实验四图像分割及彩色图像处理
- 格式:doc
- 大小:86.50 KB
- 文档页数:4
数字图像处理实验(五)--图像分割一、实验目的:1、学习边缘检测2、学习灰度阀值分割二、实验内容及结果:1、分别用sobel、Laplacian-Gaussian方法对一幅灰度图像进行边缘提取,给出对比结果。
程序如下:%f5.mclcI=imread('catoon.jpg');J=rgb2gray(I);subplot(2,2,1);imshow(I);title('原图象');subplot(2,2,2);imshow(J);title('转化为灰度图象');F1=edge(J,'sobel');F2=edge(J,'log');subplot(2,2,3);imshow(F1);title('用sobel方法进行边缘检测');subplot(2,2,4);imshow(F2);title('用laplacian方法进行边缘检测');处理结果如下:2.利用双峰法对一幅灰度图像进行灰度分割处理程序如下:%f51.mclcI=imread('catoon.jpg');J=rgb2gray(I);figure;subplot(2,2,1);imshow(I);title('原图象');subplot(2,2,2);imshow(J);title('转化为灰度图象'); subplot(2,2,3);imhist(J);title('图象的直方图');T=mean2(I);tmean=J>T;subplot(2,2,4);imshow(tmean);title('灰度分割后的图象'); 处理结果如下:。
图像处理课程说明二、课程描述《图像处理》课程是电子信息工程专业选修的专业课程。
本课程是模式识别、计算机视觉、图像通讯、多媒体技术等学科的基础,是一门多学科交叉、理论性和实践性都很强的综合性课程,是电子信息类专业学生的一门重要专业课程。
通过对本课程的学习,使学生了解图像的基本概念、图像形成的原理,掌握图像处理的理论基础和技术方法,着重掌握数字图像的增强、复原、压缩和分割的基本理论和实现方法,为将来从事相关领域工作和科研奠定基础。
主要内容:1.图像处理基础(数字图像的采样、量化过程及数字图像的表示形式;常用数字图像文件格式)2.图像增强(灰度变换、直方图增强处理、锐化处理)3.图像复原(图像退化/复原过程的模型、噪声模型)4.图像压缩编码(静止图像压缩编码标准-JPEG;运动图像压缩编码标准-MPEG;基本的图像编码方法,如无失真变长编码、位平面编码、游程编码。
)5.图像分割及特征提取(图像分割的概念、基于边缘检测、阈值的分割方法)6.形态学图像处理(二值形态学的基本运算,如腐蚀、膨胀、开运算和闭运算;二值图像的形态学处理,如形态滤波、边界提取、区域填充、骨架提取、物体识别;击中击不中变换。
)7.彩色与多光谱图像处理(三基色原理和CIE色度图;RGB 模型和HSI 模型;伪彩色处理、全彩色处理基础及彩色变换的常用方法。
)三、使用教材及主要参考书或资料使用教材:《数字图像处理》李俊山编,清华大学出版社。
本书较全面地介绍了数字图像处理的基本概念、基本原理、基本技术和基本方法。
全书正文有10章,内容包括绪论、数字图像处理基础、图像变换、图像增强、图像恢复、图像压缩编码、图像分割及特征提取、形态学图像处理、彩色与多光谱图像处理以及目标表示与描述等。
内容基本上覆盖了数字图像处理技术知识专题及发展动向。
本书内容新颖,语言精练,表述通俗,图文并茂,注重实践,系统性强。
本书可作为高等院校信息工程、电子工程、通信工程、信号与信息处理、模式识别与智能系统、生物医学工程、计算机科学与技术、遥感等学科硕士研究生和大学本科高年级学生的专业基础课教材。
多相图像分割的Split-Bregman方法及对偶方法第一章:引言1.1 研究背景和意义1.2 国内外研究现状和发展趋势1.3 本文的研究内容和贡献第二章:多相图像分割的相关理论与方法2.1 图像分割的基本概念和方法2.2 基于能量函数的多相分割方法2.3 Split-Bregman方法及其优化策略2.4 基于对偶算法的多相分割方法第三章:Split-Bregman方法在多相图像分割中的应用3.1 Split-Bregman方法在二相分割中的应用3.2 Split-Bregman方法在三相分割中的应用3.3 Split-Bregman方法在更高相数分割中的应用3.4 分割结果的定量评价第四章:对偶方法在多相图像分割中的应用4.1 对偶方法在二相分割中的应用4.2 对偶方法在三相分割中的应用4.3 对偶方法在更高相数分割中的应用4.4 分割结果的定量评价第五章:实验与分析5.1 实验数据和环境5.2 对比实验及结果分析5.3 讨论与总结参考文献第一章:引言1.1 研究背景和意义图像分割是计算机视觉和图像处理领域中的一个重要研究方向,其主要目的是将一个数字图像分成若干块或区域,使每一块或区域能够准确地表示出图像中的一个物体或一种特定的结构。
