铝电解预焙阳极生块裂纹问题的探讨
- 格式:doc
- 大小:794.00 KB
- 文档页数:9
电解铝预焙阳极炭块焙烧质量分析(5篇模版)第一篇:电解铝预焙阳极炭块焙烧质量分析电解铝预焙阳极炭块焙烧质量分析一、前言我公司焙烧有54炉室和18炉室两个生产系统,焙烧炉是敞开式、w型环式炉,分别采用煤气和重油做燃料进行加热升温。
54室焙烧炉结构为8火道7料箱,料箱尺寸为:3440×730×4170mm,每炉平装生块84块,有三个火焰系统每个火焰系统为18个炉室。
18室焙烧炉结构为9火道8料箱,料箱尺寸为:5330×703×5240mm,每炉立装生块192块,一个火焰系统。
两系统年生产能力达到8万吨。
二、制定合理的升温曲线焙烧是炭素制品生产中的一个重要工序,生坯炭块的焙烧是生坯炭块在专门设计的加热炉内周围用填充料隔绝空气,按一定升温速度将生坯加热到1000℃---1050℃左右的生产工序。
在焙烧过程中生坯炭块主要是进行粘结剂的分解和聚合反应。
焙烧的升温速度、温度梯度及最高温度对阳极质量都有很大影响。
生坯炭块在焙烧过程中主要是粘结剂的焦化过程,即是沥青进行分解、环化、芳构化和缩聚等反应的综合过程。
具体生坯炭块在焙烧炉内焦化过程与温度加热变化如下表。
我公司根据生坯炭块在焙烧炉内焦化的过程及54室焙烧炉室、18室焙烧炉室的结构和煤气、重油的热值计算,分别对54室焙烧炉室和18室焙烧炉室采用了252小时和168小时的加热炭块升温曲线的生产过程。
移炉周期分别采用36小时和28小时。
低温预热阶段200℃左右制品粘结剂开始软化中温阶段200℃--300℃制品内吸附的水和化合水以及低分子烷烃被排出。
400℃以上变化最为突出500℃--650℃ 碳环聚合形成半焦高温烧结阶段700℃以上半焦结构分解,逐渐形成焦炭,构成乱层堆积结构基本单位的六角网状平面。
900℃以上这种二维排列的碳原子网格进一步脱氢和收缩,以后就变成了沥青焦。
燃料生产大规格炭块和炭块平装的生产要求,及用重油作为燃料生产大规格炭块和炭块立装的生产要求,该曲线容易操作又安全,尤其在排出挥发份阶段,排出的挥发份不但能充分燃烧,焦化反映比较彻底,而且对低温炉室起到一个很好的预热作用,使系热得到合理利用,烟气进入烟斗后温度平均为200 ℃,到净化系统温度在60℃--130℃,达到技术要求,有利于净化系统对烟气的净化与排放。
谈预焙开槽阳极在电解槽使用中的问题作者:李鸿斌程生兰来源:《中国科技博览》2013年第24期【摘要】:铝电解预焙阳极炭块是铝电解生产中的一种重要原材料,它在铝电解的生产中起着“心脏”的作用。
阳极炭块内在质量和各项技术参数的设计直接影响着电解生产工艺、经济指标以及生产成本。
本文通过对包铝在200KA预焙槽近几年的使用,探讨了使用过程中出现并注意解决的问题。
【关键词】:电解槽、电压、效应系数、开槽阳极、阳极开裂、阳极掉角。
中图分类号:TQ151.1+51、包铝是在2008年底至2009年初开始使用开槽阳极。
在200KA预焙槽上使用的,目前已使用了三年,目前使用的情况较好,200KA电解系列的生产工艺、经济指标见下表1.。
2、包铝使用的开槽方式为是在生阳极成型过程中成槽。
这种方式的主要优点是:(1)开槽无需额外设备。
(2)不象在机械加工时对生成的碳粉进行收集、运送和循环。
该方式的缺点是:(1)槽的方向受阳极块取出方向的控制。
(2)成槽后的生阳极在搬运过程中易受到损坏,增加了废品率。
这时棍道运输就不如积放式运输好。
(3)在焙烧过程中填充料常填满成型的槽并与表面粘连。
清理槽沟很麻烦,且需要专用的设备。
