手性化合物的动态动力学拆分研究进展
- 格式:pdf
- 大小:256.59 KB
- 文档页数:8
手性药物分析方法研究进展摘要:近年来,手性药物的分析已成为药学界的一个重要研究课题,并且不断出现新的检测技术,以满足日益增长的需求。
本文将深入探讨近十年来手性药物的检测技术,以期为临床提供更有效的诊断依据。
对比了目前现有的手性药物检测技术的优点和缺点,并对手性药物分析方法的发展做出了展望。
关键词:手性药物;分析方法;研究进展;引言:现今,超过半数的药物均具有手性结构,而这些手性药物中两种不同的对映体之间的生物活性差异十分明显:一种可以产生高效的结果,而另一种则可能产生低效或者有害的结果。
进入人体后两种对映体还可能相互转换,从而使得许多药物服用后会产生副作用。
随着科学技术的不断发展,手性药物的分离技术已经成为一种必不可少的工具,它可以有效地检测和分析药物的理化性质。
本文将深入探讨几种手性药物的分析技术,并结合相关的研究成果,为读者提供有效的参考和借鉴。
一、手性药物概述随着技术的进步,手性药物已经成为一种新型的药物,它们通过将手性中心引入其分子结构,形成一对相对的对映异构体,这种新型的药物已经被广泛应用于临床,占比高达40%~50%。
手性药物的药理作用可能出现(1)一种特定的对映体具有显著的药理效果,而另一种则没有;(2)两种对映体的药理效果相似,但其作用强度不尽相同;(3)两种对映体的药理效果相似,但其作用强度不尽相同。
手性药物的药代动力学特征表明,它们在人体内都具有显著的立体选择性。
因此,对于这类药物的分离、质量控制和疗效评估,都具有极其重要的意义。
二、手性药物分析技术(一)高效液相色谱法(HPLC)20世纪70年代以来,HPLC法已经成为药物分析领域最受欢迎的技术之一,它能够将不对称中心引入分子间,从而实现拆分手性药物对映体的目的。
其中,直接法也被称为手性固定相法,它是将不对称中心引入分子间,而间接法则是将不对称中心引入分子内部,通过分子间的相互作用,实现药物的有效分析,从而更好地揭示药物的结构和功能。
氟比洛芬对映异构体手性拆分研究进展邢志华【期刊名称】《黑龙江医药》【年(卷),期】2012(025)004【总页数】3页(P530-532)【作者】邢志华【作者单位】哈尔滨商业大学药学院哈尔滨150076【正文语种】中文【中图分类】TQ460.72手性药物氟比洛芬(flurbiprofen)是一种非甾体类抗炎药,其化学结构见图1。
目前市场上销售及临床应用的是其消旋体,其两种光学异构体具有截然不同的药理活性[1-4],其中S型能更有效地抑制环氧化酶,是消炎镇痛的主要成分,R型虽无抗炎作用,但近期研究证明,R型能抑制Aβ-42的表达,并且在体内不会转化为(S)-氟比洛芬,目前已进入治疗前列腺癌和阿尔兹海默病的Ⅲ期临床研究。
此外,外消旋氟比洛芬的胃肠不良反应因R对映体的存在而增加。
因此,与消旋体相比,S对映体用消旋体的半量就可以达到相同的治疗效果,而且可以降低由于使用消旋体中R对映体带来的不良反应。
综上所述,对氟比洛芬对映体拆分使用就显得尤为重要,现对氟比洛芬对映体手性拆分方法进行概述。
王尊元[5]利用二步合成法合成外消旋的氟比洛芬,再用手性拆分剂葡辛胺拆分,得S-异构体,路线见图2,此制备方法具有工艺简单、产率高、合成成本低廉等特点,适合于工业化生产。
酶法拆分条件温和且立体选择性高,最常用的是酯水解酶,包括脂肪酶和酯酶。
陈少欣[6]等用利用大肠杆菌M15表达芽孢杆菌的脂肪酶基因,重组蛋白经亲和色谱纯化,得到比活力为30.25u/mg的纯化酶。
以纯化酶催化水解50mmol/L的氟比洛芬乙酯,在55℃、pH9.0的条件下,所得产物(R)-氟比洛芬ee值为99.6%,收率为30.7%。
意大利[7]Zambon公司生产(R)-氟比洛芬专利工艺已扩大到公斤级生产,该工艺不需要催化剂。
所用的拆分剂是该公司合成甲砜霉素的一个高级中间体(R,R)-对甲硫基苯基氨基丙二醇。
该路线的动力学拆分,是始于一个具有酸性的苄基氢在甲醇中被一个强碱结合;当所形成的负碳离子重新被质子化时,所希望的R,R,R-异构体结晶出来,而不要的异构体留在溶液中。
