可回收锚索锚固段应力分布及锚固长度研究
- 格式:pdf
- 大小:338.12 KB
- 文档页数:5
有限元数值模拟法研究预应力锚索锚固段应力分布规律摘要:岩土锚固在岩土工程领域占有重要地位。
锚固技术包括锚杆、锚喷、锚喷网等多种支护形式。
预应力锚固技术是将锚杆穿过岩土体潜在的滑裂面后打入岩土体中稳定的部分加以固定,并在杆头处施加一定的张拉力,使滑动土体和稳定岩土体形成一个统一的整体。
预应力锚固技术充分地利用了岩土体本身的强度和稳定能力, 经济安全有效,施工方便,可控性较好,被广泛应用于岩土工程支护领域。
关键词:预应力锚固技术;应力分布;迈达引言近年来,岩土锚固技术被大量应用于边坡整治和加固工程中,在很大程度上取代了传统的重力式挡土墙或砂浆和岩石挡土墙;在相当数量的深基坑支挡结构中,代替了原有的水平横撑;在几乎所有的采矿工程,在地下空间的分布挖掘建设,以及木制临时支护结构的支撑中得到了应用。
在其他领域,如深基坑工程,加固大坝工程,结构工程的抗浮,高速公路拓宽工程,地震工程,以及悬索桥锚固等,锚固技术均充分发挥其技术优势。
1.预应力锚固技术的发展锚杆支护是以锚杆为主体的支护结构的总称,它包括锚杆、锚喷、锚喷网等多种支护形式。
其技术就是在土层中斜向成孔,埋入锚杆后灌注水泥或水泥砂浆,依赖锚固体与土体之间的摩擦力,拉杆与锚固体的握裹力以及拉杆自身强度共同作用来承受作用于支护结构上的荷载。
锚固支护技术始于国外。
英国采矿专家受到钉子能钉牢层状木板的启示,发明了用锚杆控制岩层稳定性的支护技术。
当前,我国的预应力锚固技术理论的研究主要集中在锚固段的受力及其传递机理、锚束体与注浆体及注浆体与周围岩土层的粘结应力及其分布、单孔复合锚固技术的研究、锚索本身的使用寿命及使用的长期性等方面。
我国当前的预应力锚固技术的研究和应用已经达到了一个较高的水平。
2.当前预应力锚固技术存在的问题1)理论研究明显滞后于工程应用,理论计算的假定较多,不同学者之间假定方式不同,没有形成比较统一的认定,在实际的工程设计中仍须运用多种方法相互印证;并且工程计算还是以传统的理论公式为主,安全系数相对较大,导致工程造价高,材料浪费。
矮塔斜拉桥索塔锚固区应力分布规律及计算模型研究作者:张涛李伟俊朱东邓韬李永明来源:《甘肃科技纵横》2024年第06期摘要:文章依据某矮塔斜拉桥,通过现场试验探究索塔锚固区应力分布规律,明确索塔锚固区混凝土在施工过程中的应力变化特征。
文章提出底部设置弹性支撑的局部有限实体计算分析模型,并通过实测值和理论值的对比分析验证该计算分析模型的可行性。
研究结果表明:施工过程中,索塔锚固区端部位置出现了拉应力,最大为1.2 MPa,施工时应考虑在锚固区端部增加横向钢筋;索塔锚固区混凝土横向应力呈现出端部小中间位置大的规律;索塔锚固区实测应力值和理论值基本吻合,验证了该计算分析模型用于计算索塔锚固区应力分析的可行性,为索塔锚固区的受力分析提供了技术支撑。
关键词:矮塔斜拉桥;索塔锚固区;计算分析模型;应力分布;试验中图分类号:U24文献标志码:A0引言矮塔斜拉桥的力学特性不同于斜拉桥和梁式桥,而是介于两者之间。
斜拉桥的拉索多数是单侧和索塔直接固结,而矮塔斜拉桥拉索多是直接穿过索塔作用在主梁上,索塔处直接作用在索鞍处形成一根通长的拉索。
索塔锚固区是矮塔斜拉桥的一个主要传力部位,主梁重量通过拉索将自重作用在索塔锚固区,然后通过桥塔传递给桥墩和基础,索塔锚固区在整个施工过程中受力较为复杂,为确保整个施工过程中斜拉桥的安全,需要掌握锚固区在整个施工过程中的受力特征。