(4)将清理不彻底的阳极块用于电解生产中,则会增加碳尘量,从而增加了电解质电阻和降低电流效率。
3.1、要加大对开槽阳极的抽检频次及数量,对电解影响较大的抗压强度、真密度、CO2反应性等参数的监控。
包铝在使用使用开槽阳极后,将抽检的取样量由120吨取一个样本,增加到了取两个样本。
这样可以有针对进行使用炭块情况和参数的对比,做到对使用情况的有效监控。
3.2、要加强对开槽炭块的外观检查。
由于开槽阳极开槽方式决定,炭块的强度受到一定影响,再加上运输、吊装等因素造成阳极开裂、阳极掉角、开槽中夹杂的焙烧料较多,将检查不到位的阳极块用于电解生产中,则会增加碳渣量,从而增加了电解质电阻和降低电流效率。
3.2.1、阳极开裂、阳极掉角进入电解生产,则会使开槽阳极通过改善电解质的流动场,来改善电解槽的温度场。
阳极作为铝电解的心脏,它的质量好坏,不但影响电解槽的平稳生产,还影响着电解的各项经济技术指标,如:阳极消耗、电能消耗、铝液质量;同时还对节能减排指标中的烟气排放有着直接的影响。
炭阳极组装车间是把电解返回的残极进行电解质清理、残极压脱、磷铁环压脱,并把焙烧块和铝导杆—钢爪组用熔化的磷生铁进行连接成为具有一定机械强度、较小比电阻的整体,同时对残极进行破碎,破碎后的残极返回成型车间供配料使用。
其质量控制主要有:残极料中灰分、磷生铁的控制;浇铸质量及组装块表面附着的磷生铁、填充焦的控制;磷生铁的配比控制。
一、阳极炭块中灰分、磷生铁产生的原因1、灰分产生的原因:1)软残极产生残极是阳极炭块在铝电解生产中使用以后换下的残余部分,其表面覆盖有氧化铝和氟化盐,将其清理掉后经破碎返回成型作为阳极材料的原料,以提高生阳极的体积密度、降低空气渗透率、提高抗压强度等。
但由于残极在电解槽上高温电解质中使用了近30天,其表面层硬度较小、空隙度大、抗氧化性能较差、着火点低等,此部分软残极进入成型配料后,将对阳极质量带来很大的影响,造成电解更大的损失。
2)收尘系统产生残极压脱、破碎时产生的大量粉料经收尘系统收尘后进入残极皮带,最终返到阳极下到工序成型生产线,导致阳极Si 元素含量增加。
这些收尘粉料杂质含量高、性状疏松、假比重小、理化性能低劣,对电解的阳极净耗、电流效率影响较大,不应上线参与阳极生产。
另外工作现场、工序卫生清扫等产生的脏料也会带入一部分灰分。
2、铁含量增加产生的原因:1)残极中携带有部分未分离的磷铁残极压脱时,少量与残极结合紧密的磷铁被压脱下来,这部分磷铁在残极皮带上未被电磁除铁器清除下来或除铁器上的铁未及时清理,被残极挂掉,从而进入成型配料生产线,致使阳极铁含量增加。
措施:将电磁除铁器改为永磁体除铁器。
2)浇铸后阳极表面磷生铁清理不干净阳极组装块在浇铸站浇铸时,会产生少部分外溢铁水,飞溅到阳极表面上和铁珠落入炭碗内,人工清理外溢冷凝铁,碎铁屑和铁珠靠人工清理费时费力,而且清扫不干净,这部分铁将进入电解生产线,导致铝液铁含量增高。
电解铝用预焙阳极质量的提升策略研究摘要:预焙阳极的质量直接影响电解铝的生产质量和效果,因此,一定要选择性能优质合格的预焙阳极,同时,在采购、生产、使用各个环节需要加强对阳极质量的实时监控,避免出现安全问题,阻碍电解铝的稳定、顺利生产。
本文通过对预焙阳极质量标准、质量检测进行分析,指出电解铝预焙阳极质量对电解铝生产的重要影响并分析应对措施。
关键词:预焙阳极;电解铝;生产;影响引言:预焙阳极个各项技术指标达标与否,关乎着电解铝是否能够高质量生产,由此可见,预焙阳极在电解槽中位置相当重要,直接影响电解铝生产环节是否能够顺利开展。
把控预备焙阳极质量需要贯穿整个电解铝阳极采购、生产及使用的各个环节,电解铝的预焙阳极质量检测工作也十分重要。