化工进展2008年第27卷第ll期CHEMICALINDUSTRYANDENGINEERINGPROGRESS・1703・手性拆分液膜及固膜的研究进展郑熙,胡小玲(西北工业大学理学院应用化学系,陕西西安710072)摘要:对外消旋体的手性拆分是获得单一对映体的有效途径,在诸多拆分方法中,膜拆分法以其能耗低、易连续操作,易工业放大的优点受到广泛关注,被认为是最有前途的方法。
本文将膜技术分为液膜和固膜两部分,分别介绍了两者在手性物质拆分中的研究进展,并总结了各种方法的优缺点,在此基础上提出了存在的问题和今后的研究方向。
关键词:手性拆分;外消旋体;液膜;固膜中图分类号:TQ028.8文献标识码:A文章编号:1000—6613(2008)11—1703—07DevelopmentofmembranesforchiralresolutionZHENGXi,HUXiaoling(DepartmentofChemistry,NorthwesternPolytechnicalUnive瑙ity,Xi’all710072,Shaanxi,China)Abstract:Racemeresolutionisthemainroutetogetpureenantiomer.Amonga11kindsoftheresolutionmethods,membraneresolutionmethodsareconsideredasthemostpromisingonesbecauseoftheirspecialadvantages,suchaslowenergyconsumption,continuousoperationmodeandconvenientup—scalingandSOon.Inthispaper,weconsidermembraneastwoparts:liquidmembranesandsolidmembranes,andintroducetheirdevelopmentinchiralresolutionrespectively.TheadvantagesanddisadvantagesofeachmethodalealSOsummarized.Moreover,theproblemswhichneedtoberesolvedandthetrendofdevelopmentarediscussed.Keywords:chiralresolution;raceme;fiquidmembraries;solidmembranes手性是自然界的本质属性之一。
*基金项目:霍英东基金[98-9-8]、国家新药基金[96-7-8]与重庆市应用基础研究[01-3-6]及重庆药友研发项目[03-9-8]资助手性药物拆分技术研究进展*李根容,李志良(重庆大学化学化工学院,重庆400044)[摘要] 对外消旋体进行拆分是获得手性药物的重要方法。
综述了手性拆分方法及其分类,分别为结晶拆分法,包括直接结晶法、形成非对映体的结晶法、组合拆分法等;复合和包合拆分法,包括包结拆分法;色谱拆分法等,并结合一些药物对新近发展起来的手性药物拆分技术做了介绍。
[关键词] 手性拆分;异构体;消旋体;复合和包结拆分;色谱拆分[中图分类号]R91415;R927 [文献标识码]A [文章编号]1003-3734(2005)08-0969-06Advances in the chiral drug resolutionsLI Gen -rong,LI Zh-i liang(College o f Chemistry and Chemical Engineering ,Chongqing University ,Chongqing 400044,China )[Abstract ] Significant progresses in developing the techniques of chiral resolution offer possibilities in the preparation of ne w chiral compounds.This article revie ws the methodology and classification of raceme resolutions,including direct crystallization (spontaneous