六年级数学数与代数试题(3)
- 格式:doc
- 大小:78.50 KB
- 文档页数:3
六年级数学数与代数试题1.直接写出得数。
20×70%= 1.77+2.33= 25+75%= 70%÷14=10-0.09= 45÷90%= 12.5%×16= 2%+1.5=200×(1-40%)=(0.18+9)÷9 =【答案】14 4.1 25.75 0.05 9.91 50 2 1.52 120 1.02【解析】本题考查学生对整数、小数、百分数四则运算的计算能力。
题目很简单,提醒学生看清数字和运算符号,看清是否有百分号,把百分数转换成小数、分数再计算。
2.脱式计算。
(能简便计算的要简便计算)(8分)0.25×32×12.5%2.某电器商场“五一大酬宾”,一台冰箱打九折出售,售价3600元,这台冰箱原来售价多少元?【答案】3600÷90%=4000(元)答:这台冰箱原来售价4000元。
【解析】本题考查学生对“打折”的理解。
“打九折”的意思是“现价是原价的90%”,售价3600元,也就是原价的90%是3600元,求原价用除法计算。
3.在下面各图中涂色表示它下面的百分数。
【答案】【解析】根据百分数化成分数的方法,把75%化成,把62.5%化成,把50%化成,根据分数的意义涂出相应的部分。
4.下面4块菜地,阴影部分种西红柿,西红柿面积占的百分比最大的菜地是()。
【答案】C。
【解析】该题将分数与百分数之间的相互转化通过图形直观表达出来,根据分数化成百分数的方法,可引导学生先把各个选项中的西红柿的面积依据分数的意义用分数表示出来,再化为百分数,深化学生对将分数转化为百分数的方法的掌握。
5.():=2.5:1.2 :=():【答案】【解析】本题考查比例的基本性质。
比例的基本性质是两个外项的积等于两个內项的积。
解决第一题可以用两个內项积除以两个外项中的一个数,第二题可以用两个外项积除以两个內项中的一个数。
×2.5÷1.2=,×÷=6.根据下面的条件列出比例,并解比例。
北师大版小学数学总复习《数与代数》检测试题(附答案)一、快乐小帮手。
1.11÷7的商用循环小数记作( ),小数点后面第2004位上的数是( )。
2.一根木棒锯成同样长的小段,5次锯完,每小段占这根木棒全长的( )。
3.50以内8的倍数有( )。
4.与61:51能组成比例的是( )。
5.57300421的最高位是( )位,其中“3”表示( )。
6.把0.166,61,16%,0.⋅1⋅6按从小到大用“<”连接是( )。
二、我是小法官。
(对的打“√”,错的打“×”) 1.相邻的两个非零自然数一定互质。
( )2.分数的分子和分母同时乘5,分数值扩大5倍。
( ) 3.甲数是乙数的5倍,表示甲数比乙数多5。
( ) 4.真分数大于1,假分数小于1。
( )5.给小数的末尾添上0或者去掉0,小数的大小不变。
( ) 三、对号入座。
(将正确答案的序号填在括号里) 1.已知ɑ能被17整除,那么ɑ( )。
A .只能是17 B .是1或17 C .是17的倍数2.两个正方形的边长比是5:4,它们的面积比是( )。
A .5:4 B .25:16 C .16:25 3.0.090的计数单位是( )。
A .十分之一B .百分之一C .千分之一四、我会改写。
(将下列各数改成用“万”作单位的数) 409000 1732000937042000 4560000五、解决问题。
1.一个两位数,其个位、十位上数字和是9,如果此数减去27,那么个位、十位上两个数字交换。
原来的这个两位数是多少?2.国家游泳中心“水立方”建筑面积79532平方米,国家体育场“鸟巢”建筑面积是258000平方米。
比一比,哪个面积大?大多少?六、你会做吗?在庆祝北京奥运会召开的队会上,“智多星”聪聪为同学们用“北京奥运”列了一道加法算式:北京奥运奥运+ 奥运2 0 0 8你知道“北”“京”“奥”“运”各表示哪个数字吗?参考答案一、1.1.⋅57142⋅8 8 2.613.8、16、24、32、40、484.15:18(答案不唯一) 5.千万 3个十万 6.16%<0.⋅1⋅6 <0.166<61二、1.√ 2.× 3.× 4.× 5.√三、1.C 2.B 3.C四、40.9万 173.2万 93704.2万 456万五、1.63 2.鸟巢面积大 178468平方米六、北1 京9 奥3 运6北师大版小学数学总复习《数与代数》检测试题二(附答案)一、小小探索家。
六年级数学《数与代数-应用题(盈亏问题)》一课一练(人教版)一、填空题1.有一口枯井,现有一根绳子,对折后垂直放到井底,绳子一端比井口多10米;如果三折后垂到井底,绳子的一端比井口多2米,绳子的长度是米.2.若干个同学去划船,若每船4人,则多5人;若每船5人,则船上有4个空位,有名同学.3.某公司给职工发奖金,每人发250元则缺180元,每人发200元则余220元,那么平均每人能发奖金元.4.一次数学考试共有20道题.规定答对一题得2分,答错一题扣1分,未答的题不得分.小明得了23分,已知他未答的题目数是偶数.那么他答错了道.5.小明步行上学,如果每分钟步行40米,就会迟到2分钟;如果每分钟步行60米,就提前2分钟到校.小明家到学校有米.6.学校安排学生到会议室听报告,如果每3人坐一条长椅,则剩下36人没有座位;如果每5人坐一条长椅,则刚好空出2条长椅,参加会议室的学生有人.7.学校给学生分配宿舍,每间屋住3人则多出20人,每间屋住5人,恰好够住.学校宿舍间,学生人.8.一批小朋友去买东西,若每人出10元则多8元;若每人出7元则少4元.问:有个小朋友,东西的价格是元.9.托儿所买一车梨.按计划吃的天数计算一下,如果每天吃40个,那么剩下480个;如果每天吃60个,那么还少80个.买回这车梨有个,托儿所计划吃天.10.小虹借了一本科幻书,必须按期归还.小虹若每天读35页,则读完全书比规定日期迟一天;如果每天读40页,则最后一天要少读5页;这本科幻书共有页,规定日期是天,如果他每天读39页,最后一天要读页才能按期读完.二、选择题1.美猴王带着蟠桃回到花果山分给众猴,先分给3只老猴各6个,每只小猴4个,发现还有4只小猴分不到,于是收回重新分,3只老猴各5个,每只小猴3个,可是还剩下12个,那么花果山共有()只猴.A.24B.25C.26D.282.甲乙二人买同一种杂志,甲买一本差2角8分,乙买一本差2角6分,而他俩的钱合起来买一本还剩2角6分,那么这种杂志每本价钱是()A.1元B.7角C.8角D.9角3.有一批同学去划船,他们算了一下,如果增加一条船,正好每船坐6人,如果减少一条船,正好每条船坐9人,则该班有()名同学.A.32B.36C.40D.484.将若干个苹果分给几个小朋友,如果每人分到4个,那么还多12个,如果每人分到6个,那么正好分完.小朋友有几个?根据题意,所列方程或算式错误的是()A.解:设小朋友有x个.4x+12=6xB.解:设小朋友有x个.6x﹣12=4xC.解:设小朋友有x个.4x+12×4=6xD.12÷(6﹣4)5.小聪用一根绳子来测量一口井的深度,他把绳子的一端放入井底,井口外绳子长9米,小聪把这根绳子对折后,将一端入井底,这时在井口外的绳子还有3米,这口井的深度为()米.A.2B.3C.4D.56.用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,绳子长()厘米.A.240B.210C.2807.小红从家里到县城去上学,她以每分钟50米的速度走了3分钟,发觉按这个速度走下去就要迟到8分钟,于是立即加快了速度,每分钟多走了10米,结果到学校时,离上课还有5分钟,小红家到学校的路程是()米.A.3900B.4050C.4300三.应用题1.妈妈带一些钱去买布.买2米布后还剩下1.80元;如果买同样的布4米则差2.40元.问:妈妈带了多少钱?2.某班学生要栽一批树苗.若每个人分配k棵树苗,则剩下38棵;若每个学生分配9棵树苗,则还差3棵.那么k是多少棵树苗?3.学校安排寝室,如果每间13人就正好住满,如果每间10人,还缺三间寝室,学校有几间寝室?4.妈妈带了一些钱去买肉.如果买4千克牛肉,还剩20元;如果买7千克猪肉,还差10元.已知牛肉比猪肉每千克贵15元,妈妈带了多少钱?5.手工课上,王老师带了一些彩纸分给学生.若每组分3张彩纸,则剩下18张,如每组分7张彩纸,则还差2张.王老师一共带了多少张彩纸?6.一小和二小有同样多的同学参加某项比赛.学校用汽车把学生运往赛场.一小用的汽车每车坐15人,二小用的汽车每车坐13人,结果是二小比一小多派1辆车.后来每校各增加一人参加比赛,这样两校需要的汽车就一样多了.最后学校又决定每校增加一人参加比赛,二小又比一小多派1辆车.问两校共有多少人参加比赛?7.同学们集体买一件商品,每人付6元,就会多48元,每人付5元,就会少3元,问这件商品多少元?一共有多少人?8.有一些自行车辐条,安装4辆自行车后,还剩66根辐条;若安装5辆自行车,则少了14根辐条.现在一共有多少根辐条?9.一群小朋友分苹果.若每人分14个,则还多出11个;若一位小朋友只拿10个,则其余小朋友都能拿到17个.这些苹果共有多少个?10.小明家与学校相距6千米,每天小明都以一定的速度骑自行车去学校,恰好在上课前5分钟赶到.这天,小明比平时晚出发了10分钟,于是他提速骑车,结果在上课前1分钟赶到学校.已知小明提速后的速度是平时的1.5倍.小明平时骑车的速度是每小时多少千米?11.王老师把买来的一箱橙子分给幼儿园的小朋友,如果其中2人每人分4个,其余每人分2个,则多出4个橙子;如果其中1人分6个,其余每人分4个,则又缺12个.王老师买了多少个橙子?一共分给多少个小朋友?12.小明步行上学,如果每分钟步行80米,就会迟到3分钟,如果每分钟步行100米,就会提前3分钟到校.小明家到学校有多少米?13.朱老师为参加军训的学生安排宿舍.如果每间宿舍住8人,那么这些宿舍正好住满;如果每间宿舍住6人,那么正好缺4间宿舍.学生宿舍有多少间?参加军训的学生有多少人?14.“六一”儿童节,学校向每个班级分发气球布置教室.如果每个班分20个气球,则多了130个;如果每个班分25个气球,则正好分完.一共有几个班级?一共有几个气球?15.全班同学站队排成若干行,若每行14人则多5人,若每行17人则少4人.共有多少名同学,排成几行?16.育才小学学生乘汽车去春游,如果每车坐65人,则有15人不能乘车.如果每车多坐5人,恰好多余一辆车.有多少个学生去春游?17.聪聪打算读一本故事书,如果每天读10页,还少28页;如果每天读6页,还多20页没读完,你能算出全书共有多少页吗?18.小明去体育用品专卖店买乒乓球,买10个还差8.9元,买5个还剩1.6元,小明有多少钱?19.学校为新生分配宿舍,每个房间住3人,则有23人安排不进去,如果每个房间住5人,则空出3个房间.学校现有多少间宿舍?20.一种商品随季节出售,如果按现价降低10%,每件仍可盈利200元;如果按现价降低20%,则每件亏损220元.这种商品每件的进价是多少元?21.学校分配寝室.如果每间住6人,还有20人没有床位,如果每间住8人,正好住满.学生宿舍有多少间寝室?22.神童幼儿园里买来一些玩具,如果每班分8个玩具,就多出2个玩具,如果每班分10个玩具,就少12个玩具,幼儿园里有多少个班?23.