本文结合预焙阳极质量检测技术及方法分析电解铝预焙阳极质量对电解铝生产的影响及意义。
1.电解铝阳极质量检测技术现状在过去的很长一段时间,我国在电解铝阳极检测技术方面依然停留在模仿国外技术的阶段,随着科学技术的不断技术与发展,一些新型的阳极检测设备不断研发,但是仍然存在一些数据不能实时共享的问题,仅仅依靠人工采集;近几年,我国科研人员也在不断优化创新智能采集数据,但是依旧不具备智能化的控制水平,无法实时上传和共享阳极检测数据[1]。
二、电解铝预焙阳极质量对电解铝生产的重要性电解铝预焙阳极质量直接关乎着电解铝生产工作是否能够顺利正常运转,一旦预焙阳极质量出现问题,那么,在电解铝生产过程中就会出现掉渣、裂纹、氧化等问题,不利于电解铝的正常生产。
电解铝用预焙阳极质量的指标也是有一定标准的,分别有电阻率、耐压强度、灰分、热膨胀率等。
对于电解铝的电解槽而言,更加注重其导电效率及导热性能和抗氧化性,其中最明显的效果就是性能较好的阳极能够最大限度的承受电流密度,开展强化电流阳极生产,并且会降低阳极电压,很少出现炭渣及脱落裂纹等现象,增强其氧化性能、耐高温、低消耗;合格达标的阳极能够增强电解槽的稳定性能,提升电流效率,减少电能消耗,确保电解铝预焙阳极的高质量生产,所以,应该高度重视电解铝生产过程中阳极质量所造成的影响。
铝电解槽焙烧影响槽寿命的探讨1预焙铝电解槽焙烧的目的和要求焙烧的目的:排除砌体水分,加热槽体;焦化炭块之间和阴极钢棒周围的糊料;使阴极接近或达到正常作业温度;焙烧期间熔化了的高分子比电解质渗入炉底,起到堵塞裂缝、修补缺陷的作用;加热阳极及装炉物料,使阳极温度达到生产温度,熔化物料,满足启动需要;满足电解槽内炭素材料对碱性物质的大量吸收。
焙烧的要求:均匀缓慢的加热电解槽阴极内衬、阳极以及装炉物料,使三者达到一定的温度条件,以利于下一步的启动操作。
2铝电解槽在焙烧期间产生破损的形式及原因分析2.1阴极炭块断裂或出现裂纹一般来说,阴极炭块断裂是与阴极炭块的长度方向相垂直的横向裂纹,裂纹的深浅不等,最深的地方可使阴极炭块横向断裂。
这种断裂的产生大都是电解槽在焙烧过程中阴极炭块局部电流密度过大、温度过高、热冲击过大所致。
2.2电解槽炉底中缝捣固糊与阴极炭块之间出现大的裂缝电解槽炉底阴极炭块之间主要使用捣固糊填充连接处缝隙。
在焙烧过程中,阴极炭块出现膨胀现象,而捣固糊出现收缩,正是这种收缩起到了吸收阴极炭块膨胀的作用,当焙烧温度不超过1200℃时,这种作用可以很好地体现出来,焙烧结束后,一般阴极炭块和烧成后的捣固糊之间有很小的缝隙或不出现缝隙。
当电流分布严重不均、局部温度超过1200℃时,阴极炭块不再膨胀,而是随着温度的升高而发生收缩,烧成后的捣固糊也是随着温度的升高而收缩,这样,阴极炭块之间的捣固糊不再起到吸收阴极炭块膨胀的作用,而使阴极炭块与捣固糊之间的缝隙越来越大。
2.3阴极炭块与边部捣固糊在焙烧过程中出现缝隙在新建的或大修后的电解槽焙烧过程中,若操作不当,在阴极炭块与边部捣固糊之间也会出现裂缝,其裂缝的生成机理与本文2.2节炉底中缝捣固糊与阴极炭块之间出现裂缝的机理是一样的。
2.4人造伸腿出现横向收缩裂纹与侧部炭块的早期破损槽底部阴极炭块与侧部炭块之间是由较宽较厚的捣固糊填充并捣实,而这捣实的炭素糊为无头无尾的封闭环型体构成的电解槽人造伸腿。
铝电解用预焙高密阳极研究与应用摘要:当前,由于原材料、加工工艺等客观因素的影响,铝电解预焙阳极炭块仍存在孔隙率大、体积密度低等缺陷。
基于此,本文详细探讨了铝电解用预焙高密阳极研究与应用。