resolution,preferential crystallization,combinational resolution and converse resolution),inclusion resolution and c hromatography.The direct crystallization is currently the most popular due to its simplicity and easy manipulation.Ne w technologies using chromatographic resolution,combinational resolution and inclusion resolution may be expec ted to promote the development of more effective chiral drugs.[Key words ] c hiral resolution;isomer;race me;complex and inclusion resolution;chromatographic resolution手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。
手性化合物的拆分方法
手性化合物的拆分方法主要有对映体分离法和酶催化法两种。
对映体分离法是指通过物理或化学方法将手性化合物中的对映体分离开来。
常用的物理方法有晶体分离法和对映体选择性结晶法。
晶体分离法是指利用手性化合物结晶时的差异,通过适当的选择溶剂和结晶条件,使其中一个对映体结晶出来,而另一个对映体仍保持在溶液中。
对映体选择性结晶法则是利用对映体结晶时晶体生长速度的差异,通过选择合适的溶液浓度和温度,使其中一个对映体的晶体生长速度比另一个对映体快,从而实现对映体的分离。
酶催化法是利用手性化合物和酶之间的反应性差异进行对映体分离的方法。
酶催化法主要通过酶的手性选择性来实现对映体的分离,其中最常用的是立体选择性催化酶。
这种酶具有对手性底物具有高选择性催化作用的特点,通过调节反应条件和酶底物比例,可以将手性化合物中的对映体分离开来。
除了以上的方法,还有一些其他的手性化合物拆分方法,如手性色谱法、手性电泳法、手性转换法等。
这些方法则是通过物理、化学或生物学手段对手性化合物进行选择性的分离和转化,以实现对映体的分离。
Betti碱的手性拆分及其在不对称合成中的应用研究(申请清华大学理学博士学位论文)培养单位化学系学科化学研究生董艳梅指导教师胡跃教授二○○五年四月Studies on the Chiral Resolution of Betti Base and Its Applications in Asymmetric SynthesisDissertation Submitted toTsinghua Universityin partial fulfillment of the requirementfor the degree ofDoctor of Natural SciencebyYanmei Dong( Organic Chemistry)Dissertation: Professor Yuefei HuSupervisorApril, 2005关于学位论文使用授权的说明本人完全了解清华大学有关保留、使用学位论文的规定,即:清华大学拥有在著作权法规定范围内学位论文的使用权,其中包括:(1)已获学位的研究生必须按学校规定提交学位论文,学校可以采用影印、缩印或其他复制手段保存研究生上交的学位论文;(2)为教学和科研目的,学校可以将公开的学位论文作为资料在图书馆、资料室等场所供校内师生阅读,或在校园网上供校内师生浏览部分内容;(3)根据《中华人民共和国学位条例暂行实施办法》,向国家图书馆报送可以公开的学位论文。
本人保证遵守上述规定。
(保密的论文在解密后遵守此规定)作者签名:导师签名:日期:日期:摘要摘要手性Betti碱及其衍生物是一类非常重要的氨基酚,在不对称催化和手性辅助合成中显示了优秀的手性诱导能力。
因而可能开发成为一种新型的手性合成试剂,研究Betti碱的手性拆分方法及其在不对称合成中的应用具有重要意义。