李师傅做一批零件,如果他平均每天做24个,将比计划推迟一天完成,如果他平均每天做40个,将比计划提前一天完成,为了按计划完成,他平均每天要做多少个零件?答案一、填空题1.48.2.41.3.227.5.4.3.5.480.6.105.7.10,50.8.4;32.9.1600,28.10.315,8,42.二、选择题1.D.2.C.3.B.4.C.5.B.6.A.7.B.三、应用题1.解:(2.40+1.80)÷(4﹣2)=4.2÷2=2.1(元/米)2.1×2+1.8=4.2+1.8=6(元)答:妈妈带了6元.2.解:41÷(9﹣k)表示分配人数因为分配人数是整数所以9﹣k=41或者9﹣k=1k=﹣32(舍)或k=8答:k是8棵树苗.3.解:(10×3)÷(13﹣10)=30÷3=10(间)答:学校有10间寝室.4.解:买4千克猪肉要余出:15×4=60(元):剩余:60+20=80(元);每千克猪肉的价格为:(80+10)÷(7﹣4)=30(元);妈妈共带了:7×30﹣10=200(元);答:妈妈带了200元钱.5.解:设一共有x组,3x+18=7x﹣24x=20x=53×5+18=15+18=33(张)答:王老师一共带了33张彩纸.6.解:由于:6×15+1=7×13,所以每校原来参加人数为:6×15=90(人),两校共有:90×2+4=184(人).答:最后两校共有184人参加竞赛.7.解:(48+3)÷(6﹣5)=51(人)6×51﹣48=258(元)答:这件商品258元,一共有51人.8.解:设每辆自行车安装x根辐条,4x+66=5x﹣144x+66﹣4x=5x﹣14﹣4xx﹣14=66x﹣14+14=66+14x=804×80+66=386(根)答:现在一共有386根辐条.9.解:(11+17﹣10)÷(17﹣14)=18÷3=6(人)6×14+11=95(个)答:这些苹果共有95个.10.10﹣(5﹣1)=10﹣4=6(分钟)6分钟=0.1小时设小明平时骑车速度为x,可得方程:﹣=0.1.=0.1×1.5x=0.1×1.5x3=0.15x3÷0.15=0.15x÷0.15x=20答:平时小明平时骑车的速度是每小时20千米.11.解:(4﹣2)×2+4=8(个)12﹣(6﹣4)=10(个)(10+8)÷(4﹣2)=18÷2=9(个)4×2+(9﹣2)×2+4=26(个)答:王老师买了26个橙子.一共分给9个小朋友.12.解:小明准时到达用的时间:(80×3+100×3)÷(100﹣80)=540÷20=27(分钟)小明家到校的路程80×(27+3)=80×30=2400(米)答:小明家离学校有2400米.13.解:(6×4)÷(8﹣6)=24÷2=12(间)12×8=96(人)答:学生宿舍有12间,参加军训的学生有96人.14.解:130÷(25﹣20)=130÷5=26(个)20×26+130=650(个)答:一共有26个班级,共用650个气球.15.解:(5+4)÷(17﹣14)=9÷3=3(行),14×3+5=47(人),答:共有47名同学,排成3行.16.解(15+65+5)÷5=85÷5=17(辆)65×17+15=1105+15=1120(人)答:一共有1120个学生去春游.17.解:(28+20)÷(10﹣6)=48÷4,=12(天).12×10﹣28=120﹣28,=92(页).答:共有92页.18.解:单价:(8.9+1.6)÷(10﹣5),=10.5÷5,=2.1(元);共有:2.1×10﹣8.9=12.1(元);答:小明有12.1元.19.解:(23+5×3)÷(5﹣3)=(23+15)÷2=38÷2=19(间)答:学校有19间宿舍.20.解:(200+220)÷(20%﹣10%)=420÷10%=4200(元)4200×(1﹣10%)﹣200=4200×90%﹣200=3780﹣200=3580(元)答:这种商品每件的进价是3580元.21.解:20÷(8﹣6)=20÷2=10(间)答:学生宿舍有10间寝室.22.解:(2+12)÷(10﹣8),=14÷2,=7(个),答:幼儿园有7个班.23.解:①规定时间为(24×1+40×1)÷(40﹣24,=64÷16,=4(天);②按时完成每天做24×(4+1)÷4,=120÷4,=30(个).答:他平均每天要做30个零件.。
数学数与代数试题答案及解析1.任意三个连续非0自然数的积一定有因数6..【答案】√【解析】因为连续3个自然数中,一定有一个数被3整除,所以一定有因数3;连续3个自然数中至少有1个偶数,所以一定有因数2,相乘起来,就一定被6整除;据此判断.解:因为连续3个自然数中,一定有一个数被3整除,所以一定有因数3;连续3个自然数中至少有1个偶数,所以一定有因数2;所以任意三个连续非0自然数的积一定有因数2×3=6;故答案为:√.点评:明确连续3个自然数中,一定有一个数被3整除,连续3个自然数中至少有1个偶数,所以一定有因数2,是解答此题的关键.2. 36的所有因数是,任选其中四个数组成一个比例式是.【答案】1,2,3,4,6,9,12,18,36;1:2=18:36(答案不唯一)【解析】根据找一个数的因数的方法,可以一对一对的找,最小的是1,最大的是它本身,然后根据比例的意义,写出两个比值相等的比组成比例即可.解:36的约数有:1,2,3,4,6,9,12,18,36.组成的比例式1:2=18:36(答案不唯一);故答案为:1,2,3,4,6,9,12,18,36;1:2=18:36(答案不唯一).点评:此题主要考查求一个数的因数的方法和比例的意义.3.列综合算式:.【答案】2400×(1﹣)【解析】把这段路看作单位“1”,已修了,还剩,因此,剩下2400×,据此解答.解:2400×(1﹣),=2400×,=600(米);答:还剩600米.故答案为:2400×(1﹣).点评:此题解答的关键是把这段路看作单位“1”,求出剩下总长度的几分之几,根据分数乘法的意义,解决问题.4.小林和小军都到图书馆去借书,小林每6天去一次,小军每8天去一次,如果7月1日他们两人在图书馆相遇,那么下一次都到图书馆是几月几日?【答案】7月25日【解析】由题意可知:要求下一次都到图书馆是几月几日,先求出6和8的最小公倍,因为6和8的最小公倍数是24,即7月1日再经24天两人都到图书馆,此题可解.解:6=2×3,8=2×2×2,6与8的最小公倍数是2×2×3=24,即再经24天两人都到图书馆,7月1日+24日=7月25日;答:下一次都到图书馆是7月25日.点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.5.某公交车站,五路:30分钟发一次,六路:20分钟发一次,经过几分钟后两路车再次同时发【答案】60分钟【解析】要求至少要经过多少分钟又同时发车,即求30和20的最小公倍数;根据求两个数的最小公倍数的方法:即这两个数的公有质因数与独有质因数的连乘积;进行解答即可.解:解:30=2×3×5,20=2×2×5,30和20的最小公倍数为:2×2×3×5=60,即60分钟;答:至少要经过60分钟又同时发车.点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.6.求下面各组数的最大公因数和最小公倍数.32和36 51和17 20和45.【答案】4,288;17,51;5,180【解析】(1)(3)对于这样的两个数来说,这两个数的公有质因数的连乘积是这两个数的最大公约数,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解答.(2)因为51÷17=3,即51和17成倍数关系,当两个数成倍数关系时,较大的那个数是这两个数的最小公倍数,较小的那个数是这两个数的最大公因数.解:(1)32=2×2×2×2×2,36=2×2×3×3,所以32和36的最大公因数是2×2=4,最小公倍数是:2×2×2×2×2×3×3=288,(2)因为51÷17=3,即33和11成倍数关系,所513和17的最大公因数是17,最小公倍数是51.(3)20=2×2×5,45=3×3×5,所以20和45的最大公因数为5,最小公倍数为2×2×3×3×5=180.点评:此题主要考查了求两个数的最大公因数:对于一般的两个数来说,这两个数的公有质因数连乘积是最大公因数,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;对于两个数为倍数关系时的最大公因数和最小公倍数:两个数为倍数关系,最大公因数为较小的数,较大的那个数是这两个数的最小公倍数.7.一个自然数含有因数6,能被8整除,还是9的倍数,它最小是()A.48B.54C.64D.72【答案】D【解析】求最小公倍数是共有质因数与独有质因数的连乘积,对于三个数来说:三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.解:6=2×3,8=2×2×2,9=3×3,所以6、8和9的最小公倍数是2×3×4×3=72.故选:D.点评:此题属于最小公倍数问题,按照求三个数的最小公倍的方法,求出它们的最小公倍数问题即可解决.8.下面三句话中,正确的一句话是()A.0.50和0.5的意义相同B.互质的两个数一定都是质数C.两个数的最小公倍数,一定是它们最大公约数的倍数【答案】C【解析】A、根据小数的意义可知;0.50的计数单位是0.01,0.5的计数单位是0.1,据此分析判B、互质的两个数一定都是质数这是错误的,据此反例证明即可;C、两个数的最小公倍数,一定是它们最大公约数的倍数,这是正确的,距离证明即可.解:A.0.50的计数单位是0.01,0.5的计数单位是0.1,所以 0.50和0.5的意义相同,这是错误的;B.8和9是互质数,但是8和9都是合数,所以互质的两个数一定都是质数这是错误的;C.4和6的最大公因数是2,最小公倍数是12,12是2的倍数,所以两个数的最小公倍数,一定是它们最大公约数的倍数,这是正确的;故选:C.点评:本题主要考查小数的意义、互质数的意义、最大公因数和最小公倍数的意义,注意切实掌握各个概念的意义.9.同学们去社区做好事,如果每组6人,人数刚好分完;如果每组9人,也恰好能分完.那么去社区做好事的同学至少()人.A.3B.18C.54【答案】B【解析】由题意得:要求去社区做好事的同学至少有多少人,即求6和9的最小公倍数是多少,根据求两个数的最小公倍数的方法进行解答即可.解:6=2×3,9=3×3,所以6和9的最小公倍数为:2×3×3=18;即至少有18人;故选:B.点评:此题主要考查求两个数的最小公倍数的方法:两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.10.暑假期间,小华和小方都去参加游泳训练,小华每3天去一次,小方每4天去一次,8月1日两人都参加了游泳训练后,几月几日他们又再次一起参加训练?【答案】8月13日【解析】小华每3天去一次,小芳每4天去一次,3和4的最小公倍数就是它们一起参加训练的时间间隔;8月1日两人同时去游泳了,则根据3和4的最小公倍数往后推算出再次相遇的时间.解:3和4的最小公倍数是:3×4=12;8月1日他们在游泳馆相遇,再过12天,即8月13日会一起参加训练.点评:本题关键是找出他们每次同时去训练的相隔的时间,进而根据开始的时间推算求解.11.