图像分割在医学影像、航空影像、遥感影像等众多领域具有广泛的应用,比如医学影像中的肿瘤分割、航空影像中的建筑物识别、遥感影像中的土地利用分类等。
因此,图像分割的算法研究和应用具有重要的理论和实际意义。
近年来,多相图像分割成为了研究的重点之一。
传统的图像分割方法通常将图像分成两类,即前景和背景,然而在实际应用中,我们更希望将图像分成多个部分,因为往往一个图像可能包含多个物体或结构,这时就需要使用多相分割。
多相分割的思想是将图像中每个区域看成一个物体或结构,如何划分出这些区域成为关键。
而多相图像分割的难点是如何使各个区域之间的边界准确地分割出来。
1.2 国内外研究现状和发展趋势目前,图像分割的研究涉及到众多领域,包括数学、物理、计算机科学等等。
基于深度学习的医学图像分割方法研究一、本文概述随着深度学习技术的快速发展,其在医学图像分割领域的应用也日益广泛。
医学图像分割是医学图像处理的重要任务之一,旨在将图像中的不同组织或病变区域进行精确划分,以便于后续的医学分析、诊断和治疗。
本文旨在探讨基于深度学习的医学图像分割方法,重点分析不同算法的原理、优缺点及适用场景,以期为提高医学图像分割的准确性和效率提供理论支持和实践指导。
本文首先对医学图像分割的意义进行阐述,指出其在现代医学中的重要性。
然后,介绍深度学习在医学图像分割领域的发展历程和现状,概述不同深度学习模型在医学图像分割任务中的应用情况。
接着,重点分析几种主流的深度学习医学图像分割方法,包括卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)等,详细阐述它们的原理、特点和适用条件。
本文还将探讨这些方法的优缺点,以及在实际应用中可能遇到的问题和挑战。
本文将对未来基于深度学习的医学图像分割方法的发展趋势进行展望,探讨可能的改进方向和研究热点。
通过本文的研究,我们期望能为医学图像分割领域的发展提供有益参考,为医学图像处理技术的进步贡献力量。
二、深度学习基础深度学习(Deep Learning)是机器学习的一个子领域,主要是通过学习样本数据的内在规律和表示层次,让机器能够具有类似于人类的分析学习能力。
深度学习的最终目标是让机器能够识别和解释各种数据,如文字、图像和声音等,从而实现的目标。
深度学习的核心是通过构建深度神经网络(Deep Neural Network,DNN)来实现数据的自动特征提取和分类。
深度神经网络由多个隐藏层组成,每一层都对输入数据进行非线性变换,从而提取出更高层次的特征。
随着网络层数的增加,网络可以提取到更加抽象和复杂的特征,进而实现更加精确的分类和识别。
在医学图像分割中,深度学习技术可以通过训练深度神经网络模型来自动提取图像中的特征,进而实现医学图像的自动分割。
图像与图像处理课程设计一、教学目标本课程的学习目标主要包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握图像与图像处理的基本概念、原理和算法;技能目标要求学生能够运用所学知识进行图像处理和分析,解决实际问题;情感态度价值观目标要求学生培养对图像与图像处理技术的兴趣,增强创新意识和实践能力。
通过本课程的学习,学生将能够:1.描述图像的基本概念,包括图像的表示、特征和分类;2.解释图像处理的基本原理,包括图像增强、滤波、边缘检测等;3.应用图像处理技术解决实际问题,如图像去噪、图像分割、特征提取等;4.分析图像数据,提取有价值的信息,进行图像识别和分类;5.培养对图像与图像处理技术的兴趣,积极参与实践和探索。
二、教学内容根据课程目标,教学内容主要包括图像与图像处理的基本概念、原理和应用。
教学大纲如下:1.图像的基本概念:图像的表示、特征和分类;2.图像处理的基本原理:图像增强、滤波、边缘检测等;3.图像处理技术应用:图像去噪、图像分割、特征提取等;4.图像数据分析:图像识别、分类和信息提取;5.实践项目:运用图像处理技术解决实际问题。
三、教学方法本课程采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
通过多样化的教学方法,激发学生的学习兴趣和主动性。
1.讲授法:教师通过讲解图像与图像处理的基本概念、原理和算法,引导学生理解知识点;2.讨论法:学生分组讨论实践项目,交流心得体会,互相学习;3.案例分析法:分析典型的图像处理应用案例,让学生了解图像处理技术的应用场景;4.实验法:学生动手进行实验,实践图像处理技术,培养实际操作能力。
四、教学资源本课程所需教学资源包括教材、参考书、多媒体资料和实验设备。