关键词:铝电解;预焙;阳极众所周知,铝电解槽是铝冶炼中的重要设备,预焙阳极是铝电解槽的“心脏”。
阳极炭块的结构和质量对生产稳定运行及电解槽能耗有着重要影响。
近年来,业界对阳极炭块结构优化和新型阳极进行了大量研究,并取得了重大突破。
一、铝电解基本原理和现状固体氧化铝溶解在熔融冰晶石熔体中,形成具有良好导电性的均匀熔体,采用炭素材料做阴阳两阳,当通入直流电后,即在两极发生电化学反应,在阳极得到气态物质,阴极得到液态铝,其过程为:溶解的氧化铝-液态铝(阴极)+气态物质(阳极)铝的工业生产采用活性阳极(炭阳极)。
采用炭阳极生产时,随着电解过程的进行,阳极炭参与电化学反应,生成碳的化合物-二氧化碳。
在过去的很长一段时间,我国在电解铝阳极检测技术方面依然停留在模仿国外技术的阶段,随着科学技术的不断技术与发展,一些新型的阳极检测设备不断研发,但是仍然存在一些数据不能实时共享的问题,仅仅依靠人工采集;近几年,我国科研人员也在不断优化创新智能采集数据,但是依旧不具备智能化的控制水平,无法实时上传和共享阳极检测数据二、预焙阳极吸附工艺及流程以石油焦及沥青焦为骨料制备铝电解阳极,在焙烧过程中,一部分骨料和煤沥青被分解成气体逸出,另一部分被焦化成沥青焦。
生成沥青焦的体积远小于原来占有的体积,产品中形成了许多不同孔径的不规则微孔,有文献表明,炭素制品的总孔度达到16~25%,大量气孔的存在必然会对产品物理化学性能产生一定影响。
一般来说,产品孔度增加,密度降低,比电阻增加,机械强度降低,在一定温度下氧化速率加快,耐腐蚀性能也变差,气体或液体更易渗透。
因此,可在焙烧工艺后增加一个吸附工艺,以便焙烧后的炭块能被吸附剂充分吸收,并对其理化性质及上槽情况对比分析。
电解铝预焙阳极质量对电解铝生产的影响分析摘要:预焙阳极质量在电解铝生产过程中起着至关重要的作用,达标的阳极质量能够提升电解铝的电解效果和生产质量,不达标的电解铝可能会造成阳极松散甚至脱落的现象。
所以,为了防止出现安全问题,提升电解铝预焙阳极质量势在必行。
本文从电解铝预焙阳极质量对电解铝生产的影响入手,研究分析提升提升电解铝预焙阳极质量的有效策略,促进电解铝更高质量的生产以及行业的稳定发展。
关键词:提升;策略;电解铝;预焙阳极质量引言:在成产电解铝的过程中,预焙阳极是电解铝生产过程中的关键部分。
预焙阳极的质量与否直接关乎电解铝的日常生产,影响铝业质量及其各项数据指标。
所以,在电解铝预焙阳极质量监控方面,应给予高度重视,将监控电解铝生产工作贯穿整个生产过程的始终。
由于考虑电解铝的生产成本以及生产的经济性,需要不断提升电解铝预焙阳极的生产质量,在保证电解铝预焙阳极高质量的同时,保障电解铝的生产效益。
1.电解铝预焙阳极质量的影响在电解铝预焙阳极生产过程中,预备阳极的作用十分重要。
为了避免出现阳极质量问题,其工作人员需要在生产期间,严格监控,需要及时更换阳极碳块。
一旦阳极质量出现问题,容易导致电解铝出现氧化、裂纹等问题,严重影电解铝预焙阳极的质质量,具体会影响以下几方面:1.1原铝的质量如果电解铝预备阳极质量不达标,会导致原铝的消耗量大幅度增加,在更换阳极碳块的过程中,很可能会出现原铝化爪、脱极、氧化等现象,更严重的是,还会导致铝液且质量严重增加,导致原铝的使用需求匮乏。
1.2电解槽温度电解槽的温度也会影响电解铝预焙阳极,如果电解槽的电阻率不具稳定性,电解铝的阳极电流就会持续增加,将会直接影响阳极电压偏离正常指标,使电解槽的电压进一步升高。
进而会使热量激增,使电解质的各项技术指标发生改变,导致阳极掉落、脱块等问题出现。
一旦出现此类情况,就需要第一时间清理电解槽,强化电解槽内的沉淀物质。