求下列各组数的最大公因数和最小公倍数:(1)8和9;(2)12和36;(3)16和18;(4)24和36.【答案】1,72;12,36;2,144;12,72【解析】(1)互质数的最小公倍数是它们的乘积,最大公因数是1,据此解答;(2)倍数关系的最小公倍数是较大数,最大公因数是较小数,12和36是倍数关系,36是较大数,12是较小数,据此解答;(3)、(4)把两个数分解质因数,最大公因数是这两个数的公有的质因数的乘积,最小公倍数是这两个数的公有的质因数和各自独有的质因数的乘积,据此解答.解:(1)8和9是互质数,它们的最小公倍数是8×9=72,最大公因数是1;(2)12和36是倍数关系,所以12和36的最小公倍数是36,最大公因数是12;(3)16=2×2×2×2,18=2×3×3,所以16和18的最小公倍数:2×2×2×2×3×3=144;最大公因数是2;(4)24=2×2×2×3,36=2×2×3×3,所以24和36的最小公倍数:2×2×3×2×3=72;最大公因数是2×2×3=12.点评:本题主要考查求两个数的最大公因数和最小公倍数的方法,注意互质数的最小公倍数是它们的乘积,最大公因数是1;倍数关系的最小公倍数是较大数,最大公因数是较小数.12. 8和10最大公因数:最小公倍数:【答案】2,40【解析】先把8和10进行分解质因数,这两个数的最大公约数也就是这两个数的公有质因数的连乘积,最小公倍数是这两个数的公有质因数与独有质因数的连乘积,由此解决问题即可.解:8=2×2×2,10=2×5,所以8和10的最大公因数为:2,8和10的最小公倍数为:2×2×2×5=40;答:8和10的最大公因数为2,最小公倍数为40.点评:此题主要考查求两个数的最大公约数与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答13.一条72米长的路,原来从一端起,每隔9米有一盏路灯.现在重新安装,要从一端起每隔6米装一盏.为节省施工成本,有些位置的路灯是不需要重新安装的.不需要重新安装的路灯至少有多少盏?(先画一画,再解答)【答案】5盏【解析】根据题意,不需要重新安装的是9米与6米的公倍数的路灯,即18米倍数的路灯不移动,也就是求出每隔18米路灯的盏数,加上开头的那一盏即可.解:如图所示:9与6的最小公倍数是18;72÷18+1,=4+1,=5(盏).答:不需要重新安装的路灯至少有5盏.点评:本题的关键是求出什么样的路灯不移动,然后再按照两端栽树的方法进行计算即可.14.求下面各组数的最小公倍数.12和86和18.【答案】24;18【解析】(1)求两个数的最小公倍数是公有质因数与独有质因数的连乘积,(2)一个数是另一个数的倍数,则较大的数是最小公倍数.解:(1)12=2×2×3,8=2×2×2,所以12和8的最小公倍数是2×2×3×2=24;(2)18=6×3,18是6的倍数,所以6和18的最小公倍数是18.点评:此题主要考查求两个数为倍数关系时两个数的最小公倍数:两个数为倍数关系,则最小公倍数为较大的数.15.两个自然数的最大公因数是14,最小公倍数是280,这两个自然数的和是.【答案】126【解析】先将14和280分解质因数,求得这两个自然数,再相加即可求解.解:14=2×7,280=2×2×2×5×7,一个数是:2×7×4=56,另一个数是:2×7×5=70,这两个数的和是:56+70=126.故答案为:126.点评:此题考查了将合数分解质因数和求两个数的最大公约数与最小公倍数的方法:两个数的公有质因数的乘积是最大公约数;两个数的公有质因数与每个数独有质因数的乘积是最小公倍数.16.有两个互质的合数,它们的最小公倍数是100,由这两个数组成的真分数与假分数的差是.【答案】6.09【解析】先把100分解质因数,因为100=2×2×5×5,这两个互质的合数是4和25,由这两个数组成的真分数与假分数分别是:、,它们的差是﹣=6.09,据此解答.解:100=2×2×5×5,所以这两个互质的合数是4和25,﹣,=6.25﹣0.16,=6.09;故答案为:6.09.点评:本题关键是明确概念:互质数、合数、最小公倍数、真分数与假分数.17.甲、乙两数的最大公因数是5,最小公倍数是150.如果甲数是25,则乙数是;如果乙数是15,则甲数是.【答案】30,50【解析】根据两个数的乘积等于这两个数的最大公因数和这两个数的最小公倍数的乘积;据此解答即可.解:150×5÷25,=750÷25,=30;150×5÷15,=750÷15,=50.答:如果甲数是25,则乙数是30;如果乙数是15,则甲数是50.故答案为:30,50.点评:解答此题应明确:两个数的乘积等于这两个数的最大公因数和这两个数的最小公倍数的乘积.18.一个数的最大因数和最小倍数都是60,这个数是.【答案】60【解析】一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数;据此进行分析解答.解:一个数的最大因数和最小倍数都是60,因为一个数的最大因数和最小倍数都是这个数本身,所以这个数是60.故答案为:60.点评:解决此题明确:一个数的最大因数和最小倍数都是这个数本身.19.能被2、5、6这三个数整除的最小的自然数是:.【答案】30【解析】求能被2、5、6这三个数整除的最小的自然数就是求2、5、6的最小公倍数;最小公倍数是共有质因数与独有质因数的连乘积,由此解决问题即可.解:6=2×3,答:能被2、5、6这三个数整除的最小的自然数是:30.故答案为:30.点评:此题主要考查求三个数的最小公倍数的方法:三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.20.王华和李明都在小提琴班学习,王华每3天去一次,李明每4天去一次,6月3日他们都去了一次,那么他们下次同去的时间是.【答案】6月15日【解析】先求出3和4的最小公倍数,再通过日期推算出下次同去的时间.解:因为3×4=12,3+12=15,所以他们下次同去的时间是6月15日.故答案为:6月15日.点评:考查了求两个数的最小公倍数的方法,日期和时间的推算.本题的关键是得到3和4的最小公倍数.21.下面的分数都是最简分数(a、b不为0)、分母的最小公倍数是、分母的最小公倍数是.【答案】72,120【解析】根据题意,计算分母的最小公倍数,可将分数中的分母分解质因数,然后再计算它们的最小公倍数,列式解答即可得到答案.解:72=2×2×2×3×3,18=2×3×3,72与18的最小公倍数为:2×2×2×3×3=72;40=2×2×2×5,30=2×3×5,30与40的最小公倍数为:2×2×2×3×5=120.故填:72,120.点评:解答此题的关键是将分数中的分母分解质因数,然后再按照求几个数的最小公倍数的方法进行计算即可.22. 18的因数有,12的因数有,12和18的最大公因数是,12和18的最小公倍数是.【答案】1、2、3、6、9、18,1、2、3、4、6、12,6,36【解析】(1)根据找一个数的因数的方法,进行列举即可;(2)根据最大公因数和最小公倍数的意义:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数;几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做这几个数的最大公因数.进行分析解答即可.解:18的因数有:1、2、3、6、9、18;12的因数有:1、2、3、4、6、12;12和18的最大公因数是6;12和18的最小公倍数是36;故答案依次为:1、2、3、6、9、18,1、2、3、4、6、12,6,36.点评:解答此题的关键是:(1)明确找一个数的因数的方法;(2)明确最小公倍数和最大公约数的意义.23.同时是2、3、5的倍数的最小两位数是,把这个数分解质因数是.【答案】30;30=2×3×5【解析】根据题干,同时是2、3、5的倍数的数是2、3、5的公倍数,由此先求得2、3、5的最小公倍数;利用合数分解质因数的方法即可解决问题.解:2、3、5是互质数,所以它们的最小公倍数是:2×3×5=30;答:同时是2、3、5的倍数的最小两位数是30,把这个数分解质因数是30=2×3×5.故答案为:30;30=2×3×5.点评:此题考查了求几个互质数的最小公倍数的方法以及合数分解质因数的方法的灵活应用.24. 15和9的最大公因数是,最小公倍数是.【答案】3,45【解析】分别把15和9分解质因数,两个数公有的质因数乘积为两个数的最大公因数,两个数公有的质因数和独有的质因数乘积为两个数的最小公倍数.解:15=3×5,9=3×3,15和9的最大公因数是3,15和9的最小公倍数是3×5×3=45,故答案为:3,45.点评:此题主要考查两个数的最大公因数和最小公倍数的求法,分解质因数后两个数公有的质因数乘积为两个数的最大公因数,两个数公有的质因数和独有的质因数乘积为两个数的最小公倍数.25. 15、20、和60的最大公约数是,最小公倍数.【答案】5,120【解析】求最大公约数也就是这几个数的公有质因数的连乘积,最小公倍数是公有质因数与独有质因数的连乘积,对于三个数来说:三个数的公有质因数连乘积是最大公约数,三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可.解:因为15=3×5,20=2×2×5,60=2×2×3×5,所以15、20、和60的最大公约数是:5,最小公倍数是:3×5×2×2=120,故答案为:5,120.点评:此题主要考查求三个数的最大公约数与最小公倍数的方法:三个数的公有质因数连乘积是最大公约数,三个数的公有质因数、两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.26.两个数的最大公约数是10,最小公倍数是350,若其中一个数是70,则另一个数是50..(判断对错)【答案】√【解析】用最小公倍数乘最大公约数即为这两个数的积,再除以已知数,就可求得另一个数.解:因为最大公约数×最小公倍数=两个数的乘积,所以另一个因数是:350×10÷70=50;故答案为:√.点评:解决此题的关键是明白最小公倍数乘最大公约数即为这两个数的积.27.如果自然数C是B的5倍,则B与C的最小公倍数是,最大公约数是.【答案】C,B【解析】根据最大公约数和最小公倍数的意义可知;最大公约数是两个数的公有的质因数的乘积,最小公倍数是两个数共有的质因数和各自独有的质因数的乘积,如果自然数C是B的5倍,B和C是倍数关系,据此解答解:自然数C是B的5倍,则B与C的最小公倍数是C,最大公因数是B;故答案为:C,B点评:主要考查倍数关系的最大公约数和最小公倍数的求法:较大的数是两个数的最小公倍数,较小的数是两个数的最大公约数.28.(2010•江都市模拟)自然数a和b,且a是b的,则a与b的最大公因数是,最小公倍数是.【答案】a,b【解析】倍数关系的最大公因数是较小数,最小公倍数是较大数,由自然数a和b,且a是b的可知;a和b是倍数关系,据此解答.解:由自然数a和b,且a是b的可知;a和b是倍数关系,a是较小数,b是较大数,所以a与b的最大公因数是 a,最小公倍数是 b;故答案为:a,b.点评:本题主要考查倍数关系的最大公因数和最小公倍数的求法,注意由自然数a和b,且a是b的可知;a和b是倍数关系这是解题的关键.29. 