间将是以后城市发展的主要趋势。 在基坑工程出现的初期,深基坑常见于开挖深度小于10米的建筑物中。当时的地质勘查资料短缺,设计理论不够完善,施工机械以及施工方法不够先进,基础开挖常采用放坡式,基础形式常采用筏基,围护及支撑系统采用刚度较小的木支撑等结构。常常造成基坑失稳,且周边的建筑物以及管线发生破坏,工程事故频发。因而水文地质勘查以及施工过程中的实时监测越来越受到人们的重视。随着高层以及地下空间的开发利用,基坑的开挖深度与规模也显著增大,施工条件也日益复杂。这个时段除了重视地质勘查之外,施工技术有了较大的提高,施工工序有了合理的安排。工程应用当中一般采用结构力学中的连续墙的分析理论进行设计,并通过适时地安全监测对基坑变形进行预测,减少工程事故发生的概率,逐渐形成和完善了很多的施工经验。 而后随着计算机的发展,科研工作者有效利用工程经验以及监测结果,开始将有限元分析法运用于工程当中解决实际问题并开发了一系列的分析软件,缩短了计算时间,提高了设计数据的准确性。并且采用了较为符合实际工程情况的弹塑性本构模型,且开发了相应的诸如MATLAB之类的数据处理软件,得到了较为合理的分析结果,使得对基坑变形的预测更加接近实际,初步应用刘建航院士提出的符合基坑工程特点的时空效应理论指导施工,更能提高施工效率,起到了保护基坑环境的作用。随着大城市中心地区地铁等地下长深工程的发展,开挖深度的增大,工程环境更加复杂多变,周围环境的影响因素更加敏感。为了更好地保护基坑周边环境,工程界广泛应用基坑的时空效应理念来指导实际工程,充分利用基坑变形的时空效应来进行设计与施工作业。同时模拟软件的出现,地下空间渗流场、应力场、应变场与温度场等耦合分析研究,使得更加贴近工程实际,对基坑的设计与施工有了更加科学合理的指导。
3 国内外深基坑工程研究现状 3.1 深基坑支护方法的研究 长期以来的实践证明,深基坑工程处于复杂多变的地下环境当中,是实践性很强的岩土工程难题,发展至今,尚未有统一的完善理论来指导设计与施工。基坑开挖过程中,变形主要由周围地表沉降、基坑底部土体隆起及围护结构位移三大部分组成。由于建设发展的需要,国内外专家学者与工程技术人员结合工程实际进行了大量的科学研究,并取得了相当丰富的研究成果。主要有以下深基坑结构设计理论与方法:等值梁法、竖向弹性地基梁法、连续介质有限单元分析法。 等值梁法[1]是最早应用于挡土结构为钢板桩时的计算,等值梁法把围护结构简化为两根梁进行计算,是典型的强度控制计算方法。其传力比较简单,计算比较明确,参数很容得到,在计算过程中考虑的因素较少,不能计算围护结构体系的侧向变形,且计算后的误差很大,仅适用于地质条件单一,深度不大、周围建筑无变形约束的简单基坑,很难适用于现阶段复杂、深大基坑的设计要求,得不到广泛的应用。 有限单元法[2]由于能模拟土体的变形特性、复杂开挖过程以及设置边界条件等优点,在20世纪70年代由于计算机技术的发展,在基坑中得到了广泛的应用。主要包括连续介质有限元与弹性杆系有限元法。1971年Wong与Clough首先采用平面有限元方法分析了有内支撑的基坑开挖问题[3]。连续介质有限单元法的主要模型为:Mohr-Coulomb模型、Drucker-Prager模型、Duncan-chang模型、修正剑桥模型等。由于岩土体应力与应变的本构关系的不确定性,以及工程区域不同造成参数的异性,只能作为大型工程设计分析设计过程中的辅助手段,很难在实际工程中得到直接应用。竖向弹性地基梁法的研究对象是基坑支护,在过程中应用较广泛。