为此,国内不少学者对其进行了研究。
周晖[1]通过对主塔索鞍区的计算分析,发现中间大向两边逐渐减小。
张海文等[2-3]通过数值分析探究了拉索与索鞍之间的接触关系,并研究了拉索的半径对锚固区混凝土应力的影响,认为施工中应对索鞍的安装定位进行严格控制。
部分学者依托实际工程对索塔区混凝土进行受力分析。
张树清和屈计划[4]依托实际工程,建立索塔锚固区计算分析模型,得到索塔锚固区混凝土的应力分布规律。
肖子旺[5]以常山大桥为依托建立全桥分析模型,基于等效原则通过变换索鞍结构形式,探究了索鞍形式对锚固区混凝土受力的影响规律。
国内外可回收式锚杆应用与研究现状【摘要】作为岩土工程中的锚杆锚固技术已成为工程施工中的一个重要的技术环节,并被广泛应用于基坑工程、铁路工程、水利水电工程、边坡工程、地下室工程、抗浮工程、隧道工程以及矿山巷道工程中。
二十一世纪以来,可回收式锚杆的出现以及研究发展已成为国内外一个重要研究创新发展方向。
本文对国内外可回收式锚杆技术的应用与研究现状进行了一个初步的总结归纳并对其创新发展提出了一些展望。
【关键词】锚固技术;锚杆支护;可回收式锚杆技术;创新发展0.引言进入二十一世纪以来,世界经济进入高速发展阶段,特别是中国经济的发展的速度更是处于领跑状态,我国在基础建设上的大力投资以及发展前所未有。
作为岩土工程一个重要分支的锚杆锚固技术也得到了跨越式的发展,广泛应用于基坑工程、铁路工程、水利水电工程、边坡工程、地下室工程、抗浮工程、隧道工程以及矿山巷道工程等工程施工领域。
作为近代岩土工程领域中的一个重要分支,使用岩土锚固,可以充分调用和提高岩土体的自身强度和自稳能力,改善岩土体的应力状态,大大缩小结构物体积和减轻结构物的自重,显著地节省了工程材料,提高施工过程的安全性,岩土锚固技术已经成为提高岩土工程稳定性和解决复杂岩土工程稳定问题经济、有效的方法之一。
锚杆支护技术,无论是用于临时支护还是永久支护,作为施工后留在岩体土层中的锚杆,一般将永久埋于地下及土层中,造成地下空间的污染,同时锚杆施工后,其锚固段和一部分自由段将超出暴露在该建筑物的征地红线范围外,这样在该建筑物周围开发其他建设项目时,必将造成基础施工的麻烦。
为了解决这个问题,国内外提出了可回收式锚杆技术这个创新观点。
此观点的提出,正好解决锚杆技术在工程实践中的一些问题困难,同时可以带来一定的经济效益以及节约大量的社会资源。
1.国内外可回收式锚杆技术的现状锚杆加固技术特别是在边坡护理工程、地下结构工程、基坑工程、矿山巷道支护工程、抗浮工程、抗震工作等领域中更是发挥了其举足轻重的地位和取得了一定得工程成果。
拉力型锚索锚固段周边岩体的应力分布拉力型锚索锚固段周边岩体的应力分布是一个非常关键的问题,对于锚固的稳定性和安全性具有重要意义。
在锚固段周围,由于锚索集中拉力的作用,会导致岩石的应力分布不均衡,容易出现开裂、滑动等情况,因此需要对其进行合理的应力分析,以便更好地保障锚固结构的稳定性。
通常情况下,拉力型锚索锚固段周边岩体的应力分布会表现为一种固定的力学模式,即拉力型力学模式。
在该模式下,岩石的应变主要是由于拉伸力引起的,因此可以把拉力型锚索锚固段视为一个均匀的、无限长的拉伸体系。
在这种情况下,应力的分布主要受到以下几个因素的影响:1.锚索材料和截面积大小拉力型锚索的材料和截面积大小直接影响着锚索的拉力和接触岩体的力度,因此会直接影响到岩体的应力分布。