8和12的最小公倍数是,13和39的最大公约数是.【答案】24,13【解析】(1)两个数的最小公倍数是公倍数中最小的,分别找出两个数的倍数,找出它们的公倍数,找出最小的即可;(2)13和39是倍数关系,根据倍数关系的最大公约数是较小数,据此解答.解:(1)8的倍数有:8,16,24,32,40,48,56…,12的倍数有:12,24,36,48,60…,8和12的公倍数有:24,48…,所以8和12的最小公倍数是24;(2)13和39是倍数关系,13是较小数,所以13和39的最大公约数是13;故答案为:24,13.点评:本题主要考查求几个数的最小公倍数和最大公约数的方法,注意倍数关系的最大公约数是较小数.30.如果甲数=2×3×5,乙数=2×2×3,那么甲数和乙数:最大公因数是,最小公倍数是.【答案】6,60【解析】求最大公约数也就是这几个数的公有质因数的连乘积,最小公倍数是共有质因数与独有质因数的连乘积,对于两个数来说:两个数的公有质因数连乘积是最大公约数,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数,由此解决问题即可解:甲数和乙数的最大公因数为2×3=6;甲数和乙数的最小公倍数为2×2×3×5=60;故答案为:6,60.点评:此题主要考查求两个数的最大公约数与最小公倍数的方法:两个数的公有质因数连乘积是最大公约数,两个数的公有质因数与每个数独有质因数的连乘积是最小公倍数;数字大的可以用短除解答.31. 24、32的最小公倍数和12、36的最大公约数的差是.【答案】84【解析】求两个数的最大公因数和最小公倍数,首先把这两个数分解质因数,公有质因数的乘积是它们的最大公因数,公有质因数和各自独有质因数的连乘积是它们的最小公倍数,据此先分别求得最小公倍数和最大公约数,然后求差即可.解:把24和32分解质因数:24=2×2×2×3;32=2×2×2×2×2;24和32的最小公倍数是:2×2×2×3×2×2=96;12和36是倍数关系,12是36的因数,12也就是12和36的最大公因数;96﹣12=84;故答案为:84.点评:此题主要考查求两个的最大公因数和最小公倍数的方法,根据分解质因数的方法解决问题.32.(2011•慈溪市模拟)已知M=2×3×3×a,N=2×3×5×a,且M与N的最大公因数是42,则a=,M和N的最小公倍数是.【答案】7,630【解析】求最大公约数也就是这几个数的公有质因数的连乘积,最小公倍数是共有质因数与独有质因数的连乘积;因此的解.解:要使M和N的最大公因数是42,因为42=2×3×7,则M和N的公有质因数除了2和3外,还有7,即a=7;M和N的最小公倍数是2×3×7×3×5=630;故答案为:7,630.点评:灵活应用求最大公因数的方法,求解未知数.33.(2011•广州模拟)A=2×2×3×m,B=2×n×3,如果A和B的最大公因数是12,最小公倍数是60,则m=,n=.【答案】5,2【解析】由A=2×2×3×m,B=2×n×3,可知A和B的最大公因数是12,A和B公有的质因数里含有2和3,所以用12÷(2×3)=2,就得到一个数m或n,即m和n中有一个数是2,分析A=2×2×3×m,B=2×n×3,A中已经含有2个2,而B只含有1个2,2又是A和B公有的,所以n=2;A和B的最小公倍数=2×2×3×m×n,因为n=2已经求出,所以A和B的最小公倍数是2×2×3×m=60,由此即可求出m,问题得解.解:n=12÷(2×3)=2,m=60÷(2×2×3)=5;故答案为:5,2.点评:本题主要考查求几个数的最大公因数和最小公倍数的方法.34. a、b是两个不等于0的自然数,并且a÷b=7,a和b的最小公倍数是.【答案】a【解析】由a÷b=7可知,a是b的7倍.如果两个数是倍数关系那么较小数是它们的最大公约数,较大数是它们的最小公倍数,由此可以解决问题.解:因为a÷b=7,所以a是b的7倍;a和b的最小公倍数是a.故答案为a.点评:此题考查了求两个成倍数关系的数的最小公倍数的方法.35. 36和120的最大公因数是()A.4B.6C.12【答案】C【解析】求两个数的最大公因数,首先把这两个数分解质因数,公有质因数的乘积就是它们的最大公因数,由此解答.解:把36和120分解质因数:36=2×2×3×3;120=2×2×2×3×5;36和120的最大公因数是:2×2×3=12;答:36和120的最大公因数是12.故选:C.点评:此题主要考查求两个数的最大公因数的方法,关键是把这两个数分解质因数,公有质因数的乘积就是它们的最大公因数,由此解决问题.36.用96朵红玫瑰花和72朵白玫瑰花做花束,若每个花束的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有多少朵花?【答案】24个,7朵【解析】若每个花束的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,说明红玫瑰花和白玫瑰花都是等分的,而且分的份数相同,要使做得花束最多,只要求出96和72的最大公约数,即可得花束数;花的总数96+72后除以花束数,就得到每个花束里至少要有多少朵花.解:96=2×2×2×2×2×3,72=2×2×3×3×2,所以96和72的最大公约数是2×2×2×3=24(个),(96+72)÷24=4+3=7(朵),答:最多可以做24个花束,每个花束里至少要有7朵花.点评:灵活应用求几个数的最大公因数的方法来解决实际问题.37.求最大公约数.45和20 12和5 36和4 63和27 90和45 7和6.【答案】5;1;4;9;45;1【解析】(1)、(4)求最大公因数也就是这几个数的公有质因数的连乘积,对于两个数来说:两个数的公有质因数连乘积是最大公因数,由此解决问题即可;(2)、(6)根据两个数是互质数时,这两个数的最大公因数是1;(3)、(5)根据“当两个数成倍数关系时,较小的那个数是这两个数的最大公因数;进行解答即可.解:(1)45=3×3×5,20=2×2×5,所以45和20的最大公约数是5;(2)12和5是互质数,这两个数的最大公因数是1;(3)36和4是倍数关系,这两个数的最大公因数是4;(4)63=3×3×7,27=3×3×3,所以63和27的最大公因数是3×3=9;(5)90和45是倍数关系,这两个数的最大公因数是45;(6)7和6是互质数,这两个数的最大公因数是1.点评:此题主要考查了求两个数的最大公因数:对于一般的两个数来说,这两个数的公有质因数的连乘积是这两个数的最大公因数;两个数是互质数时,这两个数的最大公因数是1;两个数为倍数关系,最大公因数为较小的数.38.下列各数中能同时被2、3、5整除的数是()A.2010B.315C.470【答案】A【解析】能被2、3、5整除的数的特征是:末尾(个位数)是0,并且各个数位上数的和能被3整除;进行解答即可.解:A、2010,2+1+0+0=3,3能被3整除的,且个位数字为0;B、315,且个位数字为5,不是0,故排除;C、470,4+7+0=11,虽个位数字为0,11不能被3整除,故排除;所以2010能被2、3、5整除.故选:A.点评:解答此题应结合能被2、3、5整除的数的特征进行解答即可.39.【答案】【解析】用4乘非零自然数即可找出4的倍数;所有能整除60的数都是60的因数,可利用短除法将60分解质因数,即可找出60的因数.结合题干中的数值:12,5,30,10,54,16,4的倍数有:12,16,60的因数的数是5、10、12、30.。
2020年小升初数学专题复习训练——数与代数应用题(3)知识点复习一.列方程解应用题(两步需要逆思考)【知识点归纳】列方程解应用题的步骤:①弄清题意,确定未知数,并用x表示.②找出题中数量之间的相等关系.③列方程,解方程.④检查或验算,写出答案.列方程解应用题的方法:①综合法:先把应用题中已知的数(量)和所设的未知数(量)列成有关的代数式,并找出它们之间的等量关系,列出方程.这是从部分到整体的一种思维过程,其思考的方向是从已知到未知.②分析法:先找出等量关系,再根据建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式,列出方程.这是从整体到部分的一种思维过程,其思考方向是从未知到已知.【命题方向】常考题型:例1:元旦期间,合益商场搞优惠活动,买一箱牛奶送一盒,五(1)班一共52人,如果买4分析:观察题干,分析数量关系,如果设每箱牛奶有x盒,则买的加送的牛奶盒数为4x+4,正好等于人数,则可得方程,解方程即可.解:设每箱牛奶有x盒,4x+4=52,4x=52-4,x=48÷4,x=12.答:每箱牛奶有12盒.故答案为:12.点评:观察题干,分析数量关系,设出未知数列方程解答即可.例2:同学们植树,一班比二班多植63棵,一班42人,平均每人植8棵,二班39人,平均每人植多少棵?(用方程解答)分析:根据题意可找出数量间的相等关系:一班植树的棵树-二班植树的棵数=一班比二班多植的63棵,已知一班的人数和平均每人植的棵数,二班的人数,所以设二班平均每人植x棵,列方程解答即可.解:设二班平均每人植x棵,由题意得,42×8-39x=63,39x=336-63,39x=273,x=7.答:二班平均每人植7棵.点评:此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.二.列方程解三步应用题(相遇问题)【知识点问题】甲速×相遇时间+乙速×相遇时间=路程(甲速+乙速)×相遇时间=路程甲走的路程+乙走的路程=总路程【命题方向】常考题型:例1:甲乙两列火车分别从相距600千米的两地同时相向而行,2.5小时后两车还相距220千米.已知甲车每小时行80千米,乙车每小时行多少千米?分析:由题意知,甲车所行的路程、乙车所行的路程和两车相距的距离三部分的和正好是两地之间的距离;已知甲车速度,相遇时间,设出乙车速度,分别表示出两车所行的距离,加上两车相距的距离等于两地之间的距离,列出方程解答即可.解:设乙车每小时行x千米,由题意得,80×2.5+2.5x+220=600,200+2.5x+220=600,2.5x+420=600,2.5x=600-420,2.5x=180,x=72;答:乙车每小时行72千米.点评:此题主要考查相遇问题中的基本数量关系:速度和×相遇时间=总路程或甲车所行的路程+乙车所行的路程=两地之间的距离;再由关系式列方程解决问题.例2:甲乙两城相距460千米,货车以每小时60千米的速度从甲城开往乙城,2小时后,客车才从乙城开往甲城,又经过3.4小时两车相遇,客车每小时行多少千米?分析:根据题意从问题出发,要求客车每小时行多少千米?因为客车行驶的时间知道(3.4小时)必须先求客车行驶的路程;要求客车的路程,必须再求货车(2+3.4=5.4)小时内行驶了多少千米(60×5.4);然后解答即可.解:设客车每小时行x千米,3.4x+60×(2+3.4)=460,3.4x+60×5.4=460,3.4x=460-324,3.4x=136,x=136÷3.4,x=40.答:客车每小时行40千米.点评:本题是相遇问题,要注意路程与时间的对应,“3.4小时两车相遇”表示各自都行了3.4小时,本题的解答思路是:可以从问题入手去分析.三.列方程解含有两个未知数的应用题【知识点归纳】列方程解应用题的步骤:①弄清题意,确定未知数,并用x表示.