本论文研究了Betti碱的手性拆分,并对手性Betti 碱在合成新型手性配体衍生物和作为手性辅助合成试剂的应用进行了研究和探索。
手性分子的合成方法及研究进展手性分子的合成方法及研究进展学号:班级:姓名:摘要:本文主要将手性药物的合成方法分为了两大类,并分别列举了一些方法,其中详细介绍了手性源合成以及酶法获得手性化合物两种方法,并通过对方法的介绍简述了手性化合物的研究进展。
关键词:手性化合物、合成、研究进展手性是自然界最重要的属性之一,分子手性识别在生命活动中起着极为重要的作用。
同一化合物的两个对映体之间不仅具有不同的光学性质和物理化学性质,而且它们具有不同的生物活性,比如在药理上,药物作用包括酶的抑制、膜的传递、受体结合等,均和药物的立体化学有关;手性药物的对映体的生物学活性、毒性、代谢和药物素质完全不同。
获得手性化合物的方法,不外乎非生物法和生物法两种。
一、非生物法非生物催化主要是指采用化学控制等手段来获得手性化合物,它主要包括不对称合成法、手性源合成、选择吸附拆分法、结晶法拆分、化学拆分法、动力学拆分、色谱分离等。
下面主要介绍手性源合成:手性源合成或者手性底物的诱导,该方法被称为第一代手性合成方法,亦称为底物控制法。
它是通过底物中原有手性的诱导,在产物中形成新的手性中心。
可简略表述为:原料为手性化合物A*,经不对称反应,得到另一手性化合物B*,即手性原料转化为反映产物。
美国Scripps 研究所Wong等曾报道了利用阿拉伯糖来合成L-N-乙酰神经氨酸的方法,该方法便是极其巧妙的利用了手性源合成。
阿拉伯糖是一个醛糖,它开环后的醛基与氨基化合物得到Schiff 碱中间体,硼酸衍生物上的乙烯基以富电子碳原子于Schiff碱上的碳原子发生亲核进攻,得到烯烃衍生物中间体,氨基用酸酐保护,总产率55%, de%为99%。
烯烃衍生物中间体与硝酮衍生物进行1,3偶极环加成,得到氮氧五元环化合物,加成过程立体选择性较好,90%的产物是立体控制的。
氮氧物五元环化合物经过脱质子化得到西佛碱中间体,水解后即得到L-N-乙酰神经氨酸(如图)。
手性化合物拆分方法
手性化合物的拆分方法有以下几种:
1. 光学活性-不对称合成:可以通过一系列不对称合成反应,利用手性催化剂或手性辅助剂来合成手性化合物。
2. 光解反应:手性化合物在经过光解反应后可以拆分成两个非对映体。
3. 通过手性膦酸或手性天然产物催化的羟基醛/酮脱水反应:手性化合物在这个反应中可以通过脱水反应得到不对映体。
4. 通过手性酸或手性碱催化的亲电取代反应:手性化合物在这个反应中可以通过亲电取代反应得到不对映体。
5. 对于手性化合物,可以利用酶催化的反应来拆分。
需要注意的是,手性化合物的拆分往往要求合成条件和反应条件严格控制,选择适当的手性催化剂或手性辅助剂,并且需要进行相关的分离、纯化和鉴定等步骤来得到拆分产物。
手性药物拆分技术及分析手性药物(chiral drugs)是指分子内部有一个或多个不对称碳原子的药物,即具有手性结构的药物。
手性药物由于具有左右旋异构体,使得其药理学效应、药效学性质、药代动力学以及安全性能等方面出现差异。
因此,手性药物的拆分技术及分析对于药物的研发、生产和应用具有重要意义。
手性药物的拆分技术主要有下述几种方法:晶体化学方法、酶法、化学拆分、色谱法和光学活性检测。
首先是晶体化学方法,该方法是利用手性药物晶体的对称性差异完成拆分。
通过晶体中的尖、刃、拱等特征差异,将手性药物分离为晶体异构体。
其次是酶法,手性药物的拆分可以通过酶的催化作用实现。
酶是具有高选择性、高催化效率和高效底物转化率的催化剂。
通过选择合适的酶,可以将手性药物转化为对应的手性异构体或原生态精细化靶化合物。
化学拆分是指通过特定的化学反应将手性药物分解为不对称碳原子具有相反手性的产物。
该方法较为常用,但对于存储稳定性较差的手性药物较不适宜。
色谱法是利用不同手性列进行手性分离,如手性HPLC(高效液相色谱)和手性毛细管电泳等。
这些方法主要是利用手性固定相对手性药物进行分离,可达到手性药物的拆分效果。
光学活性检测是通过光学活性的手性试剂或手性染料,以手性化合物的吸光性能差异检测手性药物的拆分效果。
根据手性分析原理,通过手性分析仪器对手性药物进行检测和分析。