一般来说,锚索材料要选用高强度、耐腐蚀的材料,并配以适当的截面积大小。
2.锚固段周边岩石的物理性质锚固段周边岩石的物理性质包括其弹性模量、泊松比、内摩擦角等因素。
这些因素会直接影响到岩石的变形程度和应力分布情况,因此需要进行适当的调整和控制。
3.锚索布置方式和密度锚索的布置方式和密度也对周边岩体的应力分布产生了一定的影响。
一般来说,锚索的布置要尽量均匀、合理,避免存在明显的区域差异。
同时,应根据周边岩体的力学特征,选择适当的锚索密度。
4.施工过程中的影响除了以上因素外,施工过程中的因素也可能对锚固段周边岩体的应力分布产生影响。
因此,在锚固结构设计和施工过程中,需时刻关注这些因素,及时采取措施进行调整和优化。
总之,拉力型锚索锚固段周边岩体的应力分布是一个较为复杂的问题,需要考虑多个因素的综合影响。
只有通过严谨的力学计算和分析,结合实际施工情况,才能保证锚固结构的安全稳定。
新型可回收预应力锚索施工技术分析摘要:随着节约土地资源越来越受到重视,地下空间的开发利用是新时期中国城市建设的重要方向。
目前国内采用的桩锚支护结构采用钢绞线或钢杆体,锚索系统通过锚固段产生的拉力平衡土压力,形成稳定的支护结构体系。
关键词:新型可回收;预应力锚索;施工技术一、技术特点①采用预应力锚索加强基坑支护结构的支护能力。
锚索的可回收性大大扩大了工程应用范围。
②新型可回收锚索拆卸简单,钢绞线可在不借助外力的情况下提取回收。
回收率高达97%,且回收所需的操作空间小,最低仅需80cm。
③新型可回收锚索组装方便,使用安全可靠,可回收锚索回收后可重复使用,周转率高,经济效益显著。
二、工艺原理新型可回收锚索的施工技术是利用新型锚索与挡土墙结构的共同作用来维持边坡的稳定。
新型锚索主要由夹紧机构、无级调压安全机构、压板、冲环劈裂机构、防护罩、新型锚索等组成。
锚索组安装时,锚索前端进入锚固头,锚固头上设有可开锁的载体。
注浆和养护完成后,在支排桩顶梁处安装新锚轮。
新型锚杆能简单有效地锁紧锚索预应力。
在拆除锚索时,利用新锚索齿轮的结构特性,手动操作锚索装置,以拆除新锚索的特定约束,并旋转锚索。
此时,解锁的结构会将锚索和锚固段拆开,人工可以很容易地将其取出。
三、关键施工技术1.孔位放线及钻机1.1孔位放线按要求利用全站仪测量放线确定锚索孔的位置,孔位坐标误差不得大于100mm。
为确保锚索施工定位准确,锚杆钻机施工平台标高应为锚索标高以下0.8m,试钻完成后按照要求在确定的锚索孔位置进行钻孔。
1.2机械钻孔调整好钻机的位置和角度然后开始打孔,钻机就位时应准确,底座应垫平,钻杆的倾斜角度应用罗盘校核,钻孔定位误差不超过50mm,孔斜度偏差不超过3°,桩径偏差不超过2cm。
成孔施工前应在场地中挖好排水沟及循环浆池,以避免因泥浆随意排放而影响施工。
孔深应超过锚索长度0.5m,孔深允许偏差±30mm,孔位允许偏差±50mm,孔距允许偏差±0.1m,使锚索标高控制在一个水平面上,清孔时用压缩空气排出泥屑后再用清水反复清洗。
可回收锚索技术(总3页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除锚杆扩孔技术及可回收锚索技术1 锚杆扩孔技术1.1 国内研究应用情况目前,国内锚杆扩孔技术有四种方法:爆炸扩孔、机械扩孔、水力扩孔及压浆扩孔,分别介绍如下:1)爆炸扩孔,用普通钻头钻至预定孔深后,在钻孔底端装上炸药,引爆后把孔端炸扩成大头。