②找出题中数量之间的相等关系.③列方程,解方程.④检查或验算,写出答案.【命题方向】例1:车库中停放若干辆双轮摩托车和四轮小轿车,已知车的辆数与车轮数的比是2:5,摩托车与四轮小轿车的比是()A、4:1B、3:1C、2:1D、1:1分析:设四轮小轿车有x辆,则四轮小轿车一共有4x个轮子,双轮摩托车有y辆,则双轮摩托车一共有2y 个轮子,再根据“车的辆数与车轮数的比是2:5,”求出摩托车与四轮小轿车的比.解:设四轮小轿车有x辆,双轮摩托车有y辆,(x+y):(4x+2y)=2:5,(4x+2y)×2=5(x+y),8x+4y=5x+5y,8x-5x=5y-4y,3x=y,所以,y:x=3:1,答:摩托车与四轮小轿车的比是3:1.故选:B.点评:解答此题的关键是,根据题意设出未知数,并根据数量关系写出比例,再根据比例的基本性质作答.例2:红星小学五年级有学生110人,男生人数是女生人数的1.2倍,男生、女生各有多少人?(用方程解)分析:根据题意数量间的相等关系为:女生人数+男生人数=110,设女生有x人,则男生有1.2x人,根据题意列出方程求解即可.解:设女生有x人,则男生有1.2x人,x+1.2x=110,2.2x=110,2.2x÷2.2=110÷2.2,x=50;男生人数:50×1.2=60(人).答:男、女生各有60人、50人.点评:此题考查列方程解应用题,解决此题的关键是女生人数+男生人数=110,由此得出答案.四.比例尺应用题【知识点归纳】分数比例尺和线段比例尺缩小比例尺和放大比例尺比例尺各部分的关系:图上距离:实际距离=比例尺图上距离:比例尺=实际距离实际距离×比例尺=图上距离.【命题方向】常考题型:例1:在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一艘货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()A、15B、17C、21分析:先依据“实际距离=图上距离÷比例尺”求出两地的实际距离,再据“路程÷速度=时间”360÷24=15(小时),6+15=21(时);答:货轮到达B港的时间是21时.故选:C.点评:此题主要考查图上距离、实际距离和比例尺的关系以及基本的数量关系“路程÷速度=答:这幢教学楼的实际面积是720平方米.点评:分别求出长和宽的实际距离,是解答本题的关键.五.按比例分配应用题【知识点归纳】把一个数按一定的比(或连比)分成若干部分,叫做按比例分配.解答这类题的方法是:把一个总数A分成几部分,使顺次与几个已知数的连比成正比例关系,只要求出总份数,然后,把A分别乘以各部分量所占总量的几分之几,或者求出总份数后,再求平均每份是多少,然后,按照各个量所占的份数,求出几份是多少.【命题方向】常考题型:例1:一个三角形三个内角度数的比是3:2:1,这是一个()三角形.一个数乘分数的意义,求出最大角,进而判断即可.所以这个三角形是直角三角形故选:B.点评:解答此题应明确三角形的内角度数的和是180°,求出最大的角的度数,然后根据三角六.正、反比例应用题【知识点归纳】正比例和反比例都是两种相关联的量,一种量在变化,另一种量也随着变化.反比例:如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系,简称反比例.形式如:xy=k(一定)【命题方向】常考题型:例1:把1.5米长的竹竿直立在地上,量得它的影长是1.2米,同时量得学校的旗杆的影长是6.4米.学校的旗杆高多少米?分析:根据题意知道,物体的长度和它的影子的长度的比值一定,即物体的长度和它的影子的长度的成正比例,由此列式解答即可.解:设旗杆的高是x米.1.5:1.2=x:6.4,1.2x=1.5×6.4,x=8;答:旗杆的高是8米.点评:解答此题的关键是,先判断题中的两种相关联的量成何比例,然后找准对应量,列式解答即可.例2:用边长15厘米的方砖给教室铺地,需要200块,如果改用边长25厘米的方砖铺地,需要多少块砖?分析:教室的面积是不变的,每一块方砖的面积与所需块数的乘积是一定的,即两种量成反比例,由此设出未知数,列出比例式解答即可.解:设需要x块砖,由题意得,25×25x=15×15×200,625x=45000,x=45000÷625,x=72;答:需要72块砖.点评:此题首先利用正反比例的意义判定两种量的关系,解答时关键不要把边长当做面积进行计算.2020年小升初数学专题复习同步测试卷题号一二三四五六总分得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)甲乙两筐苹果,甲筐重60千克,乙筐重x千克,从甲筐中取出8千克放入乙筐,两筐苹果就一样重.下列方程正确的是()A.60﹣x=8 B.x﹣60=8 C.x+8=60 D.x+8=60﹣82.(2分)农具厂要赶制500件农具,前10天平均每天制造32件.改进技术后,余下的每天制造36件,还要几天可以完成任务?列出方程错误的是()解:设还要x天可以完成任务.A.36x=500﹣32×10 B.(500﹣36x)÷10=32C.500﹣36x÷10=32 D.500﹣36x=32×103.(2分)两地相距128千米,甲、乙两人骑自行车同时从两地出发,相对而行4小时后相遇,甲每小时行14.5千米,甲每小时比乙慢()A.32千米B.17.5千米C.5千米D.3千米4.(2分)张宁和王晓星一共有画片86张.王晓星给张宁8张后,两人画片数同样多.王晓星原来有()张画片.A.15 B.51 C.745.(2分)小洋家客厅长5米,宽3.8米,画在练习本上,选用比例尺()较合适.A.B.C.6.(2分)要把实际距离缩小到原来的,应选择的比例尺为()A.1:50000000 B.1:5000 C.5000:17.(2分)用48厘米长的铁丝围成一个长方形,长方形长与宽的比是5:3,这个长方形的面积是()A.100平方厘米B.315平方厘米C.153平方厘米D.135平方厘米8.(2分)一个三角形的三个内角度数的比是1:2:3,这是()三角形.A.锐角B.直角C.钝角9.(2分)配制一种药水,药粉和水的质量比是1:40,要配制205千克的药水,需要药粉()A.5千克B.10千克C.20千克10.(2分)如右图所示,一个大长方形被两条线段分成四个小长方形.如果其中图形A、B、C的面积分别是2cm2、4cm2和5cm2那么阴影部分的面积为()cm2.A.1 B.C.D.二.填空题(共10小题,满分15分)11.(1分)看图列方程:列方程:.12.(1分)一根黄瓜30克,一支香蕉30克,它们的质量和是60克,等量关系是.13.(1分)列方程:.14.(3分)两辆汽车同时从相距522千米的两地相向而行,甲车每小时行50千米,乙车每小时行40千米,行了几小时后两车________?设行了x小时后两车.根据方程选择合适的信息.50x+40x+72=522;50x+40x﹣72=522.A.离中点72千米处相遇B.还相距72千米C.又相距72千米15.(2分)“姐姐和弟弟一共有180张邮票,其中姐姐的邮票数是弟弟的3倍,弟弟有多少张邮票?(列方程解答)”淘气在解决这道题时这样设未知数并列方程.解:设弟弟有x张邮票,姐姐有3x张邮票①这样设未知数并列方程是否正确?在括号内填“正确”或“不正确”.②如果不正确,请指出原因,并填在括号里..16.(2分)在一幅地图上,用3厘米代表150千米,这幅图纸的比例尺是;在这幅地图上量得甲、乙两地之间的距离是4.5厘米,则甲、乙两地实际相距千米.17.(1分)一个长方形零件,按比例尺1:50将它画在图纸上,长是15厘米,宽是8厘米,求这个零件的实际面积是平方米.18.(2分)六年级有42人,负责学校的两块卫生区.第一块卫生区30平方米,第二块卫生区40平方米.如果按照面积的大小分配值日生,两块卫生区各应派多少人?第一块、第二块(按第一块、第二块卫生区的顺序填写)19.(1分)操场边一棵小树的高度是1.5米,影子长度是0.8米,一棵大树的影子长度是4.8米,这棵大树的高度是米.20.(1分)如图,支架两侧每个孔的距离是4厘米,如果在支架右侧第4个孔挂4个珠子,那么在支架左侧第2个孔挂个这样的珠子才能保持支架平衡.三.判断题(共5小题,满分10分,每小题2分)21.(2分)计算图中两条彩带一共长多少米,列出的方程是6.9=x+2.7.(判断对错)22.(2分)门老师发给甲班每人4本故事书,乙班每人3本故事书,共发故事书716本;若发给甲班每人3本故事书,乙班每人4本故事书,则共发705本.两班共有203人.(判断对错)23.(2分)图上1厘米相当于地面上实际距离100米,这幅图的比例尺是..(判断对错)24.(2分)一块长方形菜地有984平方米,计划按3:5中茄子和西红柿,茄子要种369平方米.(判断对错)25.(2分)把一根木料锯成3段需要9分钟,如果锯成5段,需要l8分钟.列成比例式是:9:(3﹣1)=18:(5﹣1).(判断对错)四.计算题(共3小题,满分15分,每小题5分)26.(5分)看图列方程解决问题.27.(5分)看图列式计算.28.(5分)甲、乙两地相距1075km,一辆慢车从甲地开往乙地,每小时行90km;一辆快车从乙地出发,每小时比慢车多行35km.两车同时开出相向而行,出发后多长时间相遇?(用方程解)五.应用题(共4小题,满分20分,每小题5分)29.(5分)共享单车的广泛使用正不断改变人们的出行方式.目前某市四个品牌共享单车的投放量已达5.4万辆,期中A共享单车投放了1.2万辆,比B共享单车多60%,B共享单车投放了多少万辆?(用方程解答)30.(5分)小红买4块橡皮5枝铅笔,共用去3.82元.已知一块橡皮一枝铅笔共需要0.83元,一块橡皮需要多少元.(用方程解)31.(5分)在比例尺是1:6000000的地图上,甲、乙两地之间的距离是12厘米,一辆汽车从甲地开往乙地用了8小时,这辆汽车平均每小时行驶多少千米?32.(5分)小芳买了一本新书,计划每天读12页,20天正好读完.实际她只用15天就读完了,实际每天读了多少页?(用比例解)六.解答题(共4小题,满分20分,每小题5分)33.(5分)客车每时行46千米,比自行车每时行的3.5倍少1.6千米,自行车每时行多少千米?(用方程解答)34.(5分)看图列方程,并求出方程的解.35.(5分)在一块平行四边形小麦试验田.底长120米,高80米,用1:4000 的比例尺画在平面图上,这块试验田在图纸上的面积是多少?36.(5分)长方形的周长为192cm,长方形的长与宽的比是5:3,这个长方形的面积为多少平方厘米?参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.【分析】根据题意,设乙筐原来有x千克,有关系式:乙筐原来的质量+8千克=甲筐原来的质量﹣8千克,列方程即可.【解答】解:设乙筐原来有x千克,x+8=60﹣8x=60﹣8﹣8x=44答:乙筐原来有44千克.所以方程为:x+8=60﹣8.故选:D.【点评】本题主要考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.2.【分析】设还需要x天可以完成任务,根据题意,有关系式:前10天制造的农具数量+后x天制造的农具数量=500件,据此解答.