手性药物的分析对于药物研发、生产和应用非常重要。
分析手性药物的关键是确保其纯度和药效学性质,并且有助于合理掌握手性药物在体内的吸收、分布、代谢和排泄的信息。
以下是手性药物分析的一些常用方法。
首先是纳米液相色谱法,该方法是将分离的手性药物样品通过微量泵输送到纳米柱中,在极小的流速和流体容量下进行分离。
该方法对于手性药物样品的需求量很小,因此可以减少手性药物样品的消耗。
其次是循环偏振负压电流法,该方法通过测量手性药物样品对光的旋光性质,直接反应其手性结构。
该方法准确、快速,适用于灵敏度高的手性药物分析。
化学手性化合物合成的研究与应用随着科学技术的不断发展,化学领域的手性化合物合成研究与应用日益受到关注。
手性化合物是指分子呈现左右对称的现象,但左右镜像像不重合的分子。
手性化合物在生物学、医学、农业、环境保护、食品工业等领域中发挥着越来越重要的作用。
手性化合物的研究,涉及到化学、生物学和物理学等多个领域,其合成方法也十分繁多。
目前应用较广泛的手性化合物合成方法主要包括基于对映体选择性的催化反应、手性拆分、动力学分离和对映体选择性晶体成分等。
对映体选择性的催化反应是一种针对手性化合物的重要方法之一。
催化剂的空间结构可以对化学反应中产生的对映体有选择的催化,从而得到手性化合物。
例如,在药物合成中,对手性催化剂的选择性优越性使得制药剂量得以大幅降低,从而降低药物的毒性和副作用,并提高了药物的治疗效果。
手性拆分和动力学分离也广泛应用于手性化合物的制备和分离纯化。
手性拆分是指将混合物中的手性化合物拆分成两种对映异构体,即左右对映体。
动力学分离则是指在控制的温度、溶剂和混合物组分下获得左右对映异构体的分离物。
这些方法也因其高效性、经济性和安全性得到了广泛的应用。
对映体选择性晶体成分也是一种实现手性化合物制备的方法,它可以获得具有高立体选择性的晶体成分,使得精确的手性化合物制备成为可能。
例如,生长某些特定的晶体,即可分离出单一的对映体,将此晶体成分应用于制药过程,不仅可以使制药过程变得简单和更加高效,同时还可以大幅减少药物的副作用和毒性。
手性化合物在不同领域中有不同的应用。
在生命科学领域中,手性化合物的空间结构对药物的生物利用度,生物毒性以及对药物的激活和代谢均有影响。
在农业领域中手性化合物的应用主要体现在农药生产的合成中。
在环保领域中的应用则主要涉及工业污染物的亚硝基化及硫代硫酸酯还原等作用。
食品工业领域中,则有利于提高香味及口感。
总之,手性化合物的合成研究和应用发展迅速,越来越多的科研人员和工程技术人员致力于该领域的研究。
手性物质提取分离手性药物的结晶拆分方法:手性化合物的拆分是给外消旋混合物制造一个不对称的环境,使两个对映异构体能够分离开来。
从方法学上来讲,可以分为结晶拆分法(物理拆分方法、化学拆分方法)、动力学拆分方法、生物拆分方法(相当部分是生物催化的动力学拆分)及色谱拆分方法。
--手性药物的拆分方法—1、结晶拆分法--直接结晶法---在光学活性溶剂中的结晶拆分--直接结晶法---外消旋体的不对称转化和结晶拆分--直接结晶法---逆向结晶法逆向结晶法则是在外消旋体的饱和溶液中加入可溶性某一种构型的异构体[如(R)—异构体],添加的(R)—异构体就会吸附到外消旋体溶液中的同种构型异构体结晶体的表面,从而抑制了这种异构体结晶的继续生长,而外消旋体溶液中相反构型的(S)—异构体结晶速度就会加快,从而形成结晶析出。
--直接结晶法---优先结晶法优先结晶方法(preferential crystallization)是在饱和或过饱和的外消旋体溶液中加入一个对映异构体的晶种,使该对映异构体稍稍过量因而造成不对称环境,结晶就会按非稍的过程进行,这样旋光性与该晶种相同的异构体就会从溶液中结晶出来。
--直接结晶法---自发结晶拆分法自发结晶拆分(spontaneous resolution)是指当外消旋体在结晶的过程中,自发的形成聚集体。
--通过形成非对映异构体的结晶法--非对映异构体的形成和拆分原理--通过形成非对映异构体的结晶法--用于碱拆分的拆分试剂(酸性拆分剂)2、动力学拆分化反应,分离方法直接。
的衍生化试剂具有良好的对热及水的稳定性。
局限性色谱柱价格昂贵,部分固定相还存在稳定性差,柱容量低,柱强度差等缺点,且根据不同手性药物的性质不同,选用的分析方法也不同。
