LNG冷能利用介绍
- 格式:ppt
- 大小:9.92 MB
- 文档页数:51
lng冷能利用的发展趋势及新的利用方式
Lng冷能利用的发展趋势是逐渐向着更加高效、环保和经济的方向发展。
其中,新的利用方式包括以下几个方面:
1. LNG冷能的利用率提高。
在液化天然气(LNG)产生的过程中,会产生大量的冷能,这些冷能可以通过回收利用来提高LNG的综合利用率,减少能源消耗和经济成本。
目前,LNG工厂中已经采用了许多措施来回收利用冷能,例如采用冷却水回收系统、采用废热利用系统等。
2. LNG冷能的多元化利用。
除了用于LNG生产过程中的冷却作用外,LNG冷能还可以被用于其他领域,如空调制冷、冷冻食品、药品等储存、制造等。
特别是在热带地区,LNG冷能的利用可以为人们提供更为舒适的生活环境。
3. LNG冷能与其他能源的结合利用。
LNG冷能可以与其他能源结合利用,如太阳能、风能等,形成混合能源系统,提高能源的综合效益和环保性能。
同时,LNG 冷能的结合利用也可以提高能源的安全性和稳定性。
总体来说,LNG冷能的发展趋势是以高效、环保、经济为目标,不断探索和创新新的利用方式,不断提高LNG冷能的综合利用效益和降低能源消耗和经济成本。
lng冷能梯级利用方案
冷能梯级利用方案
一、项目概述
1、冷能梯级利用的概念:冷能梯级利用指把由蒸汽冷凝器冷凝出来的低温冷凝水(常常高于室外大气温度20度以上),以梯级方式传送给低温设备进行利用,从而提高设备的利用效率,实现经济效益。
2、项目概况:本项目是一个冷能梯级利用系统,设置了两级低温设备,上级设备利用蒸汽冷凝器冷凝出来的低温冷凝水作为冷源,可以降低蒸汽加热的水温;下级设备则利用上级设备冷凝出的低温冷凝水继续冷却水温,从而实现冷能梯级利用。
二、设备构成
1、上级设备:由蒸汽冷凝器组成,蒸汽冷凝器中的水温低于室外空气温度,可以把室外空气的热量转移到冷凝水中,使其冷却,冷却水的温度可以达到-20度以下。
2、下级设备:由深海冷冻机组成,深海冷冻机可以将上级设备冷凝出的低温冷凝水继续冷却,从而实现冷能梯级利用。
三、工艺流程
1、室外空气热量通过蒸汽冷凝器转移到低温冷凝水中,使其冷却;
2、低温冷凝水通过控制系统间接控制管路,进入深海冷冻机,继续冷却;
3、深海冷冻机将冷凝水冷却到-20度以下,实现冷能梯级利用。
四、项目建议
1、建议采用蒸汽冷凝器和深海冷冻机组成的冷能梯级利用系统。
2、建议采用控制系统来控制冷凝水的流动,保证深海冷冻机的有效运行。
3、建议增加相应的安全措施,以防止冷凝水的泄露,保证系统的安全运行。
1、 LNG冷能的概念所谓冷能,是指在常温环境中,自然存在的低温差低温热能,实际上指的是在自然条件下,可以利用一定温差所得到的能量。
根据工程热力学原理,利用这种温差就可以获得有用的能量,这种能量称之为冷能。
LNG冷能利用的重要意义天然气的主要成分是甲烷,在常压下将甲烷降至-162℃(甲烷的沸点)时,甲烷就被液化,每立方米的甲烷液化后体积变为0.0024m3,约为甲烷0℃常压下体积的1/600。
甲烷液化后,其体积显著变小。
LNG接收站就是利用甲烷的这一显著特点,在天然气的产地附近将天然气液化,然后利用其液化后体积变小、利于运输的特点,将天然气以LNG(液化天然气)的形式输送至接收站进行储存、气化和外输至用户。
LNG接收站需要将LNG气化后输送给用户。
LNG气化后被还原为初始的气体状态,可以作为热力发电的燃料和城市居民用气。
在LNG气化过程中,约能产生920.502kJ/kg的低温能量。
目前,这种冷能大部分被释放到海水中,造成了能源的极大浪费。
通过特定工艺技术,将其气化过程中释放的冷能重新利用,不但可以节省能源,大大降低运行成本,同时又能提高经济效益,而且符合现今社会低碳经济的发展模式。