教学资源应能够支持教学内容和教学方法的实施,丰富学生的学习体验。
1.教材:选用权威、实用的教材,为学生提供系统、全面的学习资料;2.参考书:提供丰富的参考书籍,拓展学生的知识视野;3.多媒体资料:制作精美的多媒体课件,辅助讲解和演示;4.实验设备:配备齐全的实验设备,保障学生实践操作的需求。
医学图像分割的评价该内容来自《医学影像处理与分析》,如若转载,请注明出处。
分割结果的好坏,需要定性和定量评价。
特别是医学图像分割,分割的结果直接影响到临床应用。
评价的客观性:Lopez等第一提出实际评价方法,但实际的评价是通过目测观察完成的。
作为一个评价方法,它缺乏客观性,也没有一个定量的评价。
客观和定量的评价方法应该具有如下需求:1、一般性:通常它必须不局限于某个分割方法、某个分割任务或者维数(二维或三维)。
2、客观性:不能涉及人为因素。
3、定量:评价结果是定量的。
4、特殊性:评价必须用适合分割任务的数据进行测试。
评价方法:评价方法有两个关键点:一是分析分割算法的机制或者是试验算法的途径,二是用来评判算法性能的准则。
现有的评价方法可以归纳为两类:直接分析法和间接实验法。
分析法直接研究分割算法本身的原理特性,通过分析推理得到算法的性能。
实验法则是根据分割图像的质量间接地评判算法的性能,具体做法是,用待评价的算法去分割图像,然后借助一定的质量测度来判断分割结果的优劣。
实验法又进一步分为两种:一种称为优度实验法,它采用一些优度参数描述已分割图的特征,然后根据优度值来判定分割图和参考图,根据他们的差异来判定算法的性能。
而医学图像的分割结果评价一般采用的是差异实验法,即将计算机的分割结果与正确分割结果比较。
医学图像的正确分割结果(ground truth)有以下几个获取方式:专家手动分割、图像获取后低温切割物理对象,从人工制造的仿真模型获得的图像,对象和获取方法的仿真。
为使评价方法具有一般性和客观性,Erik B. D am提出了三种评价方法。
这些方法的共同点是,度量用户为得到正确的分割需要的工作量,用户的工作量用构造块修补分割结果所需动作数来度量。
第一种方法是,度量分割结果要达到正确分割结果锁需要的最小处理代价。
处理代价可定义为“选择”和“取消选择”的动作数,选择和取消选择的动作可以在固定大小的构造或像素级上进行。
数字图像处理实验报告数字图像处理实验报告1一.实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1. 编程实现图像平移,要求平移后的图像大小不变;2. 编程实现图像的镜像;3. 编程实现图像的转置;4. 编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5. 编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架3.1实验所用编程环境Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Wet应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2实验处理的对象:256色的BMP(BIT MAP格式图像BMP(BIT MAP位图的文件结构:具体组成图:BITMAPFILEHEADER位图文件头(只用于BMP文件)bfType="BM" bfSize bfReserved1bfReserved2bfOffBitsbiSize biWidthbiHeight biPla nesbiBitCou ntbiCompressi onbiSizeimagebiXPelsPerMeterbiY PelsPerMeterbiClrUsedbiCirimporta nt单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEAD位图信息头Palette 调色板DIBPixels DIB 图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位,水平和垂直分辨率以每米像素数为单位),目标设备的级别,每个像素所需的位数,位图压缩类型(必须是0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图,用函数创建兼容DC用函数选择显示删除位图但以上方法的缺点是:1)显示速度慢;2)内存占用大;3)位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决);4)在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示:用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数,一般放在在析构函数中以上方法的优点是:1)显示速度快;2)内存占用少;3)缩放显示时图形失真小,4)在低颜色位数的设备上显示高颜色位数的图形图形时失真小;5)通过直接处理位图数据,可以制作简单动画3.4程序中用到的访问函数Win dows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice 函数:该函数可以直接在显示器或打印机上显示DIB.