【解答】解:设还需要x天可以完成任务,有关系式:后x天制造的农具数=总数﹣前10天制造的数量列方程为:36x=500﹣32×10所以A选项正确;由关系式:总数量﹣后x天生产的数量=前10他生产的数量列方程为:500﹣36x=32×10变形为:(500﹣36x)÷10=32所以选项B、D正确.所以选项C错误.故选:C.【点评】本题主要考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.3.【分析】设乙每小时行x千米,然后根据等量关系式:速度和×相遇时间=总路程,然后列方程解答求出乙的速度,再进一步解答即可.【解答】解:设乙每小时行x千米,(14.5+x)×4=12814.5+x=32x=17.517.5﹣14.5=3(千米)答:甲每小时比乙慢3千米.故选:D.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.4.【分析】根据题意,两人一共有画片86张.王晓星给张宁8张后,两人画片数同样多,由此可知:王晓星比张宁多(8×2)张,根据和差问题,(两数和﹣差)÷2=较小数,然后用和减去较小数就是较大数,据此解答.【解答】解:86﹣(86﹣8×2)÷2=86﹣70÷2=86﹣35=51(张),答:王晓星原来有51张画片.故选:B.【点评】此题属于“和差问题”,根据,(两数和﹣差)÷2=较小数,据此解答即可.5.【分析】实际距离和比例尺已知,依据“图上距离=实际距离×比例尺”即可求出操场的长和宽的图上距离,再与练习本的实际长度比较即可选出合适的答案【解答】解:因为5米=500厘米,3.8米=380厘米,A、500×=50厘米,380×=38厘米,画在练习本上,尺寸过大,不符合实际情况,故不合适;B、500×=5厘米,380×=3.8厘米,画在练习本比较合适;C、500×=0.5厘米,380×=0.38厘米,画在练习本上太小,故不合适.故选:B.【点评】此题主要考查图上距离、实际距离和比例尺的关系,解答时要注意结合实际情况.6.【分析】根据比例尺的意义,即比例尺=图上距离:实际距离,再根据“把实际距离缩小到原来的,”是把原来的实际距离看做“1”,那现在图上距离是,由此即可解答.【解答】解::1=1:5000,故选:B.【点评】这道题主要考查比例尺的定义:比例尺是图上距离与实际距离的比.7.【分析】根据题意可知,48厘米是围成长方形的周长,则长与宽的和为:48÷2=24(厘米),利用按比分配原则,先计算其长和宽各是多少,然后利用长方形面积公式计算其面积即可.【解答】解:48÷2÷(5+3)=24÷8=3(厘米)(3×5)×(3×3)=15×9=135(平方厘米)答:这个长方形的面积为135平方厘米.故选:D.【点评】本题主要考查按比分配原则的应用,关键根据铁丝的长求出长方形的长和宽.8.【分析】三个内角度数的比是1:2:3,份数最大的角占,三角形的内角和为180°,用乘法得出最大角的度数,进而按照三角形的分类解答即可.【解答】解:180×=180×=90(度),根据直角三角形的含义可知:该三角形是直角三角形;答:这个三角形是直角三角形.故选:B.【点评】此题主要利用三角形的内角和与按比例分配来解答问题;用到的知识点:直角三角形的含义.9.【分析】首先求药粉和水的总份数,再求药粉占总份数的几分之几,最后根据乘法的意义求出药粉的千克数,列式解答即可.【解答】解:总份数:1+40=41,药粉的千克数205×=5(千克),答:需要药粉5千克.故选:A.【点评】此题解答的关键在于求出药粉占总数的几分之几,运用乘法即可求出药粉的重量.10.【分析】由于长方形A与长方形B等长,长方形B与长方形C等宽,设阴影所在的长方形的面积为x 平方厘米,即可列比例求出这个长方形的面积,阴影部分占这个长方形面积的一半,由此即可求出阴影部分面积.【解答】解:设阴影所在的长方形的面积为x平方厘米.2:x=4:54x=10x=2.52.5÷2=(平方厘米)答:阴影部分面积是厘米.故选:C.【点评】关键是求出阴影部分所在的长方形的面积.也可这样理解,长方形A与长方形B等长,长方形B与长方形C等宽,由于长方形A的面积是长方形B的一半,因此阴影部分所在的长方形的面积是长方形C的一半,从而求出阴影所在的长方形的面积,进而求出阴影部分面积.二.填空题(共10小题,满分15分)11.【分析】根据题干,设《三只小猪》有x本,则《十万个为什么》就是3x本,根据等量关系:《三只小猪》本数+《十万个为什么》本数=120本,据此列出方程即可解答问题.【解答】解:设《三只小猪》有x本,则《十万个为什么》就是3x本,根据题意可得:x+3x=1204x=120x=3030×3=90(本)答:《三只小猪》有30本,《十万个为什么》有90本,故答案为:x+3x=120.【点评】解答此题容易找出基本数量关系,由此列方程解决问题.12.【分析】根据题意可得等量关系式:一根黄瓜的质量+一支香蕉的质量=总质量60克,据此解答即可.【解答】解:一根黄瓜的质量+一支香蕉的质量=总质量60克故答案为:一根黄瓜的质量+一支香蕉的质量=总质量60克.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系.13.【分析】根据题意可得等量关系式:每盒的单价×盒数+一本书的价钱=总价,设每盒的单价是x元,然后列方程解答即可.【解答】解:设每盒的单价是x元,3x+7=283x=21x=7答:每盒的单价是7元.故答案为:3x+7=28.【点评】此题考查列方程解应用题,关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.14.【分析】(1)根据:50x+40x+72=522,可得:甲车行的路程+乙车行的路程+72=两地之间的距离,所以是还相距72千米.(2)根据50x+40x﹣72=522,可得:甲车行驶的路程+乙车行驶的路程﹣72=两地之间的路程,也就是甲乙所行路程比全程多了72千米,所以为:又相距72千米.【解答】解:(1)由算式50x+40x+72=522可知:即甲车行的路程+乙车行的路程+72=两地之间的距离,所以是还相距72千米.(2)由算式50x+40x﹣72=522,可得:甲车行驶的路程+乙车行驶的路程﹣72=两地之间的路程,也就是甲乙所行路程比全程多了72千米,所以为:又相距72千米.故答案为:B;C.【点评】此题主要考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.15.【分析】根据题干,设弟弟有x张,则姐姐就是3x张,再利用等量关系:姐姐的张数+弟弟的张数=总张数180,据此列出方程解决问题.【解答】解:设弟弟有x张,姐姐有3x张x+3x=1804x=180x=45答:弟弟45张邮票.由以上可知:①这样设未知数是正确的,但是没列方程,所以是不正确的.②没列方程,再添加上方程x+3x=180.故答案为:不正确,没列方程,再添加上方程x+3x=180.【点评】本题考查了运用方程解应用题的方法,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可.16.【分析】根据比例尺的意义,=比例尺,据此求出这幅图的比例尺,再根据实际距离=图上距离÷比例尺,即可求出甲、乙两地相距多少千米.【解答】解:3厘米:150千米=3厘米:15000000厘米=3:15000000=1:50000004.5÷=4.5×5000000=22500000(厘米)22500000厘米=225千米答:这幅图纸的比例尺是1:5000000,甲、乙两地实际相距225千米.故答案为:1:5000000;225.【点评】此题主要考查比例尺的意义及已知比例尺和图上距离求实际距离.注意单位的换算.17.【分析】根据实际距离=图上距离÷比例尺,分别求出这个零件和实际的长和宽,再根据长方形的面积公式进行计算.据此解答.【解答】解:实际的长是:15÷=750(厘米)=7.5(米),实际的宽是:8=400(厘米)=4(米),实际面积是:7.5×4=30(平方米);答:这个零件的实际面积是30平方米.故答案为:30.【点评】本题的关键是根据实际距离=图上距离÷比例尺,求出这个长方形的长和宽,再根据长方形的面积公式进行计算.18.【分析】先求出两块卫生区的总面积,再分别求出两块卫生区的面积各占总面积的几分之几,把六年级学生人数看作单位“1”,根据一个数乘分数的意义,用乘法解答.【解答】解:30+40=70(平方米),42×=18(人),42×=24(人),答:第一块卫生区应分配值日生18人,第二块卫生区应分配值日生24人.故答案为:派18人、派24人.【点评】此题考查的目的是理解掌握按比例分配应用题的结构特征及解答规律,即先求出总份数,再分别求出各部分占总数的几分之几,然后根据一个数乘分数的意义解答.19.【分析】影长与树高成正比,设这棵大树的高度是x米,先表示出小树影长和树的高度的比,再表示出大树影长和树的高度的比,组成比例,依据比例基本性质解答.【解答】解:设这棵大树的高度是x米,0.8:1.5=4.8:x0.8x=4.8×1.5x=9答:这棵大树的高度是9米.故答案为:9.【点评】本题考查了正反比例应用题,解答此题的关键是:表示出影长与树的高度的比.20.【分析】根据题意可知,支架平衡时,左边的孔数×挂的珠子数量=右边的孔数×挂的珠子数量,据此列反比例解答.【解答】解:设支架左侧第2个孔挂x个珠子,2x=4×42x=16x=8答:在支架左侧第2个孔挂8个这样的珠子才能保持支架平衡.故答案为:8.【点评】解答此题的关键是,先判断题中的两种相关联的量成何比例,然后找准对应量,列式解答即可.三.判断题(共5小题,满分10分,每小题2分)21.【分析】设第一条彩带长x米,则第二条长x+2.7米,又知第二条长6.9米,所以可得方程6.9=x+2.7,解方程得到的x为第一条彩带长,再与第二条长度相加才得两条彩带一共长多少米.【解答】解:设第一条彩带长x米,x+2.7=6.9x+2.7﹣2.7=6.9﹣2.7x=4.2,4.2+6.9=11.1(米),答:两条彩带一共长11.1米.所以原题说法错误.故答案为:×.【点评】本题考查了列方程解应用题,注意求得的x不是两条彩带一共的长度.22.【分析】首先根据题意,如果甲班比乙班每人多发1本故事书,则共发故事书716本;如果甲班比乙班每人少发1本故事书,则共发故事书705本,所以甲班比乙班的人数多,甲班比乙班每多1人,则甲班就比乙班多发1本故事书,据此判断出甲班比乙班多11(716﹣705=11)人,设甲班有x人,则乙班有x﹣11人;然后根据:甲班的人数×4+乙班的人数×3=716,列出方程,求出甲班有多少人;然后用甲班的人数减去11,求出乙班有多少人,再把两个班的人数求和,求出两班一共有多少人即可.【解答】解:甲班比乙班多:716﹣705=11(人)设甲班有x人,则乙班有x﹣11人,4x+3(x﹣11)=7167x﹣33=7167x﹣33+33=716+337x=7497x÷7=749÷7x=107107﹣11+107=96+107=203(人)。
数学知识点新苏教版⼩学六年级数学下册总复习《数与代数》专项练习试卷-总结数与代数(⼀)⼀.填⼀填。
1.四⼗⼋万六千四百写作(),将其四舍五⼊保留到万位记作()万。