因此,从节约能源的角度,积极寻求和高效利用冷能量有着重要意义。
LNG冷能性质及特点LNG( 液化天然气) 是常温的天然气经过脱酸、脱水处理,通过冷冻工艺液化而成低温(-162℃)的液体,其密度大大增加(约600 倍),有利于长距离运输。
纯净的LNG是无色、无味、无毒且透明的液体,LNG比水轻,不溶于水。
LNG蒸汽温度高于-110℃,比空气轻,货物泄漏时蒸汽往上升,易于扩散,因此发生爆炸的危险性相对要小[31]。
LNG化学性质稳定,与空气、水及其它液化气物品在化学性质上相容,不会起危险反应(与氯可能有危险反应)。
由于LNG的临界温度远低于环境温度,所以只能采用全冷冻的条件运输和贮存。
LNG冷能利用LNG冷能利用一般分为直接、间接两种方式。
lng冷量利用原理及方式嘶LNG是液化天然气的英文缩写,是将天然气经过压缩和冷却处理,使其体积减小600倍左右,变成液态状态,在运输和储存过程中能占用较小的空间,也便于运输。
而LNG在液态状态下,所含热值仍与气态状态下的天然气相同,因此又称为“液态天然气”。
LNG具有高能量密度和清洁环保等优点,被广泛应用于燃气发电、城市燃气、化工制造等领域。
其冷量也成为了一种可利用的能源资源,下面将就LNG冷量的利用原理和方式进行详细介绍。
一、LNG冷量利用原理LNG在液态状态下,其温度一般在-162℃左右,具有较高的冷却能力,因此LNG的冷量是一种有价值的能源。
利用LNG的冷量进行制冷或供热的原理是基于LNG从液态向气态转化时所吸收的热量,即常说的“蒸发温度”。
在液化天然气的储运过程中,LNG需要不断补充热量,以防止其因放热而蒸发。
这时,我们可以利用环境中的其他物质,如水、空气、土壤等,从LNG中吸收热量,使得LNG冷却,而所吸收的热量可以用于制冷或供热。
1.制冷利用LNG的冷量进行制冷主要有两种方式:一种是使用LNG直接制冷,即利用LNG的冷却效果对空气或液体进行冷却;另一种是通过LNG制冷机进行制冷。
无论是哪种方式,都需要设计相应的制冷系统。
利用LNG制冷可以应用于一些特殊场合,如超导磁体、计算机服务器、医药生产等领域。
在这些场合中,需要保持低温环境,而LNG具有可再生和环保的特点,是非常合适的制冷介质。
2.供热将LNG的冷量利用于供热主要有两种方式:一种是利用LNG的蒸发热量进行加热,这种方式主要适用于船舶或潜水器等场合需要进行加热的场合;另一种是通过LNG热力发电机,将LNG的蒸发热量转化为电能,再将电能转化为热能进行供热。
利用LNG供热的优点也非常明显,一方面,由于LNG的燃烧产生的污染物排放极低,成本也相对较低;另一方面,基于LNG的供热系统也相对灵活,并且可以为城市供热带来更可靠的能源保障。
三、总结。
国外lng冷能的用途
国外LNG冷能的用途主要包括以下几个方面:
1. 冷能发电:利用LNG的低温冷能发电,可以减少对化石燃料的依赖,降低温室气体排放。
2. 空气分离:利用LNG冷能将空气中的氧气、氮气等气体分离出来,用于化工、钢铁、医疗等领域。
3. 低温医疗:利用LNG冷能进行低温医疗治疗,例如冷冻疗法、冷冻手术等。
4. 冷藏食品:利用LNG冷能冷藏食品,可以保持食品的新鲜度和口感,同时降低储存成本。
5. 制造新材料:利用LNG冷能制造新材料,例如碳纳米管、石墨烯等,这些材料具有优异的力学性能、电学性能和热学性能等。
总之,国外LNG冷能的用途非常广泛,不仅可以提高能源利用效率,还可以促进经济发展和环保事业。
液化天然气(LNG)冷能分析及利用初步研究摘要:随着我国液化天然气(LNG)产业的蓬勃发展,LNG本身蕴藏的冷能具有很大的利用价值。