在显示时不进行缩放处理.2. StretchDIBits 函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits 函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI 位图.5. CreateDIBSection 函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw 函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits 的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW弋码连接到进程中.3.5图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像处理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。
图像预处理(⼆值化)图像预处理(⼆值化)本⽂的实验室主要通过opencv与python3实现,相关的代码可以在GitHub中找到。
1. 图像获取与灰度化通过摄像头获取到的图像为彩⾊的图像。
彩⾊图像主要分为两种类型,RGB及CMYK。
其中RGB的彩⾊图像是由三种不同颜⾊成分组合⽽成,⼀个为红⾊,⼀个为绿⾊,另⼀个为蓝⾊。
⽽CMYK类型的图像则由四个颜⾊成分组成:青C、品M、黄Y、⿊CMYK类型的图像主要⽤于印刷⾏业。
每个图像的像素通常对应于⼆维空间中⼀个特定的位置,并且有⼀个或者多个与那个点相关的采样值组成数值。
灰度图像,也称为灰阶图像,图像中每个像素可以由0(⿊)到255(⽩)的亮度值(Intensity)表⽰。
0-255之间表⽰不同的灰度级。
将彩⾊图像转化成为灰度图像的过程称为图像的灰度化处理。
灰度化,在RGB模型中,如果R=G=B时,则彩⾊表⽰⼀种灰度颜⾊,其中R=G=B的值叫灰度值,因此,灰度图像每个像素只需⼀个字节存放灰度值(⼜称强度值、亮度值),灰度范围为0-255。
彩⾊图像中的每个像素的颜⾊有R、G、B三个分量决定,⽽每个分量有255个值可取,这样⼀个像素点可以有1600多万(255255255)的颜⾊的变化范围。
⽽灰度图像⼀个像素点的变化范围为255种,所以在数字图像处理种⼀般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少⼀些。
灰度图像的描述与彩⾊图像⼀样仍然反映了整幅图像的整体和局部的⾊度和亮度等级的分布和特征。
对于灰度化的⽅式有分量法、最⼤值法、平均值法,加权平均法等。
本⽂使⽤平均值法对图像进⾏灰度化。
对于平均值法,将彩⾊图像中的R、G、B三个分量的亮度求简单的平均值,将得到的值作为灰度值输出⽽得到灰度图。
其实现的表达式如下:通过实验得到得到如下图所⽰,灰度化前后:2.⼆值化通过以上对彩⾊图⽚进⾏灰度化以后,把获取到的灰度图像进⾏⼆值化处理。
对于⼆值化,其⽬的是将⽬标⽤户背景分类,为后续车道的识别做准备。
实验7 MATLAB实现彩色图像处理【实验内容】1、任选一幅彩色图像(RGB)(1)彩色图像的分析调入并显示彩色图像;拆分这幅图像,并分别显示其R,G,B分量;将该图像转换成HSV图像,根据各个分量图像的情况讨论该彩色图像的亮度、色调等性质。
RGB=imread('autumn.tif');R=RGB(:,:,1);G=RGB(:,:,2);B=RGB(:,:,3);hsv=rgb2hsv(RGB);(2) 彩色图像的直方图均衡显示这幅图像的R,G,B分量的直方图,分别进行直方图均衡处理,并显示均衡后的直方图和直方图均衡处理后的各分量;将处理完毕的各个分量合成彩色图像并显示其结果;将该图像转换成HSV图像,观察处理前后图像的彩色、亮度、色调等性质的变化。