2.⽤三个6,两个0组成,两个零都要读出来的五位数是(),读作()。
3.“神⾈七号”飞船于2008年9⽉25⽇21:10发射升空,绕地球飞⾏46圈,共飞⾏约1942778000⽶,这个数是()位数,其中2在()位上,表⽰();这个数读作(),省略“亿”后⾯的尾数约是()。
4.分数单位是的最⼤真分数是(),它⾄少再添上()个这样的单位就变成假分数。
5. 0.375的计数单位是(),它有()个这样的单位。
6.把4.06亿改写成⽤“⼀”作单位的数是()。
7.在a÷b=5......3中,把a,b同时扩⼤到原来的3倍,商是(),余数是()。
8.⼀个⼩数,⼩数点向左移动⼀位后,再扩⼤到原来的1000倍,得274,则原来的⼩数是()。
9.甲=2×3×5,⼄=2×5×7,甲、⼄两数的最⼤公因数是(),最⼩公倍数()。
10.既是偶数⼜是质数的⾃然数是(),既不是质数也不是合数的奇数是()。
11.按要求写出两个互质数:两个数都是质数()两个数都是合数()⼀个是质数⼀个是合数()。
12.三个连续的⾃然数,中间⼀个是a,另外两个分别是()和()。
13.在1---20的⾃然数中,()既是偶数⼜是质数,()既是奇数⼜是合数。
的分⼦加上6,要使分数的⼤⼩不变,分母应加上()。
15.能被2,3,5整除的最⼤两位数是()。
16.把5⽶长的绳⼦平均分成7段,每段长()⽶,每段占全长的()。
初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学17.两个连续的⾃然数的差乘它们的和,积是29,这两个⾃然数是()和()。
18.⼀个真分数加上它的⼀个分数单位得1,减少它的⼀个分数单位得,这个真分数是()。
⼆.判断。
1.1吨的和2吨的同样重。
《数与代数-列方程解三步应用题》一、填空题1.甲乙两地相距972km,一列火车从甲地开出,每小时行驶162km,另一列从乙地开出,每小时行驶108km.这两列火车同时开出,经过几小时相遇?可设经过x小时相遇,列方程是,求得x的值是.2.根据题意把方程补充完整.甲、乙两辆汽车同时从相距270千米的两地相对开出3小时后相遇,甲车每小时行驶48千米,乙车每小时行驶多少千米?(1)根据甲车行驶的路程+乙车行驶的路程=总路程,设乙车每小时行驶x千米,列方程:=+270(2)根据(甲车每小时行驶的路程+乙车每小时行驶的路程)3⨯=总路程,设乙车每小时行驶x千米,列方程:⨯=(+)3270二、选择题1.两辆汽车同时从相距522千米的两地相向而行,甲车每小时行50千米,乙车每小时行40千米,行了几小时后两车________?设行了x小时后两车.根据方程选择合适的信息.++=;504072522x x+-=.x x504072522A.离中点72千米处相遇B.还相距72千米C.又相距72千米2.甲乙两地间的铁路长480千米,客车和货车同时从两地相对开出,经过4小时相遇.已知客车每小时行65千米,货车每小时行x千米.不正确的方程是()A.6544480+480+=÷D.654x=xx⨯+= B.4480654x=-⨯C.6548043.两地相距128千米,甲、乙两人骑自行车同时从两地出发,相对而行4小时后相遇,甲每小时行14.5千米,甲每小时比乙慢()A.32千米B.17.5千米C.5千米D.3千米4.两艘轮船分别从福建港口和中华台北港口同时出发,相向而行,已知两港口的距离是411km ,从中华台北港口出发的轮船每小时行驶73km ,从福建港口出发的轮船每小时行驶64km .经过多少小时两船相遇?解:设经过x 小时两船相遇,可列方程为( )A .(7364)411x +=B .(7364)411x -=C .7364411x +=5.货车和客车从A 、B 两地同时相向而行,货车每小时行60千米,客车每小时行80千米,问几小时后两车在离中点40千米处相遇?(解:设x 小时后两车在离中点40千米处相遇.)下面正确的算式或方程共有( )个.(1)604080x x += (2)8060402x x -=⨯ (3)806040x x -=(4)402(8060)⨯÷-(5)40(8060)÷-(6)80402÷⨯.A .1B .2C .3D .4三、解决问题1.A 、B 两船,分别从甲、乙两港同时向对方港口开出,经过6小时后,两船相遇,相遇后两船继续向前行驶,A 船又经4小时到达乙港,B 船又经几小时到达甲港?(用多种方法解)2.福州到厦门的距离是260千米,一辆动车和一辆快速列车同时从两地相对开出,经过0.8小时相遇,动车平均每小时行200千米,快速列车平均每小时行多少千米?(用方程解)3.两地间的距离是540千米.甲、乙两辆汽车同时从两地开出,相向而行,经过3小时相遇.甲车每小时行88千米,乙车每小时行多少千米?(用方程解)4.杭州到衢州的杭金衢高速全长290km ,甲、乙两辆汽车分别从杭州和衢州同时出发相向而行,甲车每小时行105km ,经过1.4小时两车还未相遇,此时两车相距17km ,乙车每小时行多少千米?(用方程解)5.甲、乙两地相距362.5千米,一辆客车和一辆货车同时从两地相对开出,经过2.5小时相遇.已知货车每小时行65千米,请你算一算客车每小时行多少千米?(列方程解答)6.列方程解答.A、B两地间的公路全长480千米.甲、乙两辆货车从A、B两地同时出发,相向而行,经过4小时两车相遇,甲货车的速度是64千米/时,乙货车的速度是多少千米/时?7.甲、乙两地之间的高速公路全长820千米.一辆客车和一辆货车同时从甲、乙两地出发,相向而行,经过4小时相遇.如果客车的速度是110千米/时,货车的速度是多少千米/时(列方程解)8.甲乙两地相距280千米,两车分别从两地相对开出,经过3.5小时相遇.已知客车每小时行42千米,货车每小时行多少千米?(列方程解)9.甲、乙两车从相距320千米的两地同时出发,相向而行,经过4小时两车相遇.甲每小时行30千米,乙车每小时行多少千米?(列方程解答)10.甲、乙两辆汽车同时从相距225千米的两地相对开出,经过2.5小时相遇,甲车每小时行48千米,乙车每小时行多少千米?(列方程解)11.两个码头之间相距100千米,甲、乙两艘轮船分别同时从两个码头出发向相反方向开出,甲船每小时行38千米,乙船每小时行32千米.经过几小时两船相距450千米?(列方程解)12.甲、乙两船由相距384千米的两个码头同时相向而行,甲船每小时行21千米,乙船每小时行27千米.几小时后两船相遇?(方程解)13.奇思和妙想家相距1120米,奇思要把一盒学习用具还给妙想,两人相约同时从各自家里出发,奇思每分钟走76米,妙想每分钟走84米,经过几分钟两人相遇?(列方程解答)14.甲乙两辆汽车从相距324千米的两地同时相对开出,经6小时后在途中相遇,甲车的速度是乙车的2倍.甲车每小时行多少千米?(用方程解)15.两列火车从相距570千米的两地同时相对开出.甲车每小时行110km,乙车每小时行80km.经过几小时两车相遇?(用方程解)16.甲、乙和丙同时由东、西两城出发,甲、乙两人由东城到西城,甲步行每小时走5千米,乙骑自行车每小时行15千米,丙也骑自行车每小时20千米,已知丙在途中遇到乙后,又经过1小时才遇到甲,求东、西城相距多少千米?17.成渝高速路长330千米,一辆大客车从重庆开往成都,一辆小轿车同时从成都开往重庆.2小时在途中相遇,已知小轿车的速度是大客车的1.2倍.两车每小时各行多少千米?18.淘气家和笑笑家相距1240m.一天,两人约定在两家之间的路上会合.淘气每分走80m,笑笑每分走75m.两人同时从家出发,多长时间后能相遇?(列方程解答)答案一、填空题1.(162108)972x +⨯=;3.6.2.(1)4833270x ⨯+=(2)(48)3270x +⨯=二、选择题1.B ;C .2.D .3.D .4.A .5.B .三、解决问题1.解:(1)111()6664÷--+11615=÷-156=-9=(小时)答:B 船又经9小时到达甲港.(2)设B 船又经x 小时到达甲港, 则1116466x +=++ 1111110610610x +-=-+ 11615x =+615x +=66156x +-=-9x =答:B 船又经9小时到达甲港.2.解:设另一列火车平均每小时行x 少千米,(200)0.8260x +⨯=1600.8260x +=0.8100x=x=125答:快速列车平均每小时行125千米.3.解:设乙车每小时行x千米,可得方程:(88)3540+⨯=x+=2643540xx=3276x=92答:乙车每小时行92千米.4.解:设乙车每小时行x千米,则:x⨯++=105 1.4 1.417290x++=147 1.417290x+=1.4164290x=1.4126x=90答:乙车每小时行90千米.5.解:设客车每小时行x千米,由题意得,+⨯=(65) 2.5362.5x+=65145xx=80答:客车每小时行80千米.6.解:设乙车每小时行x千米,x⨯+=6444480x+=2564480+-=-x2564256480256x=422456x=答:乙车每小时行56千米.7.解:设货车的速度每小时x千米,可得方程:+⨯=x(110)4820110205+=xx=95答:货车每小时行95千米.8.解:设货车每小时行x千米,x+⨯=则(42) 3.5280x+⨯÷=÷(42) 3.5 3.5280 3.5x+=4280x+-=-42428042x=38答:货车每小时行38千米.9.解:设乙车每小时行x千米,4430320x+⨯=x+=4120320x=4200x=50答:乙车每小时行50千米.10.解:设乙车每小时行x千米+⨯=(48) 2.5225x+=120 2.5225xx=2.5105x=42答:乙车每小时行42千米.11.解:设经过x小时两船相距450千米,x+=-(3832)450100x=70350x=5答:经过5小时两船相距450千米.12.解:设x小时后两船x相遇,由题意得,+=,2127384x x48384x =,8x =;答:8小时后两船相遇.13.解:设两人同时从家出发,x 分钟相遇,则根据(7684)1120x +⨯=1601120x =1601601120160x ÷=÷7x =答:经过7分钟相遇.14.解:设乙车的速度为每小时x 千米,则甲车的速度是每小时2x 千米, (2)6324x x +⨯=354x =18x =21836⨯=(千米)答:甲车每小时行36千米.15.解:设经过x 小时两车相遇11080570x x +=190570x =3x =答:经过3小时两车相遇.16.解:乙丙经过x 小时相遇,根据总路程相等列出方程:(1520)(520)(1)x x +=++352525x x =+2.5x =总路程:(1520) 2.5+⨯35 2.5=⨯87.5=(千米)答:东、西城相距87.5千米.17.解:大客车每小时行x千米,则小轿车每小时行1.2x千米,x x+⨯=( 1.2)2330x=4.4330x=75⨯=(千米)75 1.290答:大客车每小时行75千米,小轿车每小时行90千米.18.解:设两人同时从家出发,x分钟后能相遇,x+=(8075)1240x=1551240x=8答:两人同时从家出发,8分钟后能相遇.。
六年级数学上册数与代数专项测试卷时间:60分钟 总分:100分一、填空题。