系统平衡时间较长,添加剂消耗大,对于一些难分离的对映体效果差。
手性试剂需要有高的光学纯度,各对映体的衍生化速率及平衡常数应一致,要求衍生化反应迅速、彻底,否则影响定量结果。
不对称合成化学期末试卷(2016至2017学年度第一学期)题目不对称合成化学学号**********姓名张鑫园专业物理化学入学年月2016年9月动力学拆分进展1 引言化学动力学拆分是将外消旋体中的两个对映异构体分离得到光学活性产物的一种方法。
其动力学原理是[1]: 一对对映体和手性试剂作用生成非对映异构体,由于反应的活化能不同,反应速度就不同,当外消旋体与不足量的手性试剂作用,反应速度快的对映体优先完成反应,而剩下反应速度慢的对映体在未反应底物中占优势,分离纯化便可得到具有光学活性的化合物( 如图1) 。
图1 动力学拆分原理早在1848 年Pasteur 就进行了手性化合物的拆分实验,在显微镜下分离了酒石酸钾铵盐晶体的两个对映异构体,使人们认识到化合物手性和拆分方法,被认为是化学史上第一个动力学拆分的例子[2]。
1874 年,Label 第一次提出了利用对映异构体反应速度的不同进行动力学拆分的设想[3]。
到1899 年,Marckward 和Mckenzie[4]首次报道了用纯化学手段对扁桃酸进行动力学拆分。
直到1981 年,Sharpless 等人[5]报道了不对称环在氧化反应的条件下,对外消旋的烯丙基仲醇进行动力学拆分,回收未反应底物的光学纯度达到90% 以上,使得动力学拆分在有机合成中具有了实际意义。
由于动力学拆分方法显示出的经济省时的优势,在现代工业生产上得到了广泛的应用,同时也得到了广大学者的深入研究。
本文对目前众多的动力学拆分方法进行了分类,并综述了动力学拆分在有机合成中的应用,展望了解其发展的趋势,旨在为动力学拆分技术的进一步开发利用和工业化生产提供依据。
2 动力学拆分的分类2.1 根据拆分方法分类动力学拆分根据拆分方法的不同,可分为经典动力学拆分、动态动力学拆分和平行动力学拆分。
2.1.1 经典动力学拆分经典动力学拆分基于两个对映异构体对于某一反应的动力学差异。
在不对称反应环境中,当反应进行到一定程度时,可得到由快反应底物转化而来的产物PR或PS,同时可回收慢反应底物SS或SR 。
有机化学反应中的手性诱导和拆分策略手性是有机化学中一个非常重要的概念,它指的是分子或离子的非对称性,即在空间中无法与其镜像重合的性质。
手性分子在自然界中广泛存在,包括生物体内的蛋白质、核酸以及药物等。
因此,研究手性化合物的合成、转化以及手性诱导和拆分策略对于有机化学领域具有重要意义。
手性诱导是指在化学反应中通过手性辅助剂或催化剂来引入手性中心的过程。
手性辅助剂是具有手性结构的化合物,它能够与反应物形成手性配合物,从而使反应生成手性产物。
手性催化剂则是具有手性结构的催化剂,它能够通过与反应物发生特定的相互作用,使反应选择性地进行,生成手性产物。
在手性诱导中,手性辅助剂或催化剂的选择对于反应的结果至关重要。
例如,在不对称合成中,手性辅助剂可以通过与反应物发生氢键、离子键或范德华力等相互作用,形成手性配合物。
这些手性配合物在反应过程中起到了定向和选择性的作用,使得反应生成手性产物。
同时,手性催化剂也能够通过与反应物形成特定的配位键或氢键等相互作用,使得反应具有手性选择性。
除了手性诱导,手性拆分也是有机化学中的重要内容。
手性拆分是指将一个手性分子分解成两个对映异构体的过程。
手性拆分的策略有很多种,其中常用的包括晶体拆分、酶促拆分和化学拆分等。
晶体拆分是指通过晶体生长的方式将一个手性分子分解成两个对映异构体。
这种方法利用了晶体生长过程中的对称性破缺,从而使得晶体中的分子排列具有手性。
通过合适的晶体生长条件,可以使得晶体中只生长出一种对映异构体,从而实现手性拆分。
酶促拆分是指利用酶作为催化剂将手性分子分解成两个对映异构体。
酶是生物体内一类具有高度立体选择性的催化剂,它能够通过与手性分子特定的相互作用,使得反应具有手性选择性。
因此,通过选择合适的酶催化剂,可以实现手性分子的拆分。
化学拆分是指利用化学反应将手性分子分解成两个对映异构体。
这种方法通常需要选择具有手性诱导作用的反应条件和反应物,从而使得反应具有手性选择性。