但是,增加电解槽的沉淀物又会出现炉底返热的问题出现,使电解槽的稳定骤然上升,从而形成一个恶性循环体。
浅谈预焙阳极生坯质量影响因素及控制手段摘要:预焙阳极是铝电解槽的心脏,其质量好坏对降低铝电解生产成本,稳定电解槽的运行有着十分重要的影响,而要提高炭阳极质量,首先必须要提高阳极生坯的质量。
因此,预焙阳极质量的好坏不仅影响吨铝炭秏,而且,对电流效率、能耗、原铝质量、环境污染、电解操作以及电解槽维护等均有影响。
而预焙阳极质量的好坏在很大程度上取决于生阳极的质量。
关键词:阳极生坯;影响因素;控制手段前言如果铝电解槽长期使用质量低劣的阳极,将导致铝电解槽发生病变,继而引发病槽,缩短电解槽寿命。
本文主要针对预焙阳极生坯生产过程中质量的影响因素及控制措施加以分析,以提高预焙阳极生坯的质量,满足铝电解生产的需要。
1、概述影响阳极质量的内容1.1球磨粉作为预焙阳极生产过程中的一种原料,其质量直接影响到最终阳极的质量。
1.2生产配方选择在电解铝用预焙阳极的生产过程中是一个非常重要的环节,由于各厂家原料来源、设备选择、工艺条件的不同,无法互相直接借鉴。
1-3、混捏温度对混捏质量有很大的影响,我们一般将混捏温度控制在高于沥青软化点50℃~80℃的水平上。
1.4生阳极质量波动是造成产品质量波动的主要因素,减少过程工艺条件波动才能确保生阳极质量的稳定。
1.5煤沥青不仅是阳极材料的重要组成部分,而且沥青的浸润性、流动性、可塑性、渗透性、结焦性(焦化率、焦结构、焦化曲线)、稳定性和元素化学组成,适宜的使用条件对炭阳极质量影响很大。
2、分析预焙阳极生坯质量的影响因素及控制手段2.1分析球磨粉对预焙阳极生坯质量的影响及控制球磨粉纯度在生阳极配方中起着很重要的作用,尤其-0.075球磨粉中的含量,对炭块的体积密度及外观质量起到很关键的作用。
粘结剂煤沥青的用量由骨料的总比比表面积决定,而粉料的比表面积占骨料总比表面积的90%以上,因此,在一定程度上可以说,沥青的用量取决于粉料的比表面积。
同样一个配方,当粉料较细时,其比表面积较大,所用的沥青就多,当粉料较粗时,所用的沥青就少,所有粉料纯度的控制及配入量对提高混捏质量及生坯质量非常重要。
电解铝预焙阳极炭块焙烧质量分析电解铝预焙阳极炭块是铝电解过程中不可或缺的一种重要材料,其质量直接影响到铝电解工艺的稳定性和阳极效率。
因此,进行炭块焙烧质量分析对于优化铝电解工艺具有重要的意义。
本文将从炭块焙烧过程的目的、影响因素和质量分析等方面展开论述,以期为电解铝预焙阳极炭块焙烧质量分析提供参考。
一、炭块焙烧过程的目的炭块焙烧是将炭块在高温条件下加热,使其发生物理和化学变化的过程。
焙烧的目的主要有三个方面:1.燃料预火:焙烧过程中,炭块会发生燃烧反应,释放出大量热能,为铝电解提供所需的热量。
2.炭块结构改善:焙烧过程中,炭块中的焦油和挥发物质会被燃烧掉,使炭块的结构得到改善,提高炭块的强度和导电性能。
3.阳极效率提高:焙烧过程中,炭块表面的炭化物与氧气发生反应,生成二氧化碳等气体,使阳极表面得到清洁,提高阳极的利用率和效率。
二、炭块焙烧质量影响因素炭块焙烧质量受到多种因素的影响,包括原料配比、焙烧温度、焙烧时间等。
下面详细介绍各个因素的影响:1.原料配比:炭块的原料主要由煤焦炭、石油焦等组成,不同原料配比会影响炭块的化学成分和结构特性。
合理的原料配比可以提高炭块的燃烧性能和导电性能。
2.焙烧温度:焙烧温度是影响炭块结构和性能的重要因素之一、过高的温度会导致炭块燃烧过快,结构不稳定;过低的温度则无法充分改善炭块的结构。