RGB=imread('autumn.tif');hsv=rgb2hsv(RGB);R=RGB(:,:,1);subplot(231),imhist(R),title('原始R分量直方图');G=RGB(:,:,2);subplot(232),imhist(G),title('原始G分量直方图');B=RGB(:,:,3);subplot(233),imhist(B),title('原始B分量直方图');R1=histeq(R);subplot(234),imhist(R1),title('均衡化R分量直方图'); G1=histeq(G);subplot(235),imhist(G1),title('均衡化G分量直方图'); B1=histeq(B);subplot(236),imhist(B1),title('均衡化B分量直方图'); RGB1=cat(3,R1,G1,B1);hsv1=rgb2hsv(RGB1);figuresubplot(221),imshow(RGB),title('原始图像');subplot(222),imshow(hsv),title('原始HSV图像');subplot(223),imshow(RGB1),title('均衡化后图像');subplot(224),imshow(hsv1),title('均衡化后hsv图像');(3)、彩色图像在HIS模型下的增强将一幅RGB彩色图像转换为HIS空间。
数字图像处理教学大纲一、课程基本信息课程名称:数字图像处理课程类别:专业必修课学分:X总学时:X授课对象:具体专业二、课程教学目标通过本课程的学习,使学生掌握数字图像处理的基本概念、原理和方法,具备运用相关知识和技术解决实际问题的能力。
具体包括:1、理解数字图像的获取、表示和存储方式。
2、掌握数字图像增强、复原、压缩、分割等基本处理技术。
3、能够运用编程工具实现简单的数字图像处理算法。
4、培养学生的创新思维和实践能力,为进一步学习和从事相关领域的工作打下坚实的基础。
三、课程教学内容(一)数字图像基础1、图像的感知和获取视觉系统的特性图像的形成与数字化图像的采样和量化2、数字图像的表示灰度图像彩色图像图像的矩阵表示3、数字图像的存储图像文件格式图像数据库(二)图像增强1、空域增强灰度变换直方图均衡化空域滤波2、频域增强傅里叶变换频域滤波(三)图像复原1、图像退化模型常见的退化原因退化函数的建立2、逆滤波原理与实现局限性3、维纳滤波基本原理算法实现(四)图像压缩1、图像压缩的基本原理信息论基础冗余度2、无损压缩霍夫曼编码算术编码3、有损压缩预测编码变换编码(五)图像分割1、阈值分割全局阈值局部阈值2、边缘检测梯度算子拉普拉斯算子Canny 算子3、区域分割区域生长区域分裂与合并(六)图像特征提取与描述1、颜色特征颜色直方图颜色矩2、纹理特征统计方法结构方法3、形状特征边界描述区域描述(七)图像识别1、模式识别基础分类器设计特征选择与提取2、图像分类与识别应用人脸识别车牌识别四、课程教学方法1、课堂讲授通过讲解理论知识,使学生掌握数字图像处理的基本概念、原理和方法。
2、实验教学安排一定数量的实验课程,让学生通过实践加深对理论知识的理解,提高编程和解决实际问题的能力。
3、案例分析结合实际应用案例,引导学生分析问题、解决问题,培养学生的创新思维和实践能力。
4、小组讨论组织学生进行小组讨论,促进学生之间的交流与合作,激发学生的学习兴趣和主动性。
《数字图像处理》实验教案一、实验目的1. 理解数字图像处理的基本概念和原理;2. 掌握常用的数字图像处理方法和技术;3. 培养实际操作数字图像处理工具的能力;4. 提高对数字图像处理问题的分析和解决能力。
二、实验内容1. 图像读取与显示:使用图像处理软件,读取、显示和保存不同格式的图像文件;2. 图像基本运算:进行图像的加、减、乘、除等基本运算;3. 图像滤波:使用低通滤波器、高通滤波器、带通滤波器等对图像进行滤波处理;4. 图像增强:采用直方图均衡化、对比度增强等方法改善图像质量;5. 边缘检测:使用Sobel算子、Canny算子等方法检测图像边缘。
三、实验原理1. 图像读取与显示:介绍图像处理软件的基本操作,掌握图像文件格式的转换;2. 图像基本运算:介绍图像像素的运算规则,理解图像基本运算的原理;3. 图像滤波:介绍滤波器的原理和应用,掌握滤波器的设计和实现方法;4. 图像增强:介绍图像增强的目的和方法,理解直方图均衡化和对比度增强的原理;5. 边缘检测:介绍边缘检测的原理和算法,掌握不同边缘检测方法的特点和应用。
四、实验步骤1. 图像读取与显示:打开图像处理软件,选择合适的图像文件,进行读取、显示和保存操作;2. 图像基本运算:打开一幅图像,进行加、减、乘、除等基本运算,观察结果;3. 图像滤波:打开一幅图像,选择合适的滤波器,进行滤波处理,观察效果;4. 图像增强:打开一幅图像,选择合适的增强方法,进行增强处理,观察质量改善;5. 边缘检测:打开一幅图像,选择合适的边缘检测方法,进行边缘检测,观察边缘效果。
五、实验要求1. 熟练掌握图像处理软件的基本操作;2. 能够正确进行图像的基本运算;3. 能够合理选择和应用不同类型的滤波器;5. 能够根据图像特点选择合适的边缘检测方法。