(每空1分,共20分)1.213+213+213 =( )×( ) 34 + 34 + 34 + 34 =( )×( ) 2. 34×100表示求( ); 45 ×12 表示求( ) 3. ( )kg 比40kg 多15%;30t 比( )t 少25% 4.在56 ,83.3%,8.33中,最大的数是( ), 最小的数是( )5. 310 的倒数是( );( )的倒数是0.25。
6.一桶水,用去38 ,用去的与剩下的比是( )。
7.一个分数的倒数小于1,这个分数是( ) 分数 。
8 . 4m 比5m 少( )% ;5m 比 4m 多 ( )%。
9.已行的路程与剩下的路程的比是5:3,已行了全程的( )( ),还剩下全程的( )( )。
10.甲数和乙数的比是5:2,甲数比乙数多( ) , 乙数比甲数少 ( )%。
二、判断题。
(对的画“ √ ”,错的画“×”)(10分)1.一个数乘分数,积一定小于这个数。
( )2. (34 + 23 )× 6 = 34 + 23 × 6 ( )3.比的前项或后项同时乘或除以相同的数(0除外),比值不变。
( )4.一个三角形三个内角的度数比是4:3:5,这个三角形是直角三角形。
( )5.因为 25 × 25 =1 所以25是倒 数 。
( )6.1t 煤用去55%,还剩45% t 。
( )7.所有的自然数都有倒数。
( )8.59的倒数是95。
( )9.真分数的倒数比1大,假分数的倒数比1小。
( )10.互为倒数的两个数的积为1,这两个数的和比1大。
( )三、选择题。
(把正确答案的选项填在括号里)(12分)1.一根绳子长58 m ,剪下25后,还剩下多少米?列式为( )。
A.58× 25B. 58 - 25C.58 - 58× 25D.58 - 58 - 25 2.甲、乙两数的比值是0.8,甲数与乙数的最简比是( )A.0.8:1B.4:5C.5:4D.1:0.83.甲加工了10个零件,合格率是90%,乙加工了15个零件,合格率是80%,甲和乙加工零件的合格率是( )A.170%B.85%C.84%D.70%4.一本书按原价的80%购买可便宜3元钱,按原价购买应付( )A.3.75元 B . 15元 C . 12元 D . 10元5.一项工程,甲单独做要12天完成,乙单独做要9天完成,丙的工作效率是甲、乙工作效率之和的 这三人中,( )的工作效率最高。
六年级数学下数与代数测试题及答案“数与代数”测试时间60分钟评价等级优良达标待达标在相应等级上划“√”一、数的知识,我会填。
1、由5个百,4个十,6个一,8个0.01组成的数是(),读作()。
2、把 2007465000 四舍五入到万位记作()万,省略亿后面的尾数是()亿。
3、0.834,,83.3%,0.83…这四个数中最小的数是(),最大的数是(),()和()是相等的。
4、0.45=()÷4=( -- )=():()=()成()。
5、找规律填空。
1 ,4 ,9 ,16 ,25 ,(),(),64 ,816、学校买12跟跳绳,每根a元,一共用去()元。
7、甲数是8,乙数是11,乙数与甲数的比是(),甲数与甲乙两数的和的比是()。
8、每块砖的面积一定,用砖的块数和铺地面积成()比例。
二、数的知识,我会判断。
(对的打“√”号,错的打“×”号。
)1、所有的自然数不是质数就是合数。
()2、2.4 和 2.40 相等,因此它们的计数单位也相等。
()3、真分数都小于 1,假分数等于或大于1。
()4、比的前项和后项都乘或除以相同的数,比值不变。
()5、y+715 是方程。
()三、数的知识,我会选。
(按要求把答案的序号填入括号里)1、下列说法正确的是()。
A、0 是最小的数B、0 既是正数又是负数、负数比正数小D、数轴上-4 在-7 的左边2、一本书降价25%的售价是36 元,原价是()元。
A、9B、27 、45 D、483、一个两位数,十位上的数字是5,个位上的数字是a,表示这个两位数的式子是()。
A.50+a B.5+a .5+10a D.5a4、两辆车在途中分别统计了两组数据:甲车在小时内行90 千米;乙车在小时内行120 千米;则甲车与乙车速度的比是( )。
A、9:8B、8:9 、2:3 D、3:45、冬冬乘汽车到外婆家,下午4 时出发,10 小时后到达。
到达时他看到的景象可能是()A、旭日东升B、残阳如血、星光灿烂 D、骄阳似火四、数与字母的运算,我会做。
人教版六年级数学上册数与代数专项复习卷满分:100分试卷整洁分:2分(69分)一、填一填。
(每空1分,共21分)1.[分数乘、除法]36的59是( ),( )的59是30。
2.[百分数]40比50少( )%,50比40多( )%。
3.[倒数]3的倒数是( ),37的倒数是( ),2.4的倒数是( )。
4.[化简比,求比值]把0.4∶14化成最简整数比是( ),比值是( )。
5.[分数乘除法]把一根长89m 的铁丝平均截成4段,每段占全长的( )( ),其中3段长( )m 。
6.[比的基本性质,分数、小数和百分数的互化]9∶( )=34=15∶( )=( )%=( )(填小数)。
7.[百分数的应用]张华要打印一份稿件,已经录入1600个字,正好录入了全文的40%,还有( )个字没有录入。
8.[按比分配问题]把洗涤剂和水按1∶1000配制成洗涤溶液,5005mL 洗涤溶液中有洗涤剂( )mL 。
9.[比的意义]甲数的12等于乙数的13,乙数和甲数的比是( )。
10.[分数的应用]1m 3的水结成冰,体积比水增加110,这块冰再融化成水,体积减少( )( )。
11.[分数、小数和百分数的互化,比较大小]把58,0.61,61.1%,23按从小到大的顺序排列是( )。
12.[比的基本性质]在4∶9中,把比的前项加上12,要使比值不变,比的后项应加上( )。
二、判断。
(对的打“√”,错的打“×”)(6分)1.[百分数的认识]小明家上半年比下半年节约用水20%t 。
( )2.[倒数]真分数的倒数一定比假分数的倒数大。
( )3.[比与分数的关系]比的前项相当于分数的分母。
( )4.[百分数的应用]李师傅做的120个零件全部合格,那么就说这批零件的合格率是120%。
( )5.[比的应用]一个三角形的内角度数比是1∶2∶6,这是一个钝角三角形。
( )6.[分数的应用]甲比乙多15,那么乙比甲少15。
( )三、选一选。
六年级数学数与代数试题(三)
一、填空。
1、0.4=( )( ) =10( ) =( )35 =( )%
2、13628中的“6”表示( );70.6中的“6”表示( );611 中的“6”表示( )。
3、280004320读作( ),四舍五入改写成用“万”作单位的数是( ),省略亿位后的尾数得到的近似数是( )。 4、某班5名同学的体重分别是:小军23kg,小强21kg,小兵25kg,小丽24kg,小红22kg。如果把他们的平均体重记为0,那么这5名同学的体重分别记为:小军( ),小强( ),小兵( ),小丽( ),小红( )。 5、相邻的三个奇数,从小到大排列,中间的一个奇数是2n-1,则第一个奇数是( ),第三个奇数是( )。 6、18和36的最大公因数是( );12和42的最小公倍数是( )。 7、一根木头,锯成3段要6分钟,照这样计算,锯成6段要( )分钟。 8、a的5倍与b的差是( ),比x少 15 的数是( )。 9、9000平方米=( )公顷,6天=( )小时。7立方米20立方分米=( )立方米。 10、819的分数单位是( ),去掉( )个这样的分数单位后正好是最小的质数。 11、把30分解质因数是:30=( ),如果a=3×3×5,那么30和a的最大 公约数是( ),最小公倍数是( ) 12、找规律填空。 (1) 12 ,34 ,58 ,716 ,( ),( ), (2) 1 ,4 ,9 ,16 ,25 ,( ) ,( ), 64 ,81 (3)0、1、3、6、10、( )、21、( )。 13、( )比20多51,16比( )少51。 14、陈明和妹妹在体检的时候,发现自己体重的32刚好和妹妹体重的65 相等,他和他妹妹体重的最简整数比是( )。 15、甲数是乙数的60%,甲数比乙数少( )%,乙数比甲数多( )( ) 。 16、把1.2米:80厘米化成最简整数比是( )﹕( ),比值是( )。17、2005年10月12日,我国“神舟”六号载入飞船发射成功,这一年全年有( )天
18、一个两位数,十位上的数字是m,个位上的数字是n,用含有字母的式子表示是( )。
19、A和B都是自然数,且A>B,如果A-B=1,那么他们的最大公约数是( ),最小
公倍数是( )。
20杨军今年上半年每个月的零花钱如下表:
月份 一月 二月 三月 四月 5月 六月
钱数(元) 100 90 120 100 125 150
他平均每个季度的零花钱是( )元。三月份比四月份度多用( )%。
二、判断对错。
( )1、所有的偶数都是合数。
( )2、长方形的面积一定,长和宽成反比例。
( )3、2008年的上半年有181天。
( )4、310 里面有3个0.1。
( )5、把60缩小到它的 1100 是0.06。
( )6、把一根3米长的绳子平均分成5份,每份是全长的 15 。
( )7、6人见面,每两人握一次手,一共要握12次。
( )8、右图中涂色部分占整个图形的25%
三、选择题。(只填符合题目要求答案的序号)
1、下列说法正确的是( )。
A、0是最小的数 B、0既是正数又是负数
C、负数比正数小 D、数轴上-4在-7的左边 2、出油率一定,香油的质量和芝麻的质量( )。 A、成正比例 B、成反比例 C、不成比例 D、无法确定 3、一本书降价25%的售价是36元,原价是( )元。 A、9 B、27 C、45 D、48 4、甲正方形的边长是12dm,乙正方形的边长是10dm。甲正方形面积和乙正方形面积的最简整数比是( )。 A、12∶10 B、6∶5 C、4∶1 D、36∶25 52010年的2月有( )天。A.28 B.29 C.30 D.31 四、计算题要仔细,能简算的要简算。 ①3.6-2.8+7.4-7.2 ②178÷23+231×179+231 ③(21+31)÷53-1817 ④18÷[65+(85-31)] (解方程) ①0.36×5-2χ=53 ②18=82.7 五、解决问题。 1、清风书社去年全年接待读者120万人。上半年接待读者的人数是全年的 38 ,第四季度接待读者的人数是上半年的 25 ,第四季度接待读者多少人? 2、王阿姨买了50000元定期五年的国家建设债券,年利率为3.14%,到期时,她想用利息买一台7500元的笔记本电脑,够吗?
3、强强和爸爸、妈妈暑假去翠屏山游玩,单程票价每人24.6元。⑴强强全家去翠屏山的车费是
多少元?
⑵全家人在翠屏山住宿4天要交住宿费和餐费560元,他们想再玩2天,需要再交多少元?
4、
⑴量一量希望小学平面图的长是( )厘米,宽是( )厘米,算出这所小学实际占地
面积是多少平方米?
⑵教学楼的占地面积是6000米2,是学校占地面积的百分之几?
⑶花坛中有红、黄两种颜色的花147朵。如果两种花的数量
比是3∶4,两种花各有多少朵?
4、一个底面内直径是4分米的圆柱形无盖的铁桶,高5分米。
① 做这个铁桶需用铁皮多少?(接口处忽略不计)
② 如果铁桶装有52的水,那么装的水有多少升?