目前已很少应用。
2)机械扩孔,由扩孔钻头的扩孔叶片旋转张开切削土层,从而形成扩大头。
较有代表性的是台湾学者卢锡焕发明的保壮PCBA扩孔钻头,该扩孔钻头与钢绞线连接,钻头作为锚索的一部分永存于地下,只能一次性使用,不能回收,因而成本较高,其钻头需在离心力作用下展开,当地层复杂或地层较硬时,孔径扩大程度难以把握。
此外,尚有一些其他的机械扩孔技术,但均不够稳定成熟,应用不普遍,尤其不适用于全风化、强风化岩。
3)水力扩孔,即采用高压旋喷技术来扩大孔径,对锚固段端部或全段实施高压旋喷,使该段形成扩大头或扩大径。
该法的缺点是:对不同地层,扩孔直径不稳定,施工中不容易掌握,扩孔效果难以检测和保证;高压旋喷形成的扩大头系水泥土体,水泥土体的强度及固结龄期因土层不同而差异很大。
4)压浆扩孔,采用二次灌浆或双层管双栓塞注浆法来扩大孔径。
该法的缺点是:不适用于硬塑或坚实以上的地层。
扩大孔径不规则,也不容易掌握。
该法只适用于软弱土,成本较高,优势不明显,应用较少。
1.2 本发明的扩孔专利技术的特点本发明的扩孔专利技术是机械扩孔技术的一种,具有以下特点:1)扩孔可靠,扩孔概率及效果稳定,均达到100%,处于国内领先水平。
已施工应用于多个实际工程,检测结果表明100%合格。
2)适用范围很广,适用于第四系土层及全风化、强风化岩层(甚至可在中风化软岩扩孔),适用于任何角度之钻孔,扩孔孔径可从φ130→φ400~φ600,还可以扩得更大(只要设备动力允许)。
3)显着提高抗拔力,节约工程总造价。
精心整理1锚杆支护参数的确定(1)两帮破坏范围C的确定式中,k——应力集中系数;kt——巷道维护时间影响系数;kc——煤层稳定影响系数;σc——煤帮煤层单轴抗压强度(MPa);σy——垂直自重应力(MPa);α——煤层倾角(°);hc——被巷道切割的煤层厚度(m);lt——巷道切割煤层(岩层)的最大宽度u——煤层的泊松比;——煤层的内摩擦角(°)。
(2)巷道顶板破坏范围的确定式中,Rp——为围岩松动范围(m);Ro——巷道外接圆半径(m);ρo——原岩自重应力(MPa);C——顶板岩石粘结力(MPa);φ——为顶板岩石内摩擦角(°)。
(3)锚杆直径式中,(4)锚杆长度式中,2锚索支护参数的确定1锚索长度的确定式中:L a——锚索长度(m);L a1——锚索外露长度(m);L a1——锚索有效长度(m);L a2——锚索锚固长度(m)。
(1)静压软岩巷道在锚杆失效的情况下,其潜在的冒落高度为1.5倍的巷道宽度。
同时为保证巷道的稳定性,锚索应保证锚固到稳定的岩层内,锚索有效长度:式中,a——巷道宽度(m);h i——稳定岩层下各层厚度(m);i——稳定岩层下岩层层数。
(2)动压软岩巷道(3)当L a2/a>3时,则L a2=3a。
2锚索排距的确定锚索间排距根据锚杆失效时,锚索所承担的岩层重量确定。
每排布置一根锚索则其排距为:式中,a——巷道宽度(m);γ——上覆岩层平均体积质量(KN/m 3)[]a σ——单根锚索的极限破断力(KN );k ——安全系数。
1锚杆长度的计算L=KH+L 1+L 2式中L ——锚杆长度,m ;K ——安全系数,取2;H ——冒落拱高度,m ,是根据公式H=B/2f 估算的;B ——巷道开挖宽度,一次开挖宽度4.2m ,二次开挖宽度3.5m ,取4.2m ;f ——岩石(煤)坚固系数,f=2。
L1——锚杆锚入岩层深度,根据经验条件,取0.3m ;L2——锚杆在巷道中的外漏长度。