因此,选择合适的焙烧温度对于提高炭块质量非常重要。
3.焙烧时间:焙烧时间也是影响炭块质量的重要因素之一、焙烧时间过长会导致炭块过度烧结,丧失一定的孔隙度;焙烧时间过短则无法充分改善炭块结构。
因此,合理控制焙烧时间是保证炭块质量的关键。
三、炭块焙烧质量分析方法炭块焙烧质量分析可以采用多种方法进行,包括物理性质分析、化学成分分析、显微结构分析等。
下面将针对主要分析方法进行简要介绍:1.物理性质分析:包括炭块的密度、孔隙度等指标的测定。
密度的测定可以通过浸水法或压片法进行,孔隙度的测定可以通过饱和浸水法进行。
. . 铝电解预焙阳极生块裂纹问题的探讨 丁邦平 摘 要:根据四川启明星铝业公司铝用阳极生产新线特点,对阳极生块生产中经常出现的几种裂纹以及阳极焙烧后较大的抗压强度进行了原因分析,并提出了一些具体措施,以期对生块生产有所指导。 关键词:预焙阳极、生块、裂纹 、抗压强度 1、前言 目前世界铝产量3500万吨,国内产量已达900万吨以上,产能已超过1000万吨。预焙阳极的需求将达 600万t。生块经焙烧而成预焙阳极,因而生块质量对预焙阳极的质量至关重要。就四川启明星铝业有限责任公司阳极生产而言,生块经常出现的质量缺陷主要缺损、掉棱、尺寸超标、裂纹、表面粗糙等,其中裂纹出现最多,也最难解决。本文就生块裂纹以及阳极焙烧后较大的抗压强度产生的原因进行探讨,并提出一些措施,供参考。 2、铝用阳极生产新线简介 2.1生产工艺流程新配置
中碎系统生产的四种不同粒级通过七台配料秤配料形成骨料,由集合螺旋、斗式提升机及过渡螺旋输送到四周预热螺旋加热到180—190℃,热骨料与180—190℃液体沥青连续进入到强力混捏机混捏4-5分钟,一般混捏温度在200—210℃,高温混捏后的糊料进入强力冷却机由喷入的冷却水均匀冷却到160—
液体沥青四轴预热螺旋180—190 ℃粗粒中粒粉子粉尘
抽真空高温振动成型160-170℃
强力冷却
❖阳极混捏成型新工艺配置强力混捏200-210 ℃全自动控制冷却水.
. 165℃,冷却后糊料通过振动给料机送到真空型成型机振动成型,成型制品由悬链带入冷却水池经过两小时左右水浴冷却,制品继续被悬链带入到输送辊道处,再由推进器推到辊道上输送到制品库。 2.2生产工艺新线特点 该新线特点较多,这里仅列出可能产生裂纹有关系的工艺新线特点: 选用EIRICH立式高速混捏机作为糊料混捏设备,替代传统的低速单轴或双轴卧式混捏机。 采用真空型振型机,振型温度可达160±5℃,高于非真空型温度混捏温度(145±5℃),高温振型要求高温混捏,因此混捏温度远高于非真空型混捏温度。 混捏机虽无加热装置,但因混捏机高速运行发热,由此带来混捏温度高于热骨料和沥青的混合温度。 强力冷却机不仅起到冷却作用,还对混捏后的糊料在冷却过程中再混捏。 真空成型机的真空度能达到730—745mmHg。 真空成型机的预压气囊可以在振动前充进3—5kg压力的压缩空气对糊料提前预压实。 3、问题的由来 启明星自2005年1月28日投产以来生产近两年半的时间,产量已达25万吨,期间除生产自用产品以外,还生产有不同规格的国内铝电解需求的产品以及国外俄罗斯铝电解需求的产品,各类产品都出现过不同类型的裂纹,以下列出不同阶段一些典型裂纹案例,包括焙烧后出现的可能是上工序引起的生块暗裂纹。 (1) 生产初期,成型后的生块经冷却水池冷却后出现较多的裂纹,并伴有爆裂声,一般出现在长侧面的垂直裂纹,严重时出现生块断裂。 (2) 2006年年初,焙烧制品出现大面积的裂纹,焙烧废品率超过30%,同时这批制品在组装过程中也产生裂纹,进入电解槽出现较多的阳极垂直断裂而化爪现象,导致电解槽生产不正常。 (3) 2007年年初,生产外销制品时,生块出冷却水池放置几天后出现数量较多的炭碗内部各向裂纹,并伴有爆裂声。 (4) 生产过程中有时发生长侧面横向裂纹,裂纹处非常光洁。 . . 4、预焙阳极生块裂纹种类 预焙阳极生块经振动成型、脱模后,裂纹出现的位置、粗细(宽 窄)、深度各不相同,按出现的部位大致可分为碗裂、侧面裂纹和不规则裂纹,其中碗裂又分为碗边缘裂纹、碗间裂纹和碗底部裂纹,侧面裂纹分为水平和垂直两种裂纹,见表 1。 表1 预焙阳极生块裂纹种类 序号 裂纹类型 定义 特征
1 炭碗裂纹 碗边缘裂纹 由炭碗指向斜面边坡的裂纹 长度不一,可有一条或数条裂纹
2 碗间裂纹 两个炭碗之间的裂纹 一般出现在生块上表面中部的两个炭碗,沿生块长度方向,贯穿于两个炭碗
3 碗底部裂纹 单个炭碗底部各方向裂纹 一块炭块至少出现一个有裂纹的炭碗,其长度不一,有贯穿性裂纹,可有一条或数条裂纹,
4 侧面裂纹 水平裂纹 出现在四个侧面的平行底平面裂纹 多为水平裂纹,沿生块长度方向,较细,长度从2—10cm不等,一般为连续裂纹
5 垂直裂纹 出现在四个侧面的垂直底平面裂纹 多为水平裂纹,沿生块长度方向,较细,长度从2—10cm不等,一般为连续裂纹
6 不规则裂纹 包括网裂和斜面与侧面交线处的裂纹 如蜘蛛网或放射线一样沿各方向;多发生在斜面与面积较小的侧面交界处
5、生块裂纹产生原因及采取的措施 不同类型的裂纹,其产生的原因不同,所采取的措施也不尽相同,下面分别探讨 。 5.1炭碗裂纹 5.1.1 碗边缘裂纹 预焙阳极生块在成型过程中,受到振动力、摩擦力以及其他力的作用,在生块内部的某些部位残余一些相互作用的力,这些应力使生块内部存在细微的松裂 和外胀,生块脱模后由于弹性后效作用而出现裂纹。根据经验,这种力的作用主要来源于两方面 : (1) 一方面与成型机的模头是否转动灵活有关,如模头转动灵活,模头很容易. . 从生块的炭碗中脱出;若模头转动失灵,脱模时模头将对炭碗施加力的作用,从而造成碗边缘裂纹; (2) 另一方面与成型机重锤是否处于水平状态有关,当重锤水平偏差过大时,模头对炭碗的作用力不均匀,某处作用力超出糊料的粘结力时,产生碗边缘裂纹。 针对这种裂纹,采取的措施:成型工在生块成型前必须认真检查每个模头,保证模头转动灵活;经常检查并调整成型机的重锤,使之处于水平状态 。 5.1.2碗间裂纹及碗底部裂纹 形成碗间裂纹和碗底部裂纹的因素基本相同,可以归到一起来讨论。 (1) 与生块外形尺寸和炭碗分布有关 碗间裂纹根据制品形状不同和碳碗排布方式不同,其造成废品量明显有差异。一般来讲:炭阳极窄而长;碳碗(棒孔)呈一条直线分布,有较多的碗间裂纹,相对较宽类型的炭阳极;碳碗呈对称分布,碳碗间距较大,则极少有碗间裂纹出现。碳碗间距小,强度低,在弹性后效作用下易形成中间开裂。 (2) 台阶高度 炭阳极外型因为要减少电解残极量和工艺上考虑,一般将其外型上部设计为斜面。如图1所示。
图 1 因此在振动成型过程中,将改变力的分布状态,因物料为塑性材料,外力将均匀分布向下传递,这样在斜面上产生了反支力,使力在水平方向有分力作用。 设:外作用力分布密度为:f 则水平分力分布密度:f平=aftgθ/b=f 而水平分力:F=bf . . 由上分析说明: 当有斜面时,水平方向分布密度与垂直方向分布密度相等,与斜面斜角大小无关,斜面高度越大,水平方向力越大,撤去外力后,被改变位置的颗粒力图恢复原位,形成的弹性后效越大,尤其是糊料塑性较差时,弹性后效力体现更为显著。当弹性后效力超过颗粒之间粘结力时,出现中间裂纹。