基坑开挖面以上的内支撑点用弹性支座模型模拟,基坑外的土体产生的主动土压力作为已知荷载 作用在弹性地基梁上,而基坑内开挖面以下作用在支护结构上的弹性抵抗力以水平弹性支座来模拟。其计算中的水平基床系数K值不变,利用反算的K值预报位移值,并不断量测、反算、预报,确保工程的安全性。有限元分析法需要确定大量的参数,编写程序也较为复杂,但是贴近工程实际。 3.2 深基坑土压力的研究 土压力问题是地下结构物与土体相互作用的结果,是岩土工程的基本问题,是对深基坑进行进一步设计的前提。最早的土压力理论来源于200多年前的Coulomb(1773年)与Rankine(1857年)[4],由于其简单性仍然为工程界所采用。随着认识的提高以及工程实践的增加,20世纪40年代的Terzaghi和Peck等学者提出了预估挖土刚稳定程度和支撑荷载大小的表观土压力和经典的土压力分布模式[5],且一直沿用至今。 可列因(1960年)提出水平层分析法[6],该法可反映土压力非线性分布特性。Rahardjo等(1984年)基于边坡稳定分析中的最优圆弧状滑裂面搜索方法[7],采用条分法计算土压力。Liu等(2009年)采用滑移现场理论研究了圆形挡土墙轴对称下的土压力理论[8]。国内学者茅以升(1955年)就开始了对土压力理论的研究[9]。王鸿兴等(1988年)假定滑裂面是变化的函数[10],建立了土压力的极值泛函微分方程,得到了基于极限平衡原理的闭合解答。应宏伟(2006年)假定平行竖墙间小主应力拱形线喂悬链线,推导了考虑土拱效应的平行墙间侧土压力计算公式[11]。并出现了相应的土压力模型:线性土压力模型(森重龙马[12])、正弦函数土压力模型(徐日庆[13])、Sigmoid函数i压力模型(周瑞忠[14])、自然指数土压力模型(杨国雄[15])、双曲线土压力模型(卢瑞明[16])等。对于土压力计算的研究取得了很丰厚的成果,但是也需要做出进一步的研究。 3.3 深基坑检测技术的研究 基坑开挖是一个动态过程,如支护结构与岩土体的流变现象、土压力与结构内力的变化、地下水位的涨落,周围构建物的位移变化等,而工程设计基本上是根据定值的静态设计,也就造成了设计与实际情况的偏差。需要运用精密的监测仪器以及合理的监测实施方案(如激震检测法[17],超声波检测法[18]),对所在的深基坑变形与周围构建物位移进行科学的检查与监控,从而避免事故的发生,有利于变形的控制,为设计的优化提供科学数据。 深基坑监测的主要内容包括:深基坑周边的地表沉降,深基坑底部土体的隆起,周围建筑、地下管线的变形,围护墙体深层水平位移,围护墙顶竖向位移,围护墙顶水平位移,围护墙体内力、支撑内力与变形,锚杆拉力,立柱侧向与竖直位移,地下水位变化等。监测也应该分清主次与侧重点,这就需要对工程设计以及工程施工过程相当熟悉,认清对于基坑结构的主要影响部位与因素,重点部位慎重对待,难点问题不逃避。 深基坑监测的目的:通过现场实际监测采集相应的数据,进行分析以便检验原设计的真实可靠性。并且可以将测得的数据进行系统的反分析,得到符合检测阶段的各种设计参数,从而进行优化设计并进行下阶段的设计,再采集数据进行分析,如此周而复始,使设计由静态变为动态。从而达到提高深基坑设计与施工的水平,采取预防措施以避免安全事故发生的目的。 由于各地区各工程实际情况的不一致,目前国内外对于基坑变形的允许值尚无统一的规定。具体实际可以参考同类的工程的变形值与经验来确定。2009年,我国正式颁布了《建筑基坑工程检测技术规范》[19],标志我国基坑工程监测的技术慢慢走向成熟。