六、实验环境1. 操作系统:Windows 10或更高版本;2. 图像处理软件:MATLAB或OpenCV;3. 编程环境:MATLAB或C++;4. 硬件要求:普通计算机或服务器。
1
实验四 图像分割及彩色图像处理
一、实验目的
使用MatLab 软件进行图像的分割。使学生通过实验体会一些主要的分
割算子对图像处理的效果,以及各种因素对分割效果的影响。
使用matlab如阿健对图像机械彩色处理,使学生通过实验熟悉彩色图像
处理的相关方法,并体会到图像彩色处理技术及其对图像处理的效果。
二、实验要求
要求学生能够自行评价各主要算子在无噪声条件下和噪声条件下的分
割性能。能够掌握分割条件(阈值等)的选择。完成规定图像的处理并要求正
确评价处理结果,能够从理论上作出合理的解释。
三、实验内容与步骤
第一部分
(1)使用Roberts 算子的图像分割实验
调入并显示图像5.1.13.tiff中图像;使用Roberts 算子对图像进行边
缘检测处理; Roberts 算子为一对模板:
相应的矩阵为:rh = [0 1;-1 0]; rv = [1 0;0 -1];这里的
rh 为水平Roberts 算子,rv为垂直Roberts 算子。分别显示处理后的水
平边界和垂直边界检测结果;用“欧几里德距离”和“街区距离”方式计算
梯度的模,并显示检测结果;对于检测结果进行二值化处理,并显示处理结
果;
提示:先做检测结果的直方图,参考直方图中灰度的分布尝试确定阈
值;应反复调节阈值的大小,直至二值化的效果最为满意为止。分别显示处
2
理后的水平边界和垂直边界检测结果;将处理结果转化为“白底黑线条”的
方式;给图像加上零均值的高斯噪声;对于噪声图像重复步骤b~f。
(2)使用Prewitt 算子的图像分割实验
使用Prewitt 算子进行内容(1)中的全部步骤。
(3)使用Sobel 算子的图像分割实验
使用Sobel 算子进行内容(1)中的全部步骤。
(4)使用LoG (拉普拉斯-高斯)算子的图像分割实验
使用LoG (拉普拉斯-高斯)算子进行内容(1)中的全部步骤。提示1:
处理后可以直接显示处理结果,无须另外计算梯度的模。提示2:注意调节
噪声的强度以及LoG (拉普拉斯-高斯)算子的参数,观察处理结果。
(5) 打印全部结果并进行讨论。
下面是使用sobel监测器对图像进行分割的MATLAB程序
f=imread('E:\数字图像处理实验指导书\misc\5.1.13.tiff');
[gv,t1]=edge(f,'sobel','vertical');%使用edge函数对图像f提取垂直的边缘
[gb,t2]=edge(f,'sobel','horizontal');%使用edge函数对图像f提取垂直的边缘
w45=[-2 -1 0;-1 0 1;0 1 2];%指定模版使用imfilter计算45度方向的边缘
g45=imfilter(double(f),w45,'replicate');
T=0.3*max(abs(g45(:))); %设定阈值
g45=g45>=T; %进行阈值处理
subplot(221), imshow(gv);
subplot(222),imshow(gb);
subplot(223),imshow(g45);
在函数中使用'prewitt'和'roberts'的过程,类
似于使用sobel边缘检测器的过程。
第二部分
1红绿蓝三原色按照比例混合可以得到各种颜色,其配色方程为:
C=aR+bG+cB
(9.2)
2 RGB模型
RGB模型是目前常用的一种彩色信息表达方式,它使用红、绿、蓝三原色
的亮度来定量表示颜色。
该模型也称为加色混色模型,是以RGB三色光相互叠加来实现混色的方
法,因而适合于显示器等发光体的显示。
3
如:生成一幅128*128的RGB图像,该图像左上角为红色,左下角为蓝
色,右上角为绿色,右下角为黑色。
程序:
clear
rgb_R=zeros(128,128);
rgb_R(1:64,1:64)=1;
rgb_G=zeros(128,128);
rgb_G(1:64,65:128)=1;
rgb_B=zeros(128,128);
rgb_B(65:128,1:64)=1;
rgb=cat(3,rgb_R,rgb_G,rgb_B);
figure, imshow(rgb), title('RGB彩色图像');
4
四、实验设备及软件
1.计算机;
2.MATLAB程序;
3.移动式存储器(软盘、U盘等)。
4.记录用的笔、纸。
五、实验报告要求
1.叙述实验过程;
2.提交实验的原始图像和结果图像。
报告要求:
1.使用各种算子对图像进行分割
2.自己编程实现如下所示的128*128的图像
红色 黄色 黑色 蓝色
青 绿色 深红 白色