另外,物料总是沿垂直于力的方向分层,使物料之间的粘结力变小,是产生裂纹的另一原因。由此可见:炭阳极生坯台阶越高,糊料塑性差,糊料粘结力小则易出现碗间和碗底部裂纹。 (3) 与糊料特性有关 胶料论指出:将焦碳颗粒粘结在一起的不是沥青,而是胶料,胶料在制品中是连续相,是制品的基质,焦碳颗粒分散在胶料中,胶料的性质由胶胞决定,小颗粒之间的粘结力大于颗粒之间的粘结力。在生产中若配方中粉子纯度低,碳粉颗粒直径大,则形成的胶料粘结力小:-0.075mm含量小,则混捏时产生的胶料少,糊料塑性差、颗粒之间的粘结力小,振动成型时易形成碳碗间的贯通性大裂纹。反之,形成的胶料粘结力强,但细粉形成的弹性后效力增大,碳碗间形成细小裂纹。另外,当融化好的沥青长时间在较高温度下静置不用时,沥青发生一定程度的老化(氧化),沥青的软化点升高,在混捏温度不变的情况下,糊料塑性变差,沥青粘结力下降,生块易形成裂纹;混捏过程若沥青量小形成的糊料塑料差,同样也形成碗间或碗底部裂纹。 (4) 振动台的频率影响 目前启明星使用的振动成型机是真空型预压式,结构主要是振动台、带真空罩和预压气囊的重锤、底部装有密封的模具等部分组成。其中振动台是双轴振动台,由激振器、减震气囊和固定夹具等部件组成,激振器一组两个偏心块与另一组两个偏心块旋转方向相反,但保持同样的旋转速度,两组偏心块的质量相同,它们在水平方向产生的惯性离心力分力在任何角度下都是大小相同,方向相反,因而互相抵消为零,而垂直方向的分力则叠加作用在振动台上。因此偏心轴振动台只具有垂直方向的定向振动。工作时的定向振动引起振动台连同上面的物料颗粒是沿一直线往复运动,所经过的路程是从一个边缘位置到另一个边缘位置(可称为幅度),其振幅是幅度的二分之一。 由于振动台不同组成部件的影响,如: . . 八个减震气囊减震性能的不同 四组固定夹具固定压力不平衡 模具、真空罩密封破坏而局部失出弹性 模具内糊料不均匀分布引起重锤的倾斜 等等因素都会导致振动台不同部位所受的激振力不一样,振动频率不同步,甚至是相反,使振动台的某些部位形成振幅极小,甚至是零振幅,某些部位振幅大,整体表现上下为非直线运动,而是一种椭圆或圆形运动,致使糊料没有被均匀振实而产生碗间或碗底部裂纹裂纹。 碗间和碗底部裂纹应采取的措施 : (1) 预焙阳极外型设计时尽可能使炭碗对称分布于上表面,并尽量避免碗间距较小。避免台阶高度过高。 (2) 生产中保持配方和沥青用量及混捏过程稳定。 (3) 沥青温度不宜过高,控制在180—185℃。 (4) 振动成型时合理布料,糊料堆积与生块外型相吻合,以减少糊料迁移量,减少中间部位内应力。 (5) 经常检查振动台各部位,使振动台处于良好的运行状态。 5.3 侧面裂纹 侧面裂纹是指发生在炭阳极四周侧面的裂纹,其基本上为水平方向和纵向裂纹。振动成型生产炭阳极,炭阳极四周总是与模具间有力的作用,在提模过程中产生摩擦力,当摩擦力大于物料间的粘结力时,即发生侧面裂纹。此外,物料沿垂直于激振力方向分层是产生侧面裂纹的另一因素。产生裂纹具体原因如下: 5.3.1 糊料温度的影响 一般来讲,糊料塑性越好,越有利于成型,制品有较高的密实度。在干料组成和沥青量一定的条件下,提高糊料的温度可提高糊料塑性,因为煤沥青粘度随温度变化很大,提高温度使煤沥青粘度下降,沥青的粘结力下降具体讲是胶料粘结力下降,当达到一定程度,使物料与模壁间的摩擦力大于物料的粘结力而形成提模裂纹。同时糊料温度高,有大量烟气存在是导致裂纹的另一原因。当继续提高糊料温度,将使沥青氧化、缩聚作用加剧,使糊料变硬,塑性很快变差,从而形成碗间裂纹,同时制品密度降低,增加振动时间会引起内部粒子结构破坏形成