目前我国主要是单一方式的利用和回收,利用效率低下,从冷能的热力学性质方面入手,可以对LNG的冷能进行阶级利用,从而提高冷能的利用效率。
关键词:液化天然气;冷能分析;利用1LNG冷量利用途径1.1利用LNG冷能发电将液化天然气的冷量经过回收、转化生成电能,是目前比较常用且技术成熟的一种利用方式。
根据冷量利用形式的不同,又可以将其分为两种方式:(1)膨胀发电。
液化天然气在汽化时由于体积会急剧的膨大,在狭小、密闭的容器中会释放出巨大的能量,进而推动发电机发电。
这种发电方式的冷能利用率通常在20%-30%之间。
(2)把液化天然气当作一种冷凝剂,把冷凝机加入到冷凝器中,通过实现冷量转移,利用介质与环境的温度差带动蒸汽动力循环,完成发电。
在这种发电方式中,介质的选择十分关键,例如使用丙烷作为介质,冷量利用率只有25%左右;而选择碳氢化合物作为介质,利用率可以提升至40%以上。
1.2利用LNG冷能液化分离空气低温液化是分离空气的常用方法。
根据空气中各类气体成分也液化温度的不同,可以分别分离提取到液氧、液氮、液氩等具有重要工业价值的产品。
利用液化天然气冷量,可以比较方便地实现气体液化。
目前已经比较成熟的技术是利用两级压缩式制冷机,先进行液化天然气冷能的回收,然后再利用冷能完成空气液化,得到液氧和液氮。
从成本上来看,选用液化天然气冷量进行空气液化分离,在电能消耗、水能消耗等方面都有一定的优势,相比于传统工艺可以节约20%-40%的成本。
另外,将获得的液氧收集起来利用特定的设备进行加工,还能够获得臭氧,在处理化工企业排放污水方面也具有重要作用。
1.3利用LNG冷能制取干冰二氧化碳的液态及固态(干冰)形式,在多个领域有着重要利用。
例如可以作为灭火器的主要材料;作为制冷剂或是用于人工降雨等。
LNG冷能利用方式液化天然气(Liquefied Natural Gas,简称LNG)是在温度约-162°C、以液态形式存在的天然气。
通常LNG需要重新气化为气态天然气才能获得利用。
LNG气化时释放的冷能大约为840kJ/kg。
一座300万吨/年的LNG接收站,如果LNG连续均匀气化,释放的冷能大约为80MW。
因此,LNG蕴涵的冷能是十分巨大的,回收这部分能量具有可观的经济、社会和环境效益。
一、LNG 冷能利用方式所谓冷能,实际上指的是在自然条件下,可以利用一定温差所得到的能量。
根据工程热力学原理,利用这种温差就可以获得有用的能量,这种能量称之为冷能。
LNG 冷能利用方式主要有冷能发电、冷能空分、制取液态CO2或干冰、冷藏仓库或制冰、轻烃分离、空调、海水淡化、低温粉碎等。
(一)冷能发电利用LNG 冷能发电是较为新颖的能源利用方式,技术相对比较成熟,能够大规模利用LNG 冷能。
利用LNG冷能发电的系统主要有:直接膨胀法、二次冷媒法、联合法等。
1、直接膨胀法。
将储罐内的LNG抽出并加压,然后以海水为热源使之受热气化,再送至膨胀机中做功,从而产生电能。
从膨胀机出来的天然气再根据要求调整其温度和压力,最终送至天然气用户。
直接膨胀法原理简单、投资少,但是LNG 冷能利用率很低,只有24%左右。
因此,该方法主要与其他冷能利用方案综合使用。
2、二次冷媒法。
二次冷媒法利用中间冷媒的朗肯循环回收LNG冷能进行发电。
将低温LNG 的冷量转移到冷媒上,冷媒在温差的作用下进行蒸汽动力循环,从而做功产生电能。
应用二次冷媒法进行冷能发电的关键是冷媒的选择。
常用的冷媒主要有甲烷、乙烷、丙烷等单组分,也可以采用它们的混合物。
这种方法对LNG 冷能的利用效率要优于直接膨胀法。
3、联合法。
联合法将直接膨胀法与二次冷媒法相结合,可以大大提高冷能利用率,一般可保持在50%左右。
日本投入实际使用的LNG冷能